-
Notifications
You must be signed in to change notification settings - Fork 0
/
repl.py
202 lines (172 loc) · 7.53 KB
/
repl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import argparse
import time
from collections import deque
import cv2
import numpy as np
import torch.nn
import torchvision
from imutils import face_utils
from sklearn import svm
from tqdm import tqdm
from PIL import Image
from align_faces import extract_faces, align_faces
from dataset import FaceDataset
from openface import load_openface, preprocess_batch
from classifiers.binary_face_classifier import BinaryFaceClassifier, BinaryFaceNetwork
CONF_THRESHOLD = 0.6
CONF_TO_STORE = 30
#TODO: jitter training data with gaussian noise and saturation.
#TODO: SVM running on unknown class
def capture_faces(seconds=20, sampling_duration=0.1, debug=False):
print("Capturing! about to capture {} seconds of video".format(seconds))
start_time = time.time()
# face_locs stores the bounding box coordinates
face_locs = []
# frames stores the actual images
frames = []
ctr = 1
while time.time() - start_time < seconds:
ret, frame = video_capture.read()
if ret:
faces = extract_faces(frame)
if len(faces) == 1:
frames.append(frame)
face_locs.append(faces[0])
print("Took sample: " + str(ctr))
ctr+=1
if len(faces) == 0:
print("No faces found.")
if len(faces) > 1:
print("We have found {} faces, and there should only be one".format(len(faces)))
else:
print("ERROR: No sample taken")
# lock the loop to system time
time.sleep(sampling_duration - ((time.time() - start_time) % sampling_duration))
# extract the faces afterwards
print("Extracting faces from samples")
samples = []
for i in tqdm(range(len(face_locs)), total=len(face_locs)):
rect = face_locs[i]
frame = frames[i]
sample = align_faces(frame, [rect])[0]
samples.append(sample)
data_aug = augment_data(sample)
samples.extend(data_aug)
if debug:
cv2.imshow("samples", sample)
cv2.waitKey(0)
return samples
# for data augmentation — adjusts hue and saturation
def augment_data(image):
img = Image.fromarray(image)
hue1 = torchvision.transforms.functional.adjust_hue(img, .05)
hue2 = torchvision.transforms.functional.adjust_hue(img, -.05)
sat1 = torchvision.transforms.functional.adjust_saturation(img, 1.35)
sat2 = torchvision.transforms.functional.adjust_saturation(img, .65)
return [np.array(hue1), np.array(hue2), np.array(sat1), np.array(sat2)]
def retrain_classifier(clf):
ds = FaceDataset("data/embeddings", "embeddings/train")
data, labels, idx_to_name = ds.all()
clf = clf.fit(data, labels)
return clf, idx_to_name
def add_face(clf, num_classes):
name = input("We don't recognize you! Please enter your name:\n").strip().lower()
while name in name_to_idx:
name = input("We don't recognize you! Please enter your name:\n").strip().lower()
samples = capture_faces()
while len(samples) < 50:
print("We could not capture sufficient samples. Please try again.\n")
samples = capture_faces()
embeddings = preprocess_batch(samples)
embeddings = openFace(embeddings)
embeddings = embeddings.detach().numpy()
# save name and embeddings
np.save("data/embeddings/{}.npy".format(name), embeddings)
return retrain_classifier(clf)
def load_model():
# TODO: in the future we should look at model persistence to disk
clf = svm.SVC(kernel="linear", C=1.6, probability=True)
#network = BinaryFaceNetwork(device)
#network.load_state_dict(torch.load("data/binary_face_classifier.pt", map_location=device))
#clf = BinaryFaceClassifier(network, 0.5)
ds = FaceDataset("data/embeddings", "embeddings/train")
data, labels, idx_to_name = ds.all()
num_classes = len(np.unique(labels))
clf = clf.fit(data, labels)
return clf, num_classes, ds.ix_to_name
def main(clf, num_classes, idx_to_name):
# to store previous confidences to determine whether a face exists
prev_conf = deque(maxlen=CONF_TO_STORE)
print("Starting...")
while True:
# ret is error code but we don't care about it
ret, frame = video_capture.read()
if ret:
# extract and align faces
rects = extract_faces(frame)
if len(rects) > 0:
# draw all bounding boxes for faces
for i in range(len(rects)):
x, y, w, h = face_utils.rect_to_bb(rects[i])
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
# generate embeddings
faces = align_faces(frame, rects)
tensor = preprocess_batch(faces)
embeddings = openFace(tensor)
embeddings = embeddings.detach().numpy()
# predict classes for all faces and label them if greater than threshold
probs = clf.predict_proba(embeddings)
unknown_class_prob = probs[0][-1]
print(probs)
predictions = np.argmax(probs, axis=1)
probs = np.max(probs, axis=1)
names = [idx_to_name[idx] for idx in predictions]
# replace all faces below confidence w unknown
names = [names[i] if probs[i] > CONF_THRESHOLD else "unknown_class" for i in range(len(probs))]
print("Hi {}!".format(names))
for i in range(len(names)):
x, y, w, h = face_utils.rect_to_bb(rects[i])
cv2.putText(frame, names[i], (x, y), cv2.FONT_HERSHEY_PLAIN, 1.5, (0, 255, 0), 2)
# determine if we need to trigger retraining
# we only retrain if there is one person in the frame and they are unrecognized or there are 0 classes
if len(faces) == 1:
prev_conf.append(unknown_class_prob)
if np.mean(prev_conf) > CONF_THRESHOLD and len(prev_conf) == CONF_TO_STORE:
clf, idx_to_name = add_face(clf, num_classes)
print(idx_to_name)
num_classes += 1
prev_conf.clear()
else:
print("No faces detected.")
cv2.imshow('Camera Feed', frame)
if cv2.waitKey(1) & 0xFF == ord('r'):
clf, idx_to_name = add_face(clf, num_classes)
print(idx_to_name)
num_classes += 1
prev_conf.clear()
else:
print("ERROR: no frame captured")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--gpu", action="store_true", help="run with this flag to run on a GPU")
args = vars(parser.parse_args())
device = torch.device("cuda") if args["gpu"] and torch.cuda.is_available() else torch.device("cpu")
print("Using device {}".format(device))
video_capture = cv2.VideoCapture(0)
openFace = load_openface(device)
# samples = capture_faces()
# embeddings = preprocess_batch(samples)
# embeddings = openFace(embeddings)
# embeddings = embeddings.detach().numpy()
#
# # save name and embeddings
# np.save("data/embeddings/varun.npy", embeddings)
clf, num_classes, idx_to_name = load_model()
print(idx_to_name)
# cannot function as a classifier if less than 2 classes
assert num_classes >= 2
name_to_idx = {idx_to_name[idx]: idx for idx in idx_to_name}
main(clf, num_classes, idx_to_name)
# When everything is done, release the capture
video_capture.release()
cv2.destroyAllWindows()