-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathlowlight_train.py
118 lines (76 loc) · 3.33 KB
/
lowlight_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import torch
import torch.nn as nn
import torchvision
import torch.backends.cudnn as cudnn
import torch.optim
import os
import sys
import argparse
import time
import dataloader
import DarkLighter_model as model
import Myloss
import numpy as np
from torchvision import transforms
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
def train(config):
os.environ['CUDA_VISIBLE_DEVICES']='1'
DarkLighter = model.enhancer().cuda()
DarkLighter.apply(weights_init)
if config.load_pretrain == True:
DarkLighter.load_state_dict(torch.load(config.pretrain_dir))
train_dataset = dataloader.lowlight_loader(config.lowlight_images_path)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=config.train_batch_size, shuffle=True, num_workers=config.num_workers, pin_memory=True)
L_color = Myloss.L_color()
L_cen = Myloss.L_cen(16,0.6)
L_ill = Myloss.L_ill()
L_perc = Myloss.perception_loss()
L_noi = Myloss.noise_loss()
optimizer = torch.optim.Adam(DarkLighter.parameters(), lr=config.lr, weight_decay=config.weight_decay)
DarkLighter.train()
for epoch in range(config.num_epochs):
for iteration, img_lowlight in enumerate(train_loader):
img_lowlight = img_lowlight.cuda()
enhanced_image,A,N = DarkLighter(img_lowlight)
Loss_ill = 1600*L_ill(A)
loss_col = 50*torch.mean(L_color(enhanced_image))
loss_cen = 10*torch.mean(L_cen(enhanced_image))
loss_perc = 0.001*torch.norm(L_perc(enhanced_image) - L_perc(img_lowlight))
loss_noise = 50*torch.mean(L_noi(N))
loss = Loss_ill +loss_cen + loss_col + loss_perc+ loss_noise
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(DarkLighter.parameters(),config.grad_clip_norm)
optimizer.step()
if ((iteration+1) % config.display_iter) == 0:
print("Loss at iteration", iteration+1, ":", loss.item())
if ((iteration+1) % config.snapshot_iter) == 0:
torch.save(DarkLighter.state_dict(), config.snapshots_folder + "Epoch" + str(epoch) + '.pth')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
# Input Parameters
parser.add_argument('--lowlight_images_path', type=str, default="data/train/")
parser.add_argument('--lr', type=float, default=0.0001)
parser.add_argument('--weight_decay', type=float, default=0.0001)
parser.add_argument('--grad_clip_norm', type=float, default=0.1)
parser.add_argument('--num_epochs', type=int, default=200)
parser.add_argument('--train_batch_size', type=int, default=32)
parser.add_argument('--val_batch_size', type=int, default=4)
parser.add_argument('--num_workers', type=int, default=4)
parser.add_argument('--display_iter', type=int, default=10)
parser.add_argument('--snapshot_iter', type=int, default=10)
parser.add_argument('--snapshots_folder', type=str, default="snapshots/")
parser.add_argument('--load_pretrain', type=bool, default= False)
parser.add_argument('--pretrain_dir', type=str, default= "snapshots/Epoch168.pth")
config = parser.parse_args()
if not os.path.exists(config.snapshots_folder):
os.mkdir(config.snapshots_folder)
train(config)