-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
1078 lines (883 loc) · 37.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
""" helper function
author Cecilia Diana-Albelda
"""
import collections
import logging
import math
import os
import pathlib
import random
import shutil
import sys
import tempfile
import time
import warnings
import cv2
from collections import OrderedDict
from datetime import datetime
from typing import BinaryIO, List, Optional, Text, Tuple, Union
import matplotlib
matplotlib.use('Agg')
from matplotlib.colors import ListedColormap
import dateutil.tz
import matplotlib.pyplot as plt
import numpy
import numpy as np
import pandas as pd
import PIL
import seaborn as sns
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import torchvision.utils as vutils
from monai.config import print_config
from monai.data import (CacheDataset, ThreadDataLoader, decollate_batch,
load_decathlon_datalist, set_track_meta)
from monai.inferers import sliding_window_inference
from monai.losses import DiceCELoss
from monai.metrics import DiceMetric
from monai.networks.nets import SwinUNETR
from monai.transforms import (AsDiscrete, Compose, CropForegroundd,
EnsureTyped, LoadImaged, Orientationd,
RandCropByPosNegLabeld, RandFlipd, RandRotate90d,
RandShiftIntensityd, ScaleIntensityRanged,
Spacingd)
from PIL import Image, ImageColor, ImageDraw, ImageFont
from torch import autograd
from torch.autograd import Function, Variable
from torch.optim.lr_scheduler import _LRScheduler
from torch.utils.data import DataLoader
from torchvision.models import vgg19
from tqdm import tqdm
import cfg
from models.discriminator import Discriminator
args = cfg.parse_args()
device = torch.device('cuda', args.gpu_device)
def SelectEquiSlices(num_slices, masks):
i_slices =[]
index = random.randint(0,masks.shape[-1]-1)
i_slices.append(index)
if index -20 <= 0:
if index -10 <= 0:
i_slices.append(index+10)
i_slices.append(index+20)
i_slices.append(index+30)
else:
i_slices.append(index-10)
i_slices.append(index+10)
i_slices.append(index+20)
else:
if index +20 >= masks.shape[-1]-1:
if index +10 >= masks.shape[-1]-1:
i_slices.append(index-10)
i_slices.append(index-20)
i_slices.append(index-30)
else:
i_slices.append(index+10)
i_slices.append(index-10)
i_slices.append(index-20)
else:
i_slices.append(index-10)
i_slices.append(index+10)
i_slices.append(index+20)
return i_slices
def get_network(args, net, use_gpu=True, gpu_device = 0, distribution = True):
""" return given network
"""
if net == 'sam':
from models.sam import SamPredictor, sam_model_registry
from models.sam.utils.transforms import ResizeLongestSide
options = ['default','vit_b','vit_l','vit_h']
if args.encoder not in options:
raise ValueError("Invalid encoder option. Please choose from: {}".format(options))
else:
net = sam_model_registry[args.encoder](args,checkpoint=args.sam_ckpt).to(device)
else:
print('the network name you have entered is not supported yet')
sys.exit()
if use_gpu:
#net = net.cuda(device = gpu_device)
if distribution != 'none':
net = torch.nn.DataParallel(net,device_ids=[int(id) for id in args.distributed.split(',')])
net = net.to(device=gpu_device)
else:
net = net.to(device=gpu_device)
return net
def cka_loss(gram_featureA, gram_featureB):
scaled_hsic = torch.dot(torch.flatten(gram_featureA),torch.flatten(gram_featureB))
normalization_x = gram_featureA.norm()
normalization_y = gram_featureB.norm()
return scaled_hsic / (normalization_x * normalization_y)
class WarmUpLR(_LRScheduler):
"""warmup_training learning rate scheduler
Args:
optimizer: optimzier(e.g. SGD)
total_iters: totoal_iters of warmup phase
"""
def __init__(self, optimizer, total_iters, last_epoch=-1):
self.total_iters = total_iters
super().__init__(optimizer, last_epoch)
def get_lr(self):
"""we will use the first m batches, and set the learning
rate to base_lr * m / total_iters
"""
return [base_lr * self.last_epoch / (self.total_iters + 1e-8) for base_lr in self.base_lrs]
def gram_matrix(input):
a, b, c, d = input.size() # a=batch size(=1)
