Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug]: VllmWorkerProcess does not exit correctly when TP > 1 #6219

Open
LiuXiaoxuanPKU opened this issue Jul 8, 2024 · 3 comments
Open

[Bug]: VllmWorkerProcess does not exit correctly when TP > 1 #6219

LiuXiaoxuanPKU opened this issue Jul 8, 2024 · 3 comments
Labels
bug Something isn't working

Comments

@LiuXiaoxuanPKU
Copy link
Collaborator

Your current environment

PyTorch version: 2.3.0+cu121
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.30.0
Libc version: glibc-2.35

Python version: 3.10.14 (main, May  6 2024, 19:42:50) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-1055-nvidia-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 12.5.40
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: NVIDIA H100 80GB HBM3
GPU 1: NVIDIA H100 80GB HBM3
GPU 2: NVIDIA H100 80GB HBM3
GPU 3: NVIDIA H100 80GB HBM3
GPU 4: NVIDIA H100 80GB HBM3
GPU 5: NVIDIA H100 80GB HBM3
GPU 6: NVIDIA H100 80GB HBM3
GPU 7: NVIDIA H100 80GB HBM3

Nvidia driver version: 555.42.02
cuDNN version: Probably one of the following:
/usr/lib/x86_64-linux-gnu/libcudnn.so.9.2.0
/usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.2.0
/usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.2.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.2.0
/usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.2.0
/usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.2.0
/usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.2.0
/usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.2.0
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      52 bits physical, 57 bits virtual
Byte Order:                         Little Endian
CPU(s):                             224
On-line CPU(s) list:                0-223
Vendor ID:                          GenuineIntel
Model name:                         Intel(R) Xeon(R) Platinum 8480C
CPU family:                         6
Model:                              143
Thread(s) per core:                 2
Core(s) per socket:                 56
Socket(s):                          2
Stepping:                           8
CPU max MHz:                        3800.0000
CPU min MHz:                        800.0000
BogoMIPS:                           4000.00
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cat_l2 cdp_l3 invpcid_single intel_ppin cdp_l2 ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm rdt_a avx512f avx512dq rdseed adx smap avx512ifma clflushopt clwb intel_pt avx512cd sha_ni avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local split_lock_detect avx_vnni avx512_bf16 wbnoinvd dtherm ida arat pln pts hwp hwp_act_window hwp_epp hwp_pkg_req avx512vbmi umip pku ospke waitpkg avx512_vbmi2 gfni vaes vpclmulqdq avx512_vnni avx512_bitalg tme avx512_vpopcntdq la57 rdpid bus_lock_detect cldemote movdiri movdir64b enqcmd fsrm md_clear serialize tsxldtrk pconfig arch_lbr amx_bf16 avx512_fp16 amx_tile amx_int8 flush_l1d arch_capabilities
Virtualization:                     VT-x
L1d cache:                          5.3 MiB (112 instances)
L1i cache:                          3.5 MiB (112 instances)
L2 cache:                           224 MiB (112 instances)
L3 cache:                           210 MiB (2 instances)
NUMA node(s):                       2
NUMA node0 CPU(s):                  0-55,112-167
NUMA node1 CPU(s):                  56-111,168-223
Vulnerability Gather data sampling: Not affected
Vulnerability Itlb multihit:        Not affected
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Not affected
Vulnerability Retbleed:             Not affected
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Enhanced IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Not affected

