You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
(py311) (base) lianjh@cloud88:/storage/lianjh/dev$ python collect_env.py
Collecting environment information...
PyTorch version: 2.3.0
Is debug build: False
CUDA used to build PyTorch: 12.1
ROCM used to build PyTorch: N/A
OS: Ubuntu 22.04.4 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.29.5
Libc version: glibc-2.35
Python version: 3.11.9 (main, Apr 19 2024, 16:48:06) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-102-generic-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: 11.7.99
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: Tesla V100-SXM3-32GB
GPU 1: NVIDIA GeForce RTX 3090
GPU 2: Tesla V100-PCIE-32GB
GPU 3: Tesla V100-PCIE-32GB
GPU 4: NVIDIA A800 80GB PCIe
GPU 5: NVIDIA A800 80GB PCIe
GPU 6: NVIDIA A800 80GB PCIe
GPU 7: NVIDIA A800 80GB PCIe
Nvidia driver version: 550.54.15
cuDNN version: Probably one of the following:
/usr/local/cuda-10.2/targets/x86_64-linux/lib/libcudnn.so.7
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn.so.8.8.1
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_adv_infer.so.8.8.1
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_adv_train.so.8.8.1
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_cnn_infer.so.8.8.1
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_cnn_train.so.8.8.1
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_ops_infer.so.8.8.1
/usr/local/cuda-11.7/targets/x86_64-linux/lib/libcudnn_ops_train.so.8.8.1
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True
CPU:
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Address sizes: 46 bits physical, 48 bits virtual
Byte Order: Little Endian
CPU(s): 72
On-line CPU(s) list: 0-71
Vendor ID: GenuineIntel
Model name: Intel(R) Xeon(R) Gold 6240 CPU @ 2.60GHz
CPU family: 6
Model: 85
Thread(s) per core: 2
Core(s) per socket: 18
Socket(s): 2
Stepping: 7
CPU max MHz: 3900.0000
CPU min MHz: 1000.0000
BogoMIPS: 5200.00
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb cat_l3 cdp_l3 invpcid_single intel_ppin ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb intel_pt avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves cqm_llc cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts pku ospke avx512_vnni md_clear flush_l1d arch_capabilities
Virtualization: VT-x
L1d cache: 1.1 MiB (36 instances)
L1i cache: 1.1 MiB (36 instances)
L2 cache: 36 MiB (36 instances)
L3 cache: 49.5 MiB (2 instances)
NUMA node(s): 2
NUMA node0 CPU(s): 0-17,36-53
NUMA node1 CPU(s): 18-35,54-71
Vulnerability Gather data sampling: Mitigation; Microcode
Vulnerability Itlb multihit: KVM: Mitigation: VMX disabled
Vulnerability L1tf: Not affected
Vulnerability Mds: Not affected
Vulnerability Meltdown: Not affected
Vulnerability Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable
Vulnerability Retbleed: Mitigation; Enhanced IBRS
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2: Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds: Not affected
Vulnerability Tsx async abort: Mitigation; TSX disabled
Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-nccl-cu12==2.18.1
[pip3] pytorch-lightning==2.3.2
[pip3] sentence-transformers==3.0.1
[pip3] torch==2.3.0
[pip3] torchaudio==2.3.0
[pip3] torchdata==0.7.1
[pip3] torchmetrics==1.4.0.post0
[pip3] torchvision==0.18.0
[pip3] transformers==4.42.3
[pip3] triton==2.1.0
[conda] blas 1.0 mkl defaults
[conda] ffmpeg 4.3 hf484d3e_0 pytorch
[conda] libjpeg-turbo 2.0.0 h9bf148f_0 pytorch
[conda] mkl 2023.1.0 h213fc3f_46344 defaults
[conda] mkl-service 2.4.0 py311h5eee18b_1 defaults
[conda] mkl_fft 1.3.8 py311h5eee18b_0 defaults
[conda] mkl_random 1.2.4 py311hdb19cb5_0 defaults
[conda] numpy 1.26.4 py311h08b1b3b_0 defaults
[conda] numpy-base 1.26.4 py311hf175353_0 defaults
[conda] nvidia-nccl-cu12 2.18.1 pypi_0 pypi
[conda] pytorch 2.3.0 py3.11_cuda12.1_cudnn8.9.2_0 pytorch
[conda] pytorch-cuda 12.1 ha16c6d3_5 pytorch
[conda] pytorch-lightning 2.3.2 pypi_0 pypi
[conda] pytorch-mutex 1.0 cuda pytorch
[conda] sentence-transformers 3.0.1 pypi_0 pypi
[conda] torchaudio 2.3.0 py311_cu121 pytorch
[conda] torchdata 0.7.1 pypi_0 pypi
[conda] torchmetrics 1.4.0.post0 pypi_0 pypi
[conda] torchvision 0.18.0 py311_cu121 pytorch
[conda] transformers 4.42.3 pypi_0 pypi
[conda] triton 2.1.0 pypi_0 pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.5.1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X PIX SYS SYS SYS SYS SYS SYS 0-17,36-53 0 N/A
GPU1 PIX X SYS SYS SYS SYS SYS SYS 0-17,36-53 0 N/A
GPU2 SYS SYS X PIX SYS SYS SYS SYS 0-17,36-53 0 N/A
GPU3 SYS SYS PIX X SYS SYS SYS SYS 0-17,36-53 0 N/A
GPU4 SYS SYS SYS SYS X NV8 SYS SYS 18-35,54-71 1 N/A
GPU5 SYS SYS SYS SYS NV8 X SYS SYS 18-35,54-71 1 N/A
GPU6 SYS SYS SYS SYS SYS SYS X NV8 18-35,54-71 1 N/A
GPU7 SYS SYS SYS SYS SYS SYS NV8 X 18-35,54-71 1 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
🐛 Describe the bug
File "/home/lianjh/miniconda3/envs/py311/lib/python3.11/site-packages/vllm/worker/worker.py", line 337, in _check_if_gpu_supports_dtype
raise ValueError(
ValueError: Bfloat16 is only supported on GPUs with compute capability of at least 8.0. Your NVIDIA A800 80GB PCIe GPU has compute capability 7.0. You can use float16 instead by explicitly setting the`dtype` flag in CLI, for example: --dtype=half.
My rank:0 GPU is a V100, and I have correctly specified NVIDIA A800, but it still recognizes the compute capability of the [first GPU](rank:0 GPU).
The text was updated successfully, but these errors were encountered:
Your current environment
🐛 Describe the bug
My rank:0 GPU is a V100, and I have correctly specified NVIDIA A800, but it still recognizes the compute capability of the [first GPU](rank:0 GPU).
The text was updated successfully, but these errors were encountered: