Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Bug]: v0.6.4.post1 crashed:Error in model execution: CUDA error: an illegal memory access was encountered #10389

Open
1 task done
wciq1208 opened this issue Nov 16, 2024 · 3 comments
Labels
bug Something isn't working

Comments

@wciq1208
Copy link

Your current environment

The output of `python collect_env.py`
Collecting environment information...
PyTorch version: 2.5.1+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Ubuntu 22.04.5 LTS (x86_64)
GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Clang version: Could not collect
CMake version: version 3.30.5
Libc version: glibc-2.35

Python version: 3.11.10 | packaged by conda-forge | (main, Oct 16 2024, 01:27:36) [GCC 13.3.0] (64-bit runtime)
Python platform: Linux-3.10.0-1160.71.1.el7.x86_64-x86_64-with-glibc2.35
Is CUDA available: True
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration: 
GPU 0: NVIDIA GeForce RTX 3090
GPU 1: NVIDIA GeForce RTX 3090

Nvidia driver version: 535.129.03
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                    x86_64
CPU op-mode(s):                  32-bit, 64-bit
Address sizes:                   46 bits physical, 48 bits virtual
Byte Order:                      Little Endian
CPU(s):                          16
On-line CPU(s) list:             0-15
Vendor ID:                       GenuineIntel
Model name:                      Intel(R) Xeon(R) Gold 6140M CPU @ 2.30GHz
CPU family:                      6
Model:                           85
Thread(s) per core:              1
Core(s) per socket:              4
Socket(s):                       4
Stepping:                        4
BogoMIPS:                        4599.99
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology eagerfpu pni pclmulqdq vmx ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 arat umip pku ospke md_clear spec_ctrl intel_stibp arch_capabilities
Virtualization:                  VT-x
Hypervisor vendor:               KVM
Virtualization type:             full
L1d cache:                       512 KiB (16 instances)
L1i cache:                       512 KiB (16 instances)
L2 cache:                        64 MiB (16 instances)
L3 cache:                        64 MiB (4 instances)
NUMA node(s):                    1
NUMA node0 CPU(s):               0-15
Vulnerability Itlb multihit:     Not affected
Vulnerability L1tf:              Mitigation; PTE Inversion; VMX conditional cache flushes, SMT disabled
Vulnerability Mds:               Mitigation; Clear CPU buffers; SMT Host state unknown
Vulnerability Meltdown:          Mitigation; PTI
Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:        Mitigation; Load fences, usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:        Mitigation; IBRS (kernel), IBPB
Vulnerability Srbds:             Not affected
Vulnerability Tsx async abort:   Mitigation; Clear CPU buffers; SMT Host state unknown

Versions of relevant libraries:
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] optree==0.13.0
[pip3] pyzmq==26.2.0
[pip3] torch==2.5.1+cu124
[pip3] torchaudio==2.5.1+cu124
[pip3] torchelastic==0.2.2
[pip3] torchvision==0.20.1+cu124
[pip3] transformers==4.46.2
[pip3] triton==3.1.0
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-cublas-cu12        12.4.5.8                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.4.127                 pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.1.0.70                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.2.1.3                 pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.5.147               pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.6.1.9                 pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.3.1.170               pypi_0    pypi
[conda] nvidia-ml-py              12.560.30                pypi_0    pypi
[conda] nvidia-nccl-cu12          2.21.5                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.4.127                 pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.4.127                 pypi_0    pypi
[conda] optree                    0.13.0                   pypi_0    pypi
[conda] pyzmq                     26.2.0                   pypi_0    pypi
[conda] torch                     2.5.1+cu124              pypi_0    pypi
[conda] torchaudio                2.5.1+cu124              pypi_0    pypi
[conda] torchelastic              0.2.2                    pypi_0    pypi
[conda] torchvision               0.20.1+cu124             pypi_0    pypi
[conda] transformers              4.46.2                   pypi_0    pypi
[conda] triton                    3.1.0                    pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.6.4.post1
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
GPU0    GPU1    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      PHB     0-15    0               N/A
GPU1    PHB      X      0-15    0               N/A

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NVIDIA_VISIBLE_DEVICES=all
NVIDIA_DRIVER_CAPABILITIES=compute,utility
PYTORCH_VERSION=2.5.1
CUDA_VISIBLE_DEVICES=0
CUDA_VISIBLE_DEVICES=0
VLLM_PLUGINS=clean_cuda_cache
LD_LIBRARY_PATH=/opt/conda/lib/python3.11/site-packages/cv2/../../lib64:/usr/local/nvidia/lib:/usr/local/nvidia/lib64
VLLM_RPC_TIMEOUT=600000
CUDA_MODULE_LOADING=LAZY

Model Input Dumps

err_execute_model_input_20241116-081810.zip

🐛 Describe the bug

command

vllm serve /hestia/model/Qwen2.5-14B-Instruct-AWQ --max-model-len 32768 --quantization awq_marlin --port 8001 --served-model-name qwen --num-gpu-blocks-override 2048 --disable-log-requests --swap-space 4 --enable-prefix-caching --enable-chunked-prefill
INFO 11-16 10:37:50 metrics.py:449] Avg prompt throughput: 5941.0 tokens/s, Avg generation throughput: 16.5 tokens/s, Running: 3 reqs, Swapped: 0 reqs, Pending: 13 reqs, GPU KV cache usage: 1.5%, CPU KV cache usage: 0.0%.
INFO 11-16 10:37:50 metrics.py:465] Prefix cache hit rate: GPU: 94.87%, CPU: 0.00%
INFO:     ::1:59242 - "POST /v1/chat/completions HTTP/1.1" 200 OK
INFO 11-16 10:37:53 model_runner_base.py:120] Writing input of failed execution to /tmp/err_execute_model_input_20241116-103753.pkl...
WARNING 11-16 10:37:53 model_runner_base.py:143] Failed to pickle inputs of failed execution: CUDA error: an illegal memory access was encountered
WARNING 11-16 10:37:53 model_runner_base.py:143] CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
WARNING 11-16 10:37:53 model_runner_base.py:143] For debugging consider passing CUDA_LAUNCH_BLOCKING=1
WARNING 11-16 10:37:53 model_runner_base.py:143] Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.
WARNING 11-16 10:37:53 model_runner_base.py:143] 
CRITICAL 11-16 10:37:53 launcher.py:99] MQLLMEngine is already dead, terminating server process
INFO:     ::1:59242 - "POST /v1/chat/completions HTTP/1.1" 500 Internal Server Error
CRITICAL 11-16 10:37:53 launcher.py:99] MQLLMEngine is already dead, terminating server process
INFO:     ::1:59468 - "POST /v1/chat/completions HTTP/1.1" 500 Internal Server Error
ERROR 11-16 10:37:53 engine.py:135] RuntimeError('Error in model execution: CUDA error: an illegal memory access was encountered\nCUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.\nFor debugging consider passing CUDA_LAUNCH_BLOCKING=1\nCompile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.\n')
ERROR 11-16 10:37:53 engine.py:135] Traceback (most recent call last):
ERROR 11-16 10:37:53 engine.py:135]   File "/opt/conda/lib/python3.11/site-packages/vllm/worker/model_runner_base.py", line 116, in _wrapper
ERROR 11-16 10:37:53 engine.py:135]     return func(*args, **kwargs)
ERROR 11-16 10:37:53 engine.py:135]            ^^^^^^^^^^^^^^^^^^^^^
ERROR 11-16 10:37:53 engine.py:135]   File "/opt/conda/lib/python3.11/site-packages/vllm/worker/model_runner.py", line 1687, in execute_model
ERROR 11-16 10:37:53 engine.py:135]     logits = self.model.compute_logits(hidden_or_intermediate_states,
ERROR 11-16 10:37:53 engine.py:135]              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 11-16 10:37:53 engine.py:135]   File "/opt/conda/lib/python3.11/site-packages/vllm/model_executor/models/qwen2.py", line 478, in compute_logits
ERROR 11-16 10:37:53 engine.py:135]     logits = self.logits_processor(self.lm_head, hidden_states,
ERROR 11-16 10:37:53 engine.py:135]              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 11-16 10:37:53 engine.py:135]   File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1736, in _wrapped_call_impl
ERROR 11-16 10:37:53 engine.py:135]     return self._call_impl(*args, **kwargs)
ERROR 11-16 10:37:53 engine.py:135]            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 11-16 10:37:53 engine.py:135]   File "/opt/conda/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1747, in _call_impl
ERROR 11-16 10:37:53 engine.py:135]     return forward_call(*args, **kwargs)
ERROR 11-16 10:37:53 engine.py:135]            ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 11-16 10:37:53 engine.py:135]   File "/opt/conda/lib/python3.11/site-packages/vllm/model_executor/layers/logits_processor.py", line 74, in forward
ERROR 11-16 10:37:53 engine.py:135]     logits = _apply_logits_processors(logits, sampling_metadata)
ERROR 11-16 10:37:53 engine.py:135]              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 11-16 10:37:53 engine.py:135]   File "/opt/conda/lib/python3.11/site-packages/vllm/model_executor/layers/logits_processor.py", line 150, in _apply_logits_processors
ERROR 11-16 10:37:53 engine.py:135]     logits_row = logits_processor(past_tokens_ids,
ERROR 11-16 10:37:53 engine.py:135]                  ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 11-16 10:37:53 engine.py:135]   File "/opt/conda/lib/python3.11/site-packages/vllm/model_executor/guided_decoding/outlines_logits_processors.py", line 87, in __call__