Versions of relevant libraries:
[pip3] flashinfer==0.0.8+cu121torch2.3
[pip3] mypy==1.9.0
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] nvidia-nccl-cu12==2.20.5
[pip3] onnx==1.14.1
[pip3] onnxruntime==1.18.1
[pip3] sentence-transformers==3.0.1
[pip3] torch==2.3.0
[pip3] torchvision==0.18.0
[pip3] transformers==4.42.3
[pip3] triton==2.3.0
[conda] flashinfer                0.0.8+cu121torch2.3          pypi_0    pypi
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-nccl-cu12          2.20.5                   pypi_0    pypi
[conda] sentence-transformers     3.0.1                    pypi_0    pypi
[conda] torch                     2.3.0                    pypi_0    pypi
[conda] torchvision               0.18.0                   pypi_0    pypi
[conda] transformers              4.42.3                   pypi_0    pypi
[conda] triton                    2.3.0                    pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0	GPU1	GPU2	GPU3	GPU4	GPU5	GPU6	GPU7	NIC0	NIC1	NIC2	NIC3	NIC4	NIC5	NIC6	NICNIC8	NIC9	NIC10	NIC11	CPU Affinity	NUMA Affinity	GPU NUMA ID
GPU0	 X 	NV18	NV18	NV18	NV18	NV18	NV18	NV18	PXB	NODE	NODE	NODE	NODE	NODE	SYSSYS	SYS	SYS	SYS	SYS	0-55,112-167	0		N/A
GPU1	NV18	 X 	NV18	NV18	NV18	NV18	NV18	NV18	NODE	NODE	NODE	PXB	NODE	NODE	SYSSYS	SYS	SYS	SYS	SYS	0-55,112-167	0		N/A
GPU2	NV18	NV18	 X 	NV18	NV18	NV18	NV18	NV18	NODE	NODE	NODE	NODE	PXB	NODE	SYSSYS	SYS	SYS	SYS	SYS	0-55,112-167	0		N/A
GPU3	NV18	NV18	NV18	 X 	NV18	NV18	NV18	NV18	NODE	NODE	NODE	NODE	NODE	PXB	SYSSYS	SYS	SYS	SYS	SYS	0-55,112-167	0		N/A
GPU4	NV18	NV18	NV18	NV18	 X 	NV18	NV18	NV18	SYS	SYS	SYS	SYS	SYS	SYS	PXBNODE	NODE	NODE	NODE	NODE	56-111,168-223	1		N/A
GPU5	NV18	NV18	NV18	NV18	NV18	 X 	NV18	NV18	SYS	SYS	SYS	SYS	SYS	SYS	NODNODE	NODE	PXB	NODE	NODE	56-111,168-223	1		N/A
GPU6	NV18	NV18	NV18	NV18	NV18	NV18	 X 	NV18	SYS	SYS	SYS	SYS	SYS	SYS	NODNODE	NODE	NODE	PXB	NODE	56-111,168-223	1		N/A
GPU7	NV18	NV18	NV18	NV18	NV18	NV18	NV18	 X 	SYS	SYS	SYS	SYS	SYS	SYS	NODNODE	NODE	NODE	NODE	PXB	56-111,168-223	1		N/A
NIC0	PXB	NODE	NODE	NODE	SYS	SYS	SYS	SYS	 X 	NODE	NODE	NODE	NODE	NODE	SYSSYS	SYS	SYS	SYS	SYS				
NIC1	NODE	NODE	NODE	NODE	SYS	SYS	SYS	SYS	NODE	 X 	PIX	NODE	NODE	NODE	SYSSYS	SYS	SYS	SYS	SYS				
NIC2	NODE	NODE	NODE	NODE	SYS	SYS	SYS	SYS	NODE	PIX	 X 	NODE	NODE	NODE	SYSSYS	SYS	SYS	SYS	SYS				
NIC3	NODE	PXB	NODE	NODE	SYS	SYS	SYS	SYS	NODE	NODE	NODE	 X 	NODE	NODE	SYSSYS	SYS	SYS	SYS	SYS				
NIC4	NODE	NODE	PXB	NODE	SYS	SYS	SYS	SYS	NODE	NODE	NODE	NODE	 X 	NODE	SYSSYS	SYS	SYS	SYS	SYS				
NIC5	NODE	NODE	NODE	PXB	SYS	SYS	SYS	SYS	NODE	NODE	NODE	NODE	NODE	 X 	SYSSYS	SYS	SYS	SYS	SYS				
NIC6	SYS	SYS	SYS	SYS	PXB	NODE	NODE	NODE	SYS	SYS	SYS	SYS	SYS	SYS	 X NODE	NODE	NODE	NODE	NODE				
NIC7	SYS	SYS	SYS	SYS	NODE	NODE	NODE	NODE	SYS	SYS	SYS	SYS	SYS	SYS	NOD X 	PIX	NODE	NODE	NODE				
NIC8	SYS	SYS	SYS	SYS	NODE	NODE	NODE	NODE	SYS	SYS	SYS	SYS	SYS	SYS	NODPIX	 X 	NODE	NODE	NODE				
NIC9	SYS	SYS	SYS	SYS	NODE	PXB	NODE	NODE	SYS	SYS	SYS	SYS	SYS	SYS	NODNODE	NODE	 X 	NODE	NODE				
NIC10	SYS	SYS	SYS	SYS	NODE	NODE	PXB	NODE	SYS	SYS	SYS	SYS	SYS	SYS	NODNODE	NODE	NODE	 X 	NODE				
NIC11	SYS	SYS	SYS	SYS	NODE	NODE	NODE	PXB	SYS	SYS	SYS	SYS	SYS	SYS	NODNODE	NODE	NODE	NODE	 X 				