# b=number of feature maps
# (c,d)=dimensions of a f. map (N=c*d)
features = input.view(a * b, c * d) # resise F_XL into \hat F_XL
G = torch.mm(features, features.t()) # compute the gram product
# we 'normalize' the values of the gram matrix
# by dividing by the number of element in each feature maps.
return G.div(a * b * c * d)
@torch.no_grad()
def make_grid(
tensor: Union[torch.Tensor, List[torch.Tensor]],
nrow: int = 8,
padding: int = 2,
normalize: bool = False,
value_range: Optional[Tuple[int, int]] = None,
scale_each: bool = False,
pad_value: int = 0,
**kwargs
) -> torch.Tensor:
if not (torch.is_tensor(tensor) or
(isinstance(tensor, list) and all(torch.is_tensor(t) for t in tensor))):
raise TypeError(f'tensor or list of tensors expected, got {type(tensor)}')
if "range" in kwargs.keys():
warning = "range will be deprecated, please use value_range instead."
warnings.warn(warning)
value_range = kwargs["range"]
# if list of tensors, convert to a 4D mini-batch Tensor
if isinstance(tensor, list):
tensor = torch.stack(tensor, dim=0)
if tensor.dim() == 2: # single image H x W
tensor = tensor.unsqueeze(0)
if tensor.dim() == 3: # single image
if tensor.size(0) == 1: # if single-channel, convert to 3-channel
tensor = torch.cat((tensor, tensor, tensor), 0)
tensor = tensor.unsqueeze(0)
if tensor.dim() == 4 and tensor.size(1) == 1: # single-channel images
tensor = torch.cat((tensor, tensor, tensor), 1)
if normalize is True:
tensor = tensor.clone() # avoid modifying tensor in-place
if value_range is not None:
assert isinstance(value_range, tuple), \
"value_range has to be a tuple (min, max) if specified. min and max are numbers"
def norm_ip(img, low, high):
img.clamp(min=low, max=high)
img.sub_(low).div_(max(high - low, 1e-5))
def norm_range(t, value_range):
if value_range is not None:
norm_ip(t, value_range[0], value_range[1])
else:
norm_ip(t, float(t.min()), float(t.max()))
if scale_each is True:
for t in tensor: # loop over mini-batch dimension
norm_range(t, value_range)
else:
norm_range(tensor, value_range)
if tensor.size(0) == 1:
return tensor.squeeze(0)
# make the mini-batch of images into a grid
nmaps = tensor.size(0)
xmaps = min(nrow, nmaps)
ymaps = int(math.ceil(float(nmaps) / xmaps))
height, width = int(tensor.size(2) + padding), int(tensor.size(3) + padding)
num_channels = tensor.size(1)
grid = tensor.new_full((num_channels, height * ymaps + padding, width * xmaps + padding), pad_value)
k = 0
for y in range(ymaps):
for x in range(xmaps):
if k >= nmaps:
break
# Tensor.copy_() is a valid method but seems to be missing from the stubs
# https://pytorch.org/docs/stable/tensors.html#torch.Tensor.copy_
grid.narrow(1, y * height + padding, height - padding).narrow( # type: ignore[attr-defined]
2, x * width + padding, width - padding
).copy_(tensor[k])
k = k + 1
return grid
@torch.no_grad()
def save_image(
tensor: Union[torch.Tensor, List[torch.Tensor]],
fp: Union[Text, pathlib.Path, BinaryIO],
format: Optional[str] = None,
**kwargs
) -> None:
"""
Save a given Tensor into an image file.
Args:
tensor (Tensor or list): Image to be saved. If given a mini-batch tensor,
saves the tensor as a grid of images by calling ``make_grid``.
fp (string or file object): A filename or a file object
format(Optional): If omitted, the format to use is determined from the filename extension.
If a file object was used instead of a filename, this parameter should always be used.