ERROR 11-16 10:37:53 engine.py:135]     allowed_tokens = torch.tensor(allowed_tokens, device=scores.device)
ERROR 11-16 10:37:53 engine.py:135]                      ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 11-16 10:37:53 engine.py:135] RuntimeError: CUDA error: an illegal memory access was encountered
ERROR 11-16 10:37:53 engine.py:135] CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
ERROR 11-16 10:37:53 engine.py:135] For debugging consider passing CUDA_LAUNCH_BLOCKING=1
ERROR 11-16 10:37:53 engine.py:135] Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.
ERROR 11-16 10:37:53 engine.py:135] 
ERROR 11-16 10:37:53 engine.py:135] 
ERROR 11-16 10:37:53 engine.py:135] The above exception was the direct cause of the following exception:
ERROR 11-16 10:37:53 engine.py:135] 
ERROR 11-16 10:37:53 engine.py:135] Traceback (most recent call last):
ERROR 11-16 10:37:53 engine.py:135]   File "/opt/conda/lib/python3.11/site-packages/vllm/engine/multiprocessing/engine.py", line 133, in start
ERROR 11-16 10:37:53 engine.py:135]     self.run_engine_loop()
ERROR 11-16 10:37:53 engine.py:135]   File "/opt/conda/lib/python3.11/site-packages/vllm/engine/multiprocessing/engine.py", line 196, in run_engine_loop
ERROR 11-16 10:37:53 engine.py:135]     request_outputs = self.engine_step()
ERROR 11-16 10:37:53 engine.py:135]                       ^^^^^^^^^^^^^^^^^^
ERROR 11-16 10:37:53 engine.py:135]   File "/opt/conda/lib/python3.11/site-packages/vllm/engine/multiprocessing/engine.py", line 214, in engine_step
ERROR 11-16 10:37:53 engine.py:135]     raise e
ERROR 11-16 10:37:53 engine.py:135]   File "/opt/conda/lib/python3.11/site-packages/vllm/engine/multiprocessing/engine.py", line 205, in engine_step
ERROR 11-16 10:37:53 engine.py:135]     return self.engine.step()
ERROR 11-16 10:37:53 engine.py:135]            ^^^^^^^^^^^^^^^^^^
ERROR 11-16 10:37:53 engine.py:135]   File "/opt/conda/lib/python3.11/site-packages/vllm/engine/llm_engine.py", line 1454, in step
ERROR 11-16 10:37:53 engine.py:135]     outputs = self.model_executor.execute_model(
ERROR 11-16 10:37:53 engine.py:135]               ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 11-16 10:37:53 engine.py:135]   File "/opt/conda/lib/python3.11/site-packages/vllm/executor/gpu_executor.py", line 125, in execute_model
ERROR 11-16 10:37:53 engine.py:135]     output = self.driver_worker.execute_model(execute_model_req)
ERROR 11-16 10:37:53 engine.py:135]              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 11-16 10:37:53 engine.py:135]   File "/opt/conda/lib/python3.11/site-packages/vllm/worker/worker_base.py", line 343, in execute_model
ERROR 11-16 10:37:53 engine.py:135]     output = self.model_runner.execute_model(
ERROR 11-16 10:37:53 engine.py:135]              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
ERROR 11-16 10:37:53 engine.py:135]   File "/opt/conda/lib/python3.11/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context
ERROR 11-16 10:37:53 engine.py:135]     return func(*args, **kwargs)
ERROR 11-16 10:37:53 engine.py:135]            ^^^^^^^^^^^^^^^^^^^^^
ERROR 11-16 10:37:53 engine.py:135]   File "/opt/conda/lib/python3.11/site-packages/vllm/worker/model_runner_base.py", line 146, in _wrapper
ERROR 11-16 10:37:53 engine.py:135]     raise type(err)(f"Error in model execution: "
ERROR 11-16 10:37:53 engine.py:135] RuntimeError: Error in model execution: CUDA error: an illegal memory access was encountered
ERROR 11-16 10:37:53 engine.py:135] CUDA kernel errors might be asynchronously reported at some other API call, so the stacktrace below might be incorrect.
ERROR 11-16 10:37:53 engine.py:135] For debugging consider passing CUDA_LAUNCH_BLOCKING=1
ERROR 11-16 10:37:53 engine.py:135] Compile with `TORCH_USE_CUDA_DSA` to enable device-side assertions.
ERROR 11-16 10:37:53 engine.py:135] 
INFO:     Shutting down
INFO:     Waiting for application shutdown.
INFO:     Application shutdown complete.
INFO:     Finished server process [618]

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.
@wciq1208 wciq1208 added the bug Something isn't working label Nov 16, 2024
@DaBossCoda
Copy link

Getting this a lot since 0.6.3. seems to be related to AWQ models.

@llmforever
Copy link

same situation here,can anyone solve this?

@epark001
Copy link

experiencing this as well. thought this would be fixed by #9532 but still experiencing this since 0.6.3

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

No branches or pull requests

4 participants