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0
  NIC1: mlx5_1
  NIC2: mlx5_2
  NIC3: mlx5_3
  NIC4: mlx5_4
  NIC5: mlx5_5
  NIC6: mlx5_6
  NIC7: mlx5_7
  NIC8: mlx5_8
  NIC9: mlx5_9
  NIC10: mlx5_10
  NIC11: mlx5_11

🐛 Describe the bug

Reproduce:

python benchmarks/benchmark_latency.py \
    --model meta-llama/Llama-2-70b-chat-hf \
    --tensor-parallel-size 8 \
    --batch-size 1

Error message:

Warmup iterations: 100%|████████████████████████████████████████████████████████████████████| 10/10 [00:15<00:00,  1.58s/it]
Profiling iterations: 100%|█████████████████████████████████████████████████████████████████| 30/30 [00:46<00:00,  1.56s/it]
Avg latency: 1.5647166445075225 seconds
10% percentile latency: 1.5627682500518858 seconds
25% percentile latency: 1.5633888900047168 seconds
50% percentile latency: 1.5647007368970662 seconds
75% percentile latency: 1.5655441698618233 seconds
90% percentile latency: 1.5669345858972519 seconds
99% percentile latency: 1.5680740921385585 seconds
ERROR 07-08 11:13:55 multiproc_worker_utils.py:120] Worker VllmWorkerProcess pid 2481703 died, exit code: -15
INFO 07-08 11:13:55 multiproc_worker_utils.py:123] Killing local vLLM worker processes
[rank0]:[W CudaIPCTypes.cpp:16] Producer process has been terminated before all shared CUDA tensors released. See Note [Sharing CUDA tensors]
/xxxxxx/python3.10/multiprocessing/resource_tracker.py:224: UserWarning: resource_tracker: There appear to be 2 leaked shared_memory objects to clean up at shutdown

Error highlight:
ERROR 07-08 11:13:55 multiproc_worker_utils.py:120] Worker VllmWorkerProcess pid 2481703 died, exit code: -15

The error might be OK in normal cases since it's the exit logic. But it's important when using nsys for profiling. nsys will stuck if the exit logic is incorrect.

@njhill any context here?

@cermeng
Copy link
Contributor

cermeng commented Jul 29, 2024

I also encountered the same problem when profiling. After some investigation, I can share something:

  1. The cause of error

ERROR 07-08 11:13:55 multiproc_worker_utils.py:120] Worker VllmWorkerProcess pid 2481703 died, exit code: -15

VllmWorkerProcess which is a daemon process will be sent a SIGTERM signal when main process exits, and this is why the exit code is always -15.

believe the original line of code was to log the termination of the process due to an error while the server was functioning normally. However, this is normal GC in this case (run offline inference benchmark_latency.py) and should not be an error.

This is not a bug, but rather an inappropriate error logging. You can check the exit code of the script, which is 0.

  1. However, the situation of nsys stuck exists. I found this could be related to garbage collection in the exit logic and left some comments waiting for @njhill reply.

I found a temporary solution to address this issue for nsys profiling that meets my requirements: only trace cuda events in nsys using the option -t cuda(other targets like osrt cublas cudnn will cause the program to get stuck). More investigation is needed to really address this issue

@njhill
Copy link
Member

njhill commented Aug 1, 2024

Thanks @cermeng @LiuXiaoxuanPKU, this should hopefully be addressed by #7041.

@kczimm
Copy link
Contributor

kczimm commented Oct 26, 2024

Does not appear to be fixed by #8492

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

No branches or pull requests

4 participants