**kwargs: Other arguments are documented in ``make_grid``.
"""
grid = make_grid(tensor, **kwargs)
# Add 0.5 after unnormalizing to [0, 255] to round to nearest integer
ndarr = grid.mul(255).add_(0.5).clamp_(0, 255).permute(1, 2, 0).to('cpu', torch.uint8).numpy()
im = Image.fromarray(ndarr)
im.save(fp, format=format)
def create_logger(log_dir, phase='train'):
time_str = time.strftime('%Y-%m-%d-%H-%M')
log_file = '{}_{}.log'.format(time_str, phase)
final_log_file = os.path.join(log_dir, log_file)
head = '%(asctime)-15s %(message)s'
logging.basicConfig(filename=str(final_log_file),
format=head)
logger = logging.getLogger()
logger.setLevel(logging.INFO)
console = logging.StreamHandler()
logging.getLogger('').addHandler(console)
return logger
def set_log_dir(root_dir, exp_name):
path_dict = {}
os.makedirs(root_dir, exist_ok=True)
# set log path
exp_path = os.path.join(root_dir, exp_name)
now = datetime.now(dateutil.tz.tzlocal())
timestamp = now.strftime('%Y_%m_%d_%H_%M_%S')
prefix = exp_path + '_' + timestamp
os.makedirs(prefix)
path_dict['prefix'] = prefix
# set checkpoint path
ckpt_path = os.path.join(prefix, 'Model')
os.makedirs(ckpt_path)
path_dict['ckpt_path'] = ckpt_path
log_path = os.path.join(prefix, 'Log')
os.makedirs(log_path)
path_dict['log_path'] = log_path
# set sample image path for fid calculation
sample_path = os.path.join(prefix, 'Samples')
os.makedirs(sample_path)
path_dict['sample_path'] = sample_path
return path_dict
def save_checkpoint(states, is_best, output_dir,
filename='checkpoint.pth'):
torch.save(states, os.path.join(output_dir, filename))
# if is_best:
# torch.save(states, os.path.join(output_dir, 'checkpoint_best.pth'))
class RunningStats:
def __init__(self, WIN_SIZE):
self.mean = 0
self.run_var = 0
self.WIN_SIZE = WIN_SIZE
self.window = collections.deque(maxlen=WIN_SIZE)
def clear(self):
self.window.clear()
self.mean = 0
self.run_var = 0
def is_full(self):
return len(self.window) == self.WIN_SIZE
def push(self, x):
if len(self.window) == self.WIN_SIZE:
# Adjusting variance
x_removed = self.window.popleft()
self.window.append(x)
old_m = self.mean
self.mean += (x - x_removed) / self.WIN_SIZE
self.run_var += (x + x_removed - old_m - self.mean) * (x - x_removed)
else:
# Calculating first variance
self.window.append(x)
delta = x - self.mean
self.mean += delta / len(self.window)
self.run_var += delta * (x - self.mean)
def get_mean(self):
return self.mean if len(self.window) else 0.0
def get_var(self):
return self.run_var / len(self.window) if len(self.window) > 1 else 0.0
def get_std(self):
return math.sqrt(self.get_var())
def get_all(self):
return list(self.window)
def __str__(self):
return "Current window values: {}".format(list(self.window))
def iou(outputs: np.array, labels: np.array):
SMOOTH = 1e-6
intersection = (outputs & labels).sum((1, 2))
union = (outputs | labels).sum((1, 2))
iou = (intersection + SMOOTH) / (union + SMOOTH)
return iou.mean()
class DiceCoeff(Function):
"""Dice coeff for individual examples"""
def forward(self, input, target):
self.save_for_backward(input, target)
eps = 0.0001
self.inter = torch.dot(input.view(-1), target.view(-1))
self.union = torch.sum(input) + torch.sum(target) + eps
t = (2 * self.inter.float() + eps) / self.union.float()
return t
# This function has only a single output, so it gets only one gradient
def backward(self, grad_output):
input, target = self.saved_variables
grad_input = grad_target = None
if self.needs_input_grad[0]:
grad_input = grad_output * 2 * (target * self.union - self.inter) \
/ (self.union * self.union)
if self.needs_input_grad[1]:
grad_target = None
return grad_input, grad_target
def dice_coeff(input, target):
"""Dice coeff for batches"""
if input.is_cuda:
s = torch.FloatTensor(1).to(device = input.device).zero_()
else:
s = torch.FloatTensor(1).zero_()
for i, c in enumerate(zip(input, target)):
s = s + DiceCoeff().forward(c[0], c[1])
return s / (i + 1)
'''parameter'''
def para_image(w, h=None, img = None, mode = 'multi', seg = None, sd=None, batch=None,
fft = False, channels=None, init = None):
h = h or w
batch = batch or 1
ch = channels or 3
shape = [batch, ch, h, w]
param_f = fft_image if fft else pixel_image
if init is not None:
param_f = init_image
params, maps_f = param_f(init)
else:
params, maps_f = param_f(shape, sd=sd)
if mode == 'multi':
output = to_valid_out(maps_f,img,seg)
elif mode == 'seg':
output = gene_out(maps_f,img)
elif mode == 'raw':
output = raw_out(maps_f,img)
return params, output
def to_valid_out(maps_f,img,seg): #multi-rater
def inner():
maps = maps_f()
maps = maps.to(device = img.device)
maps = torch.nn.Softmax(dim = 1)(maps)
final_seg = torch.multiply(seg,maps).sum(dim = 1, keepdim = True)
return torch.cat((img,final_seg),1)
# return torch.cat((img,maps),1)
return inner
def gene_out(maps_f,img): #pure seg
def inner():
maps = maps_f()
maps = maps.to(device = img.device)
# maps = torch.nn.Sigmoid()(maps)
return torch.cat((img,maps),1)
# return torch.cat((img,maps),1)
return inner
def raw_out(maps_f,img): #raw
def inner():
maps = maps_f()
maps = maps.to(device = img.device)
# maps = torch.nn.Sigmoid()(maps)
return maps
# return torch.cat((img,maps),1)
return inner
class CompositeActivation(torch.nn.Module):
def forward(self, x):
x = torch.atan(x)
return torch.cat([x/0.67, (x*x)/0.6], 1)
# return x
def cppn(args, size, img = None, seg = None, batch=None, num_output_channels=1, num_hidden_channels=128, num_layers=8,
activation_fn=CompositeActivation, normalize=False, device = "cuda:0"):
r = 3 ** 0.5
coord_range = torch.linspace(-r, r, size)
x = coord_range.view(-1, 1).repeat(1, coord_range.size(0))
y = coord_range.view(1, -1).repeat(coord_range.size(0), 1)
input_tensor = torch.stack([x, y], dim=0).unsqueeze(0).repeat(batch,1,1,1).to(device)
layers = []
kernel_size = 1
for i in range(num_layers):
out_c = num_hidden_channels
in_c = out_c * 2 # * 2 for composite activation
if i == 0:
in_c = 2
if i == num_layers - 1:
out_c = num_output_channels
layers.append(('conv{}'.format(i), torch.nn.Conv2d(in_c, out_c, kernel_size)))
if normalize:
layers.append(('norm{}'.format(i), torch.nn.InstanceNorm2d(out_c)))
if i < num_layers - 1:
layers.append(('actv{}'.format(i), activation_fn()))
else:
layers.append(('output', torch.nn.Sigmoid()))
# Initialize model
net = torch.nn.Sequential(OrderedDict(layers)).to(device)
# Initialize weights
def weights_init(module):
if isinstance(module, torch.nn.Conv2d):
torch.nn.init.normal_(module.weight, 0, np.sqrt(1/module.in_channels))
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
net.apply(weights_init)
# Set last conv2d layer's weights to 0
torch.nn.init.zeros_(dict(net.named_children())['conv{}'.format(num_layers - 1)].weight)
outimg = raw_out(lambda: net(input_tensor),img) if args.netype == 'raw' else to_valid_out(lambda: net(input_tensor),img,seg)
return net.parameters(), outimg
def get_siren(args):
wrapper = get_network(args, 'siren', use_gpu=args.gpu, gpu_device=torch.device('cuda', args.gpu_device), distribution = args.distributed)
'''load init weights'''
checkpoint = torch.load('./logs/siren_train_init_2022_08_19_21_00_16/Model/checkpoint_best.pth')
wrapper.load_state_dict(checkpoint['state_dict'],strict=False)
'''end'''
'''load prompt'''
checkpoint = torch.load('./logs/vae_standard_refuge1_2022_08_21_17_56_49/Model/checkpoint500')
vae = get_network(args, 'vae', use_gpu=args.gpu, gpu_device=torch.device('cuda', args.gpu_device), distribution = args.distributed)
vae.load_state_dict(checkpoint['state_dict'],strict=False)
'''end'''
return wrapper, vae
def siren(args, wrapper, vae, img = None, seg = None, batch=None, num_output_channels=1, num_hidden_channels=128, num_layers=8,
activation_fn=CompositeActivation, normalize=False, device = "cuda:0"):
vae_img = torchvision.transforms.Resize(64)(img)
latent = vae.encoder(vae_img).view(-1).detach()
outimg = raw_out(lambda: wrapper(latent = latent),img) if args.netype == 'raw' else to_valid_out(lambda: wrapper(latent = latent),img,seg)
