diff --git a/DESCRIPTION b/DESCRIPTION index 00826813c..8c4277ace 100644 --- a/DESCRIPTION +++ b/DESCRIPTION @@ -1,6 +1,6 @@ Package: marginaleffects Title: Predictions, Comparisons, Slopes, Marginal Means, and Hypothesis Tests -Version: 0.24.0.3 +Version: 0.24.0.4 Authors@R: c(person(given = "Vincent", family = "Arel-Bundock", diff --git a/NEWS.md b/NEWS.md index bd7fcf463..cc4bed0b4 100644 --- a/NEWS.md +++ b/NEWS.md @@ -3,6 +3,7 @@ ## Development * Version 0.24.0 accidentally removed the "contrast" column from the output object in calls with only one focal predictor. This column is reinstated. +* Reinstate some attributes lost with `marginaleffects_lean` but necessary for printing. * More informative warning for `lme4` and `glmmTMB` models with `re.form=NULL` Bugs: diff --git a/R/comparisons.R b/R/comparisons.R index 148a6b87f..546f66906 100644 --- a/R/comparisons.R +++ b/R/comparisons.R @@ -547,15 +547,16 @@ comparisons <- function(model, get_marginaleffects_attributes(newdata, include_regex = "^newdata.*class|explicit|matrix|levels")) # Global option for lean return object - lean = getOption("marginaleffects_lean", default = FALSE) + lean <- getOption("marginaleffects_lean", default = FALSE) # Only add (potentially large) attributes if lean is FALSE + # extra attributes needed for print method, even with lean return object + attr(out, "conf_level") <- conf_level + attr(out, "by") <- by + attr(out, "lean") <- lean + attr(out, "vcov.type") <- vcov.type if (isTRUE(lean)) { - for (a in setdiff(names(attributes(out)), c("names", "row.names", "class"))) attr(out, a) = NULL - ## extra attributes needed for print method, even with lean return object - attr(out, "conf_level") <- conf_level - attr(out, "by") <- by - attr(out, "lean") <- TRUE + for (a in setdiff(names(attributes(out)), c("names", "row.names", "class"))) attr(out, a) <- NULL } else { # other attributes attr(out, "newdata") <- newdata @@ -573,8 +574,6 @@ comparisons <- function(model, attr(out, "comparison_label") <- comparison_label attr(out, "hypothesis_by") <- hyp_by attr(out, "transform_label") <- transform_label - attr(out, "conf_level") <- conf_level - attr(out, "by") <- by if (inherits(model, "brmsfit")) { insight::check_if_installed("brms") diff --git a/R/predictions.R b/R/predictions.R index 7cddb4539..8dd9cdd08 100644 --- a/R/predictions.R +++ b/R/predictions.R @@ -543,30 +543,35 @@ predictions <- function(model, out <- set_marginaleffects_attributes(out, attr_cache = newdata_attr_cache) # Global option for lean return object - lean = getOption("marginaleffects_lean", default = FALSE) - - # Only add (potentially large) attributes if lean isn't TRUE + lean <- getOption("marginaleffects_lean", default = FALSE) + + # Only add (potentially large) attributes if lean is FALSE + # extra attributes needed for print method, even with lean return object + attr(out, "conf_level") <- conf_level + attr(out, "by") <- by + attr(out, "lean") <- lean + attr(out, "vcov.type") <- vcov.type if (isTRUE(lean)) { - for (a in setdiff(aa, c("names", "row.names", "class"))) attr(mfx, a) = NULL - attr(out, "lean") <- TRUE + for (a in setdiff(names(attributes(out)), c("names", "row.names", "class"))) { + attr(out, a) <- NULL + } } else { # other attributes - attr(out, "model") <- model - attr(out, "type") <- type_string + attr(out, "newdata") <- newdata + attr(out, "call") <- call_attr + attr(out, "type") <- type attr(out, "model_type") <- class(model)[1] - attr(out, "vcov.type") <- get_vcov_label(vcov) + attr(out, "model") <- model + attr(out, "variables") <- predictors attr(out, "jacobian") <- J - attr(out, "vcov") <- V - attr(out, "newdata") <- newdata + attr(out, "vcov") <- vcov + attr(out, "vcov.type") <- vcov.type attr(out, "weights") <- marginaleffects_wts_internal - attr(out, "conf_level") <- conf_level - attr(out, "by") <- by - attr(out, "call") <- call_attr - attr(out, "hypothesis_by") <- hyp_by - attr(out, "transform_label") <- names(transform)[1] + attr(out, "comparison") <- comparison attr(out, "transform") <- transform[[1]] - # save newdata for use in recall() - attr(out, "newdata") <- newdata + attr(out, "comparison_label") <- comparison_label + attr(out, "hypothesis_by") <- hyp_by + attr(out, "transform_label") <- transform_label if (inherits(model, "brmsfit")) { insight::check_if_installed("brms")