forked from almazan/watts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_opts.m
216 lines (195 loc) · 6.72 KB
/
prepare_opts.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
function opts = prepare_opts(dataset)
% Adjustable paths
% Select the disk location of your datasets
opts.path_datasets = 'datasets';
% Path where the generated files will be saved
opts.pathData = '~/workspace/data/watts';
% Select the dataset
if nargin < 1
dataset = 'SVT';
end
opts.dataset = dataset;
% Adding all the necessary libraries and paths
addpath('util/');
if ~exist('util/bin','dir')
mkdir('util/bin');
end
addpath('util/bin');
addpath('util/io');
if ~exist('calib_c','file')
mex -output util/bin/calib_c -O -largeArrayDims util/calib_c.c
end
if ~exist('computeStats_c','file')
mex -output util/bin/computeStats_c -O -largeArrayDims CFLAGS="\$CFLAGS -std=c99" util/computeStats_c.c
end
if ~exist('phoc_mex','file')
mex -output util/bin/phoc_mex -O -largeArrayDims util/phoc_mex.cpp
end
if ~exist('levenshtein_c','file')
mex -output util/bin/levenshtein_c -O -largeArrayDims util/levenshtein_c.c
end
if ~exist('util/vlfeat-0.9.18/toolbox/mex','dir')
if isunix
cd 'util/vlfeat-0.9.18/';
mexloc = fullfile(matlabroot,'bin/mex');
% This is necessary to include support to OpenMP in Mavericks+XCode5
% gcc4.2 can be installed from MacPorts
%if strcmpi(computer,'MACI64')
% system(sprintf('make MEX=%s CC=/opt/local/bin/gcc-apple-4.2',mexloc));
%else
system(sprintf('make MEX=%s',mexloc));
%end
cd ../..;
else
run('util/vlfeat-0.9.18/toolbox/vl_compile');
end
end
run('util/vlfeat-0.9.18/toolbox/vl_setup')
% Set random seed to default
rng('default');
opts.pathDataset = sprintf('%s/%s/',opts.path_datasets,opts.dataset);
opts.pathImages = sprintf('%s/%s/images/',opts.path_datasets,opts.dataset);
opts.pathDocuments = sprintf('%s/%s/documents/',opts.path_datasets,opts.dataset);
opts.pathQueries = sprintf('%s/%s/queries/',opts.path_datasets,opts.dataset);
% Options FV features
opts.numWordsTrainGMM = 500;
opts.SIFTDIM = 128;
opts.PCADIM = 62;
opts.numSpatialX = 6;
opts.numSpatialY = 2;
opts.G = 16;
opts.phowOpts = {'Verbose', false, 'Step', 3, 'FloatDescriptors', true, 'sizes',[2,4,6,8,10,12]} ;
opts.doMinibox = 1;
opts.minH = -1;
opts.maxH = 99999;
opts.fold = -1;
% Options PHOC attributes
opts.levels = [2 3 4 5];
opts.levelsB = [2];
opts.numBigrams = 50;
fid = fopen('data/bigrams.txt','r');
bgrams = textscan(fid,'%s');
fclose(fid);
opts.bgrams = bgrams{1}(1:opts.numBigrams);
opts.unigrams = 'abcdefghijklmnopqrstuvwxyz';
opts.digits='0123456789';
opts.considerDigits = 1;
% Options learning models
opts.bagging = 1;
opts.cluster = 0;
opts.sgdparams.eta0s = single([1]);
opts.sgdparams.lbds = single([1e-3,1e-4,1e-5]);
opts.sgdparams.betas = int32([32,64,80]);
opts.sgdparams.bias_multipliers = single([1]);
opts.sgdparams.epochs = 75;
opts.sgdparams.eval_freq = 2;
opts.sgdparams.t = 0;
opts.sgdparams.weightPos = 1;
opts.sgdparams.weightNeg = 1;
% Options embedding
opts.RemoveStopWords = 0;
opts.TestFV = 0;
opts.TestDirect = 0;
opts.TestPlatts = 0;
opts.Platts.verbose = 0;
opts.TestRegress = 0;
opts.Reg.Reg = [1e-1,1e-2,1e-3,1e-4];
opts.Reg.verbose = 1;
opts.TestCCA = 1;
opts.CCA.Dims = [96];
opts.CCA.Reg = [1e-4,1e-5,1e-6];
opts.CCA.verbose = 0;
opts.TestKCCA = 1;
opts.KCCA.M = [2500];
opts.KCCA.G = [40];
opts.KCCA.Dims = [160];
opts.KCCA.Reg = [1e-5];
opts.KCCA.verbose = 1;
