Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

cupy_backends.cuda.libs.nccl.NcclError: NCCL_ERROR_INTERNAL_ERROR: internal error #3222

Closed
QianqianNie opened this issue Mar 6, 2024 · 2 comments

Comments

@QianqianNie
Copy link

QianqianNie commented Mar 6, 2024

Hi Im getting the following error with vllm 0.3.2 on A100

engine = AsyncLLMEngine.from_engine_args(engine_args)
File "/usr/local/lib/python3.10/dist-packages/vllm/engine/async_llm_engine.py", line 625, in from_engine_args
engine = cls(parallel_config.worker_use_ray,
File "/usr/local/lib/python3.10/dist-packages/vllm/engine/async_llm_engine.py", line 321, in init
self.engine = self._init_engine(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/vllm/engine/async_llm_engine.py", line 366, in _init_engine
return engine_class(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/vllm/engine/llm_engine.py", line 118, in init
self._init_workers_ray(placement_group)
File "/usr/local/lib/python3.10/dist-packages/vllm/engine/llm_engine.py", line 286, in _init_workers_ray
self._run_workers("init_model", cupy_port=get_open_port())
File "/usr/local/lib/python3.10/dist-packages/vllm/engine/llm_engine.py", line 1014, in _run_workers
driver_worker_output = getattr(self.driver_worker,
File "/usr/local/lib/python3.10/dist-packages/vllm/worker/worker.py", line 94, in init_model
init_distributed_environment(self.parallel_config, self.rank,
File "/usr/local/lib/python3.10/dist-packages/vllm/worker/worker.py", line 275, in init_distributed_environment
cupy_utils.init_process_group(
File "/usr/local/lib/python3.10/dist-packages/vllm/model_executor/parallel_utils/cupy_utils.py", line 90, in init_process_group
_NCCL_BACKEND = NCCLBackendWithBFloat16(world_size, rank, host, port)
File "/usr/local/lib/python3.10/dist-packages/cupyx/distributed/_nccl_comm.py", line 70, in init
self._init_with_tcp_store(n_devices, rank, host, port)
File "/usr/local/lib/python3.10/dist-packages/cupyx/distributed/_nccl_comm.py", line 100, in _init_with_tcp_store
self._comm = nccl.NcclCommunicator(n_devices, nccl_id, rank)
File "cupy_backends/cuda/libs/nccl.pyx", line 283, in cupy_backends.cuda.libs.nccl.NcclCommunicator.init
File "cupy_backends/cuda/libs/nccl.pyx", line 129, in cupy_backends.cuda.libs.nccl.check_status
cupy_backends.cuda.libs.nccl.NcclError: NCCL_ERROR_INTERNAL_ERROR: internal error

This is the driver information:
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.154.05 Driver Version: 535.154.05 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 NVIDIA A100 80GB PCIe Off | 00000001:00:00.0 Off | 0 |
| N/A 34C P0 51W / 300W | 0MiB / 81920MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 1 NVIDIA A100 80GB PCIe Off | 00000002:00:00.0 Off | 0 |
| N/A 35C P0 53W / 300W | 0MiB / 81920MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 2 NVIDIA A100 80GB PCIe Off | 00000003:00:00.0 Off | 0 |
| N/A 38C P0 54W / 300W | 0MiB / 81920MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+
| 3 NVIDIA A100 80GB PCIe Off | 00000004:00:00.0 Off | 0 |
| N/A 37C P0 54W / 300W | 0MiB / 81920MiB | 0% Default |
| | | Disabled |
+-----------------------------------------+----------------------+----------------------+

+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
| No running processes found |
+---------------------------------------------------------------------------------------+

@olaf-beh
Copy link

olaf-beh commented Apr 12, 2024

Might be because of this:

As of now, vLLM’s binaries are compiled with CUDA 12.1

https://docs.vllm.ai/en/latest/getting_started/installation.html#install-with-pip

On debian (guess same on ubuntu) to check if cuda 12.1 is installed do a

ls -ld /usr/local/cuda*

To clarify, above is for cuda-toolkit versions. I think a newer cuda driver e.g. 12.2 is downwards compatible with older cuda-toolkits like 12.1.

@youkaichao
Copy link
Member

cupy is removed in #3625 . Please try the new release v0.4.0.post1 .

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

3 participants