# img = torch.randn(1, 3, 256, 256)
# loss = wrapper(img)
# loss.backward()
# # after much training ...
# # simply invoke the wrapper without passing in anything
# pred_img = wrapper() # (1, 3, 256, 256)
return wrapper.parameters(), outimg
'''adversary'''
def render_vis(
args,
model,
objective_f,
real_img,
param_f=None,
optimizer=None,
transforms=None,
thresholds=(256,),
verbose=True,
preprocess=True,
progress=True,
show_image=True,
save_image=False,
image_name=None,
show_inline=False,
fixed_image_size=None,
label = 1,
raw_img = None,
prompt = None
):
if label == 1:
sign = 1
elif label == 0:
sign = -1
else:
print('label is wrong, label is',label)
if args.reverse:
sign = -sign
if args.multilayer:
sign = 1
'''prepare'''
now = datetime.now()
date_time = now.strftime("%m-%d-%Y, %H:%M:%S")
netD, optD = pre_d()
'''end'''
if param_f is None:
param_f = lambda: param.image(128)
# param_f is a function that should return two things
# params - parameters to update, which we pass to the optimizer
# image_f - a function that returns an image as a tensor
params, image_f = param_f()
if optimizer is None:
optimizer = lambda params: torch.optim.Adam(params, lr=5e-1)
optimizer = optimizer(params)
if transforms is None:
transforms = []
transforms = transforms.copy()
# Upsample images smaller than 224
image_shape = image_f().shape
if fixed_image_size is not None:
new_size = fixed_image_size
elif image_shape[2] < 224 or image_shape[3] < 224:
new_size = 224
else:
new_size = None
if new_size:
transforms.append(
torch.nn.Upsample(size=new_size, mode="bilinear", align_corners=True)
)
transform_f = transform.compose(transforms)
hook = hook_model(model, image_f)
objective_f = objectives.as_objective(objective_f)
if verbose:
model(transform_f(image_f()))
print("Initial loss of ad: {:.3f}".format(objective_f(hook)))
images = []
try:
for i in tqdm(range(1, max(thresholds) + 1), disable=(not progress)):
optimizer.zero_grad()
try:
model(transform_f(image_f()))
except RuntimeError as ex:
if i == 1:
# Only display the warning message
# on the first iteration, no need to do that
# every iteration
warnings.warn(
"Some layers could not be computed because the size of the "
"image is not big enough. It is fine, as long as the non"
"computed layers are not used in the objective function"
f"(exception details: '{ex}')"
)
if args.disc:
'''dom loss part'''
# content_img = raw_img
# style_img = raw_img
# precpt_loss = run_precpt(cnn, cnn_normalization_mean, cnn_normalization_std, content_img, style_img, transform_f(image_f()))
for p in netD.parameters():
p.requires_grad = True
for _ in range(args.drec):
netD.zero_grad()
real = real_img
fake = image_f()