opts.evalRecog = 1;
opts.TestHybrid = 1;
% Specific dataset options
if strcmp(opts.dataset,'GW')
opts.fold = 1;
opts.minH = 80;
opts.maxH = 80;
elseif strcmp(opts.dataset,'IAM')
opts.PCADIM = 30;
opts.RemoveStopWords = 1;
opts.swFile = 'data/swIAM.txt';
opts.minH = 80;
opts.maxH = 80;
elseif strcmp(opts.dataset,'IIIT5K')
opts.minH = 80;
opts.maxH = 80;
opts.doMinibox = 0;
elseif strcmp(opts.dataset,'SVT')
opts.minH = 80;
opts.maxH = 80;
opts.doMinibox = 0;
elseif strcmp(opts.dataset,'ICDAR11')
opts.minH = 80;
opts.maxH = 80;
opts.doMinibox = 0;
elseif strcmp(opts.dataset,'ICDAR03')
opts.minH = 80;
opts.maxH = 80;
opts.doMinibox = 0;
elseif strcmp(opts.dataset,'LP')
opts.minH = 80;
opts.maxH = 80;
opts.doMinibox = 0;
end
opts.FVdim = (opts.PCADIM+2)*opts.numSpatialX*opts.numSpatialY*opts.G*2;
if opts.evalRecog || opts.TestHybrid
opts.TestKCCA = 1;
end
% Tags
tagminH = '';
if opts.minH > -1 || opts.maxH < 99999
tagminH = sprintf('_minH%d_maxH%d',opts.minH, opts.maxH);
end
tagFold = '';
if opts.fold > -1
tagFold = sprintf('_fold%d',opts.fold);
end
tagPCA = sprintf('_PCA%d',opts.PCADIM);
tagGMM = sprintf('_GMM%dx%dx%dx%d%s',opts.G,opts.numSpatialY,opts.numSpatialX,opts.PCADIM+2,tagminH);
tagLevels = ['_l' strrep(strrep(strrep(mat2str(opts.levels),' ',''),'[',''),']','')];
tagLevelsB = ['_lb' strrep(strrep(strrep(mat2str(opts.levelsB),' ',''),'[',''),']','')];
tagNumB = sprintf('_nb%d',opts.numBigrams);
if opts.bagging
tagBagging = '_bagging';
else
tagBagging = '_noBagging';
end
tagFeats = '_FV';
opts.tagPHOC = sprintf('_PHOCs%s%s%s',tagLevels,tagLevelsB,tagNumB);
opts.tagFeatures = sprintf('%s%s%s%s',tagFeats,tagPCA,tagGMM,tagFold);
% Paths and files
opts.pathFiles = sprintf('%s/files',opts.pathData);
if ~exist(opts.pathData,'dir')
mkdir(opts.pathData);
end
opts.dataFolder = sprintf('%s/%s%s%s',opts.pathFiles,opts.dataset,opts.tagPHOC,opts.tagFeatures);
if ~exist(opts.dataFolder,'dir')
mkdir(opts.dataFolder);
end
opts.fileData = sprintf('%s/%s_data.mat',opts.pathFiles,opts.dataset);
opts.fileImages = sprintf('%s/%s_images%s.bin',opts.pathFiles,opts.dataset,tagminH);
opts.fileWriters = sprintf('%s/%s_writers.mat',opts.pathFiles,opts.dataset);
opts.fileGMM = sprintf('%s/%s%s.bin',opts.dataFolder,opts.dataset,tagGMM);
opts.filePCA = sprintf('%s/%s%s.bin',opts.dataFolder,opts.dataset,tagPCA);
opts.filePHOCs = sprintf('%s/%s%s.bin',opts.dataFolder,opts.dataset,opts.tagPHOC);
opts.fileFeatures = sprintf('%s/%s%s.bin',opts.dataFolder,opts.dataset,opts.tagFeatures);
opts.fileAttModels = sprintf('%s/%s_attModels%s%s%s.bin',opts.dataFolder,opts.dataset,opts.tagPHOC,opts.tagFeatures,tagBagging);
opts.fileAttRepresTr = sprintf('%s/%s_attRepresTr%s%s%s.bin',opts.dataFolder,opts.dataset,opts.tagPHOC,opts.tagFeatures,tagBagging);
opts.fileAttRepresVal = sprintf('%s/%s_attRepresVal%s%s%s.bin',opts.dataFolder,opts.dataset,opts.tagPHOC,opts.tagFeatures,tagBagging);
opts.fileAttRepresTe = sprintf('%s/%s_attRepresTe%s%s%s.bin',opts.dataFolder,opts.dataset,opts.tagPHOC,opts.tagFeatures,tagBagging);
opts.folderModels = sprintf('%s/models%s/',opts.dataFolder,tagBagging);
opts.modelsLog = sprintf('%s/learning.log',opts.folderModels);
if ~exist(opts.folderModels,'dir')
mkdir(opts.folderModels);
end
opts.fileSets = sprintf('data/%s_words_indexes_sets%s.mat',opts.dataset,tagFold);
opts.fileLexicon = sprintf('%s/%s_lexicon%s.mat',opts.pathFiles,opts.dataset,opts.tagPHOC);
end