Skip to content

Latest commit

 

History

History
203 lines (187 loc) · 6.12 KB

README.md

File metadata and controls

203 lines (187 loc) · 6.12 KB

SDN: Scene Debiasing Network for Action Recognition in PyTorch

We release the code of the "Why Can't I Dance in the Mall? Learning to Mitigate Scene Bias in Action Recognition". The code is built upon the 3D-ResNets-PyTorch codebase.

For the details, visit our project website or see our full paper.

Reference

Jinwoo Choi, Chen Gao, Joseph C. E. Messou, Jia-Bin Huang. Why Can't I Dance in the Mall? Learning to Mitigate Scene Bias in Action Recognition. Neural Information Processing Systems (NeurIPS) 2019.

@inproceedings{choi2019sdn,
    title = {Why Can't I Dance in the Mall? Learning to Mitigate Scene Bias in Action Recognition},
    author = {Choi, Jinwoo and Gao, Chen and Messou, C. E. Joseph and Huang, Jia-Bin},
    booktitle={NeurIPS},
    year={2019}
}

Requirements

This codebase was developed and tested with:

  • Python 3.6
  • PyTorch 0.4.1
  • torchvision 0.2.1
  • CUDA 9.0
  • CUDNN 7.1
  • GPU: 2xP100

You can find dependencies from sdn_packages.txt

You can install dependencies by

pip install -r sdn_packages.txt 

Datasets

Prepare your dataset

1. Download and pre-process data

2. Download scene and human detection data numpy files

Train

Training on a source dataset (mini-Kinetics)

- Baseline model without any debiasing

 python train.py 
 --video_path <your dataset dir path> \
 --annotation_path <your dataset dir path>/kinetics.json \
 --result_path <path to save your model> \
 --root_path <your dataset dir path> \
 --dataset kinetics \
 --n_classes 200 \
 --n_finetune_classes 200 \
 --model resnet \
 --model_depth 18 \
 --resnet_shortcut A \
 --batch_size 32 \
 --val_batch_size 16 \
 --n_threads 16 \
 --checkpoint 1 \
 --ft_begin_index 0 \
 --is_mask_adv \
 --learning_rate 0.0001 \
 --weight_decay 1e-5 \
 --n_epochs 100 \
 --pretrain_path <pre-trained model file path>

- SDN model with scene adversarial loss only

python train.py \
--video_path <your dataset dir path> \
--annotation_path <your dataset dir path>/kinetics.json \
--result_path <path to save your model> \
--root_path <your dataset dir path> \
--dataset kinetics_adv \
--n_classes 200 \
--n_finetune_classes 200 \
--model resnet \
--model_depth 18 \
--resnet_shortcut A \
--batch_size 32 \
--val_batch_size 16 \
--n_threads 16 \
--checkpoint 1 \
--ft_begin_index 0 \
--num_place_hidden_layers 3 \
--new_layer_lr 1e-2 \
--learning_rate 1e-4 \
--warm_up_epochs 5 \
--weight_decay 1e-5 \
--n_epochs 100 \
--place_pred_path <full path of your kinetics pseudo scene labels> \
--is_place_adv \
--is_place_soft \
--alpha 1.0 \
--is_mask_adv \
--num_places_classes 365 \
--pretrain_path <pre-trained model file path>

- Full SDN model with 1) scene adversarial loss and 2) human mask confussion loss

python train.py \
--video_path <your dataset dir path> \
--annotation_path <your dataset dir path>/kinetics.json \
--result_path <path to save your model> \
--root_path <your dataset dir path> \
--dataset kinetics_adv_msk \
--n_classes 200 \
--n_finetune_classes 200 \
--model resnet \
--model_depth 18 \
--resnet_shortcut A \
--batch_size 32 \
--val_batch_size 16 \
--n_threads 16 \
--checkpoint 1 \
--ft_begin_index 0 \
--num_place_hidden_layers 3 \
--num_human_mask_adv_hidden_layers 1 \
--new_layer_lr 1e-4 \
--learning_rate 1e-4 \
--warm_up_epochs 0 \
--weight_decay 1e-5 \
--n_epochs 100 \
--place_pred_path <full path of your kinetics pseudo scene labels> \
--is_place_adv \
--is_place_soft \
--is_mask_entropy \
--alpha 0.5 \
--mask_ratio 1.0 \
--slower_place_mlp \
--not_replace_last_fc \
--num_places_classes 365 \
--human_dets_path <full path of your kinetics human detections> \
--pretrain_path <pre-trained model file path: e.g., your SDN model with scene adversarial loss only>

Finetuning on target datasets

Diving48 as an example

python train.py \
--dataset diving48 \
--root_path <your dataset path> \
--video_path <your dataset path> \
--n_classes 200 \
--n_finetune_classes 48 \
--model resnet \
--model_depth 18 \
--resnet_shortcut A \
--ft_begin_index 0 \
--batch_size 32 \
--val_batch_size 16 \
--n_threads 4 \
--checkpoint 1 \
--learning_rate 0.005 \
--weight_decay 1e-5 \
--n_epochs $epoch_ft \
--is_mask_adv \
--annotation_path $anno_path \
--result_path <path to save your fine-tuned model> \
--pretrain_path <pre-trained model file path: e.g., your full SDN model path>

Test

python train.py \
--dataset diving48 \
--root_path <your dataset path> \
--video_path <your dataset path> \
--n_finetune_classes 48 \
--n_classes 48 \
--model resnet \
--model_depth 18 \
--resnet_shortcut A \
--batch_size 32 \
--val_batch_size 16 \
--n_threads 4 \
--test \
--test_subset val \
--no_train \
--no_val \
--is_mask_adv \
--annotation_path $anno_path \
--result_path <path (dir) to save your fine-tuned model> \
--resume_path <path (the model checkpoint file) to save your fine-tuned model>

This step will generate val.json file under $result_path.

Evaluation

python utils/eval_diving48.py \
--annotation_path $anno_path \
--prediction_path <path to your test result file (val.json) generated from the test step>

Pre-trained model weights provided

Download the pre-trained weights

Acknowledgments

This code is built upon 3D-ResNets-PyTorch codebase. We thank to Kensho Hara.