# for _ in range(6):
# errD, D_x, D_G_z1 = update_d(args, netD, optD, real, fake)
# label = torch.full((args.b,), 1., dtype=torch.float, device=device)
# label.fill_(1.)
# output = netD(fake).view(-1)
# errG = nn.BCELoss()(output, label)
# D_G_z2 = output.mean().item()
# dom_loss = err
one = torch.tensor(1, dtype=torch.float)
mone = one * -1
one = one.cuda(args.gpu_device)
mone = mone.cuda(args.gpu_device)
d_loss_real = netD(real)
d_loss_real = d_loss_real.mean()
d_loss_real.backward(mone)
d_loss_fake = netD(fake)
d_loss_fake = d_loss_fake.mean()
d_loss_fake.backward(one)
# Train with gradient penalty
gradient_penalty = calculate_gradient_penalty(netD, real.data, fake.data)
gradient_penalty.backward()
d_loss = d_loss_fake - d_loss_real + gradient_penalty
Wasserstein_D = d_loss_real - d_loss_fake
optD.step()
# Generator update
for p in netD.parameters():
p.requires_grad = False # to avoid computation
fake_images = image_f()
g_loss = netD(fake_images)
g_loss = -g_loss.mean()
dom_loss = g_loss
g_cost = -g_loss
if i% 5 == 0:
print(f' loss_fake: {d_loss_fake}, loss_real: {d_loss_real}')
print(f'Generator g_loss: {g_loss}')
'''end'''
'''ssim loss'''
'''end'''
if args.disc:
loss = sign * objective_f(hook) + args.pw * dom_loss
# loss = args.pw * dom_loss
else:
loss = sign * objective_f(hook)
# loss = args.pw * dom_loss
loss.backward()
# #video the images
# if i % 5 == 0:
# print('1')
# image_name = image_name[0].split('\\')[-1].split('.')[0] + '_' + str(i) + '.png'
# img_path = os.path.join(args.path_helper['sample_path'], str(image_name))
# export(image_f(), img_path)
# #end
# if i % 50 == 0:
# print('Loss_D: %.4f\tLoss_G: %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'
# % (errD.item(), errG.item(), D_x, D_G_z1, D_G_z2))
optimizer.step()
if i in thresholds:
image = tensor_to_img_array(image_f())
# if verbose:
# print("Loss at step {}: {:.3f}".format(i, objective_f(hook)))
if save_image:
na = image_name[0].split('\\')[-1].split('.')[0] + '_' + str(i) + '.png'
na = date_time + na
outpath = args.quickcheck if args.quickcheck else args.path_helper['sample_path']
img_path = os.path.join(outpath, str(na))
export(image_f(), img_path)
images.append(image)
except KeyboardInterrupt:
print("Interrupted optimization at step {:d}.".format(i))
if verbose:
print("Loss at step {}: {:.3f}".format(i, objective_f(hook)))
images.append(tensor_to_img_array(image_f()))
if save_image:
na = image_name[0].split('\\')[-1].split('.')[0] + '.png'
na = date_time + na
outpath = args.quickcheck if args.quickcheck else args.path_helper['sample_path']
img_path = os.path.join(outpath, str(na))
export(image_f(), img_path)
if show_inline:
show(tensor_to_img_array(image_f()))
elif show_image:
view(image_f())
return image_f()
def tensor_to_img_array(tensor):
image = tensor.cpu().detach().numpy()
image = np.transpose(image, [0, 2, 3, 1])
return image
def view(tensor):
image = tensor_to_img_array(tensor)
assert len(image.shape) in [
3,
4,
], "Image should have 3 or 4 dimensions, invalid image shape {}".format(image.shape)
# Change dtype for PIL.Image
image = (image * 255).astype(np.uint8)
if len(image.shape) == 4:
image = np.concatenate(image, axis=1)
Image.fromarray(image).show()
def export(tensor, img_path=None):
# image_name = image_name or "image.jpg"
c = tensor.size(1)
# if c == 7:
# for i in range(c):
# w_map = tensor[:,i,:,:].unsqueeze(1)
# w_map = tensor_to_img_array(w_map).squeeze()
# w_map = (w_map * 255).astype(np.uint8)
# image_name = image_name[0].split('/')[-1].split('.')[0] + str(i)+ '.png'
# wheat = sns.heatmap(w_map,cmap='coolwarm')
# figure = wheat.get_figure()
# figure.savefig ('./fft_maps/weightheatmap/'+str(image_name), dpi=400)
# figure = 0
# else:
if c == 3:
vutils.save_image(tensor, fp = img_path)
else:
image = tensor[:,0:3,:,:]
w_map = tensor[:,-1,:,:].unsqueeze(1)
image = tensor_to_img_array(image)
w_map = 1 - tensor_to_img_array(w_map).squeeze()
# w_map[w_map==1] = 0
assert len(image.shape) in [
3,
4,
], "Image should have 3 or 4 dimensions, invalid image shape {}".format(image.shape)
# Change dtype for PIL.Image
image = (image * 255).astype(np.uint8)
w_map = (w_map * 255).astype(np.uint8)
Image.fromarray(w_map,'L').save(img_path)
class ModuleHook:
def __init__(self, module):
self.hook = module.register_forward_hook(self.hook_fn)
self.module = None
self.features = None
def hook_fn(self, module, input, output):
self.module = module
self.features = output
def close(self):
self.hook.remove()
def hook_model(model, image_f):
features = OrderedDict()
# recursive hooking function
def hook_layers(net, prefix=[]):
if hasattr(net, "_modules"):
for name, layer in net._modules.items():
if layer is None:
# e.g. GoogLeNet's aux1 and aux2 layers
continue
features["_".join(prefix + [name])] = ModuleHook(layer)
hook_layers(layer, prefix=prefix + [name])
hook_layers(model)
def hook(layer):
if layer == "input":
out = image_f()
elif layer == "labels":
out = list(features.values())[-1].features
else:
assert layer in features, f"Invalid layer {layer}. Retrieve the list of layers with `lucent.modelzoo.util.get_model_layers(model)`."
