Skip to content

Latest commit

 

History

History
165 lines (130 loc) · 6.84 KB

README.md

File metadata and controls

165 lines (130 loc) · 6.84 KB

Join the chat at https://gitter.im/feelpp/feelpp

Introduction

Feel++ is a C++ library for arbitrary order Galerkin methods (e.g. finite and spectral element methods) continuous or discontinuous in 1D 2D and 3D. The objectives of this framework is quite ambitious; ambitions which could be express in various ways such as :

  • the creation of a versatile mathematical kernel solving easily problems using different techniques thus allowing testing and comparing methods, e.g. cG versus dG,
  • the creation of a small and manageable library which shall nevertheless encompass a wide range of numerical methods and techniques,
  • build mathematical software that follows closely the mathematical abstractions associated with partial differential equations (PDE)
  • the creation of a library entirely in C++ allowing to create C++ complex and typically multi-physics applications such as fluid-structure interaction or mass transport in haemodynamic

Some basic installation procedure are available in the INSTALL file, the detailled process is available here

Releases

Here are the latest releases of Feel++

Build Status

Feel++ uses Travis-CI for continuous integration. Travis-CI Build Status :

  • develop branch : Build Status
  • master branch : Build Status

Documentation

Features

  • 1D 2D and 3D (including high order) geometries and also lower topological dimension 1D(curve) in 2D and 3D or 2D(surface) in 3D
  • continuous and discontinuous arbitrary order Galerkin Methods in 1D, 2D and 3D including finite and spectral element methods
  • domain specific embedded language in C++ for variational formulations
  • interfaced with PETSc for linear and non-linear solvers
  • seamless parallel computations using PETSc
  • interfaced with SLEPc for large-scale sparse standard and generalized eigenvalue solvers
  • supports Gmsh for mesh generation
  • supports Gmsh for post-processing (including on high order geometries)
  • supports Paraview for post-processing

Examples

Laplacian in 2D using P3 Lagrange basis functions

Here is a full example to solve $$-\Delta u = f \mbox{ in } \Omega,\quad u=g \mbox{ on } \partial \Omega$$

#include <feel/feel.hpp>

int main(int argc, char**argv )
{
    using namespace Feel;
	Environment env( _argc=argc, _argv=argv,
                     _desc=feel_options(),
                     _about=about(_name="qs_laplacian",
                                  _author="Feel++ Consortium",
                                  _email="[email protected]"));

    auto mesh = unitSquare();
    auto Vh = Pch<1>( mesh );
    auto u = Vh->element();
    auto v = Vh->element();

    auto l = form1( _test=Vh );
    l = integrate(_range=elements(mesh),
                  _expr=id(v));

    auto a = form2( _trial=Vh, _test=Vh );
    a = integrate(_range=elements(mesh),
                  _expr=gradt(u)*trans(grad(v)) );
    a+=on(_range=boundaryfaces(mesh), _rhs=l, _element=u,
          _expr=constant(0.) );
    a.solve(_rhs=l,_solution=u);

    auto e = exporter( _mesh=mesh, _name="qs_laplacian" );
    e->add( "u", u );
    e->save();
    return 0;
}

Bratu equation in 2D

Here is a full non-linear example - the Bratu equation - to solve $$-\Delta u + e^u = 0 \mbox{ in } \Omega,\quad u=0 \mbox{ on } \partial \Omega$$.

#include <feel/feel.hpp>

inline
Feel::po::options_description
makeOptions()
{
    Feel::po::options_description bratuoptions( "Bratu problem options" );
    bratuoptions.add_options()
    ( "lambda", Feel::po::value<double>()->default_value( 1 ),
                "exp() coefficient value for the Bratu problem" )
    ( "penalbc", Feel::po::value<double>()->default_value( 30 ),
                 "penalisation parameter for the weak boundary conditions" )
    ( "hsize", Feel::po::value<double>()->default_value( 0.1 ),
               "first h value to start convergence" )
    ( "export-matlab", "export matrix and vectors in matlab" )
    ;
    return bratuoptions.add( Feel::feel_options() );
}

/**
 * Bratu Problem
 *
 * solve \f$ -\Delta u + \lambda \exp(u) = 0, \quad u_\Gamma = 0\f$ on \f$\Omega\f$
 */
int
main( int argc, char** argv )
{

    using namespace Feel;
	Environment env( _argc=argc, _argv=argv,
                     _desc=makeOptions(),
                     _about=about(_name="bratu",
                                  _author="Christophe Prud'homme",
                                  _email="[email protected]"));
    auto mesh = unitSquare();
    auto Vh = Pch<3>( mesh );
    auto u = Vh->element();
    auto v = Vh->element();
    double penalbc = option(_name="penalbc").as<double>();
    double lambda = option(_name="lambda").as<double>();

    auto Jacobian = [=](const vector_ptrtype& X, sparse_matrix_ptrtype& J)
        {
            auto a = form2( _test=Vh, _trial=Vh, _matrix=J );
            a = integrate( elements( mesh ), gradt( u )*trans( grad( v ) ) );
            a += integrate( elements( mesh ), lambda*( exp( idv( u ) ) )*idt( u )*id( v ) );
            a += integrate( boundaryfaces( mesh ),
               ( - trans( id( v ) )*( gradt( u )*N() ) - trans( idt( u ) )*( grad( v )*N()  + penalbc*trans( idt( u ) )*id( v )/hFace() ) );
        };
    auto Residual = [=](const vector_ptrtype& X, vector_ptrtype& R)
        {
            auto u = Vh->element();
            u = *X;
            auto r = form1( _test=Vh, _vector=R );
            r = integrate( elements( mesh ), gradv( u )*trans( grad( v ) ) );
            r +=  integrate( elements( mesh ),  lambda*exp( idv( u ) )*id( v ) );
            r +=  integrate( boundaryfaces( mesh ),
               ( - trans( id( v ) )*( gradv( u )*N() ) - trans( idv( u ) )*( grad( v )*N() ) + penalbc*trans( idv( u ) )*id( v )/hFace() ) );
        };
    u.zero();
    backend()->nlSolver()->residual = Residual;
    backend()->nlSolver()->jacobian = Jacobian;
    backend()->nlSolve( _solution=u );

    auto e = exporter( _mesh=mesh );
    e->add( "u", u );
    e->save();
}