out = features[layer].features
assert out is not None, "There are no saved feature maps. Make sure to put the model in eval mode, like so: `model.to(device).eval()`. See README for example."
return out
return hook
def vis_image(imgs, pred_masks, gt_masks, save_path, reverse = False, points = None):
b,c,h,w = pred_masks.size()
dev = pred_masks.get_device()
row_num = min(b, 4)
if torch.max(pred_masks) > 1 or torch.min(pred_masks) < 0:
pred_masks = torch.sigmoid(pred_masks)
if reverse == True:
pred_masks = 1 - pred_masks
gt_masks = 1 - gt_masks
if c == 2:
pred_disc, pred_cup = pred_masks[:,0,:,:].unsqueeze(1).expand(b,3,h,w), pred_masks[:,1,:,:].unsqueeze(1).expand(b,3,h,w)
gt_disc, gt_cup = gt_masks[:,0,:,:].unsqueeze(1).expand(b,3,h,w), gt_masks[:,1,:,:].unsqueeze(1).expand(b,3,h,w)
tup = (imgs[:row_num,:,:,:],pred_disc[:row_num,:,:,:], pred_cup[:row_num,:,:,:], gt_disc[:row_num,:,:,:], gt_cup[:row_num,:,:,:])
# compose = torch.cat((imgs[:row_num,:,:,:],pred_disc[:row_num,:,:,:], pred_cup[:row_num,:,:,:], gt_disc[:row_num,:,:,:], gt_cup[:row_num,:,:,:]),0)
compose = torch.cat((pred_disc[:row_num,:,:,:], pred_cup[:row_num,:,:,:], gt_disc[:row_num,:,:,:], gt_cup[:row_num,:,:,:]),0)
vutils.save_image(compose, fp = save_path, nrow = row_num, padding = 10)
else:
imgs = torchvision.transforms.Resize((h,w))(imgs)
if imgs.size(1) == 1:
imgs = imgs[:,0,:,:].unsqueeze(1).expand(b,3,h,w)
pred_masks = pred_masks[:,0,:,:].unsqueeze(1).expand(b,3,h,w)
gt_masks = gt_masks[:,0,:,:].unsqueeze(1).expand(b,3,h,w)
if points != None:
for i in range(b):
if args.thd:
p = np.round(points.cpu()/args.roi_size * args.out_size).to(dtype = torch.int)
else:
p = np.round(points.cpu()/args.image_size * args.out_size).to(dtype = torch.int)
# gt_masks[i,:,points[i,0]-5:points[i,0]+5,points[i,1]-5:points[i,1]+5] = torch.Tensor([255, 0, 0]).to(dtype = torch.float32, device = torch.device('cuda:' + str(dev)))
gt_masks[i,0,p[i,0]-5:p[i,0]+5,p[i,1]-5:p[i,1]+5] = 0.5
gt_masks[i,1,p[i,0]-5:p[i,0]+5,p[i,1]-5:p[i,1]+5] = 0.1
gt_masks[i,2,p[i,0]-5:p[i,0]+5,p[i,1]-5:p[i,1]+5] = 0.4
tup = (imgs[:row_num,:,:,:],pred_masks[:row_num,:,:,:], gt_masks[:row_num,:,:,:])
# compose = torch.cat((imgs[:row_num,:,:,:],pred_disc[:row_num,:,:,:], pred_cup[:row_num,:,:,:], gt_disc[:row_num,:,:,:], gt_cup[:row_num,:,:,:]),0)
compose = torch.cat(tup,0)
vutils.save_image(compose, fp = save_path, nrow = row_num, padding = 10)
return
def eval_seg(pred,true_mask_p,threshold):
'''
threshold: a int or a tuple of int
masks: [b,2,h,w]
pred: [b,2,h,w]
'''
b, c, h, w = pred.size()
if c == 2:
iou_d, iou_c, disc_dice, cup_dice = 0,0,0,0
for th in threshold:
gt_vmask_p = (true_mask_p > th).float()
vpred = (pred > th).float()
vpred_cpu = vpred.cpu()
disc_pred = vpred_cpu[:,0,:,:].numpy().astype('int32')
cup_pred = vpred_cpu[:,1,:,:].numpy().astype('int32')
disc_mask = gt_vmask_p [:,0,:,:].squeeze(1).cpu().numpy().astype('int32')
cup_mask = gt_vmask_p [:, 1, :, :].squeeze(1).cpu().numpy().astype('int32')
'''iou for numpy'''
iou_d += iou(disc_pred,disc_mask)
iou_c += iou(cup_pred,cup_mask)
'''dice for torch'''
disc_dice += dice_coeff(vpred[:,0,:,:], gt_vmask_p[:,0,:,:]).item()
cup_dice += dice_coeff(vpred[:,1,:,:], gt_vmask_p[:,1,:,:]).item()
return iou_d / len(threshold), iou_c / len(threshold), disc_dice / len(threshold), cup_dice / len(threshold)
else:
eiou, edice = 0,0
for th in threshold:
gt_vmask_p = (true_mask_p > th).float()
vpred = (pred > th).float()
vpred_cpu = vpred.cpu()
disc_pred = vpred_cpu[:,0,:,:].numpy().astype('int32')
disc_mask = gt_vmask_p [:,0,:,:].squeeze(1).cpu().numpy().astype('int32')
'''iou for numpy'''
eiou += iou(disc_pred,disc_mask)
'''dice for torch'''
edice += dice_coeff(vpred[:,0,:,:], gt_vmask_p[:,0,:,:]).item()
return eiou / len(threshold), edice / len(threshold)
# @objectives.wrap_objective()
def dot_compare(layer, batch=1, cossim_pow=0):
def inner(T):
dot = (T(layer)[batch] * T(layer)[0]).sum()
mag = torch.sqrt(torch.sum(T(layer)[0]**2))
cossim = dot/(1e-6 + mag)
return -dot * cossim ** cossim_pow
return inner
def init_D(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
nn.init.normal_(m.weight.data, 0.0, 0.02)
elif classname.find('BatchNorm') != -1:
nn.init.normal_(m.weight.data, 1.0, 0.02)
nn.init.constant_(m.bias.data, 0)
def pre_d():
netD = Discriminator(3).to(device)
# netD.apply(init_D)
beta1 = 0.5
dis_lr = 0.00002
optimizerD = optim.Adam(netD.parameters(), lr=dis_lr, betas=(beta1, 0.999))
return netD, optimizerD
def update_d(args, netD, optimizerD, real, fake):
criterion = nn.BCELoss()
label = torch.full((args.b,), 1., dtype=torch.float, device=device)
output = netD(real).view(-1)
# Calculate loss on all-real batch
errD_real = criterion(output, label)
# Calculate gradients for D in backward pass
errD_real.backward()
D_x = output.mean().item()
label.fill_(0.)
# Classify all fake batch with D
output = netD(fake.detach()).view(-1)
# Calculate D's loss on the all-fake batch
errD_fake = criterion(output, label)
# Calculate the gradients for this batch, accumulated (summed) with previous gradients
errD_fake.backward()
D_G_z1 = output.mean().item()
# Compute error of D as sum over the fake and the real batches
errD = errD_real + errD_fake
# Update D
optimizerD.step()
return errD, D_x, D_G_z1
def calculate_gradient_penalty(netD, real_images, fake_images):
eta = torch.FloatTensor(args.b,1,1,1).uniform_(0,1)
eta = eta.expand(args.b, real_images.size(1), real_images.size(2), real_images.size(3)).to(device = device)