forked from NVIDIA/NeMo-Curator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
translation_example.py
377 lines (334 loc) · 13.6 KB
/
translation_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
import os
import re
import time
from dataclasses import dataclass
from functools import lru_cache
import cudf
import numpy as np
import torch
import torch.nn as nn
from crossfit import op
from crossfit.backend.torch.hf.model import HFModel
from dask.distributed import get_worker
from nltk.tokenize import sent_tokenize
from transformers import AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer
from nemo_curator.classifiers.base import DistributedDataClassifier
from nemo_curator.datasets import DocumentDataset
from nemo_curator.utils.distributed_utils import get_client, load_object_on_worker
from nemo_curator.utils.script_utils import ArgumentHelper
try:
from IndicTransTokenizer import IndicProcessor
except ImportError:
raise ImportError(
"IndicTransTokenizer not found. Please install it using the following command: \n"
+ "pip install git+https://github.com/VarunGumma/IndicTransTokenizer.git"
)
TERMINAL_PUNCTUATIONS = (
".",
"!",
"?",
":",
",",
";",
")",
"}",
"]",
'"',
"'",
"”",
"’",
)
START_PUNCTUATIONS = ("(", "{", "[", "'", '"', "“", "‘")
@dataclass
class TranslationConfig:
pretrained_model_name_or_path: str
max_length: int = 50
num_beams: int = 5
autocast: bool = False
max_words_per_sen: int = 200
class CustomModel(nn.Module):
def __init__(self, config: TranslationConfig):
super().__init__()
self.config = config
self.model = AutoModelForSeq2SeqLM.from_pretrained(
pretrained_model_name_or_path=config.pretrained_model_name_or_path,
trust_remote_code=True,
)
self.autocast = config.autocast
@torch.no_grad()
def _forward(self, batch: dict) -> torch.Tensor:
return self.model.generate(
**batch,
use_cache=True,
min_length=0,
max_length=self.config.max_length,
num_beams=self.config.num_beams,
num_return_sequences=1,
repetition_penalty=1.2,
)
def forward(self, batch: dict) -> torch.Tensor:
if self.autocast:
with torch.autocast(device_type="cuda"):
outputs = self._forward(batch)
else:
outputs = self._forward(batch)
return outputs
class ModelForSeq2SeqModel(HFModel):
def __init__(self, config: TranslationConfig):
self.trans_config = config
self.config = self.load_config()
super().__init__(self.trans_config.pretrained_model_name_or_path)
def load_model(self, device: str = "cuda") -> CustomModel:
model = CustomModel(
self.trans_config,
)
model = model.to(device)
model.eval()
return model
def load_config(self) -> AutoConfig:
return AutoConfig.from_pretrained(
pretrained_model_name_or_path=self.trans_config.pretrained_model_name_or_path,
trust_remote_code=True,
)
@lru_cache(maxsize=1)
def load_tokenizer(self) -> AutoTokenizer:
return AutoTokenizer.from_pretrained(
pretrained_model_name_or_path=self.trans_config.pretrained_model_name_or_path,
trust_remote_code=True,
)
def max_seq_length(self) -> int:
return self.config.max_source_positions
def load_cfg(self):
return self.load_config()
class IndicTranslation(DistributedDataClassifier):
def __init__(
self,
pretrained_model_name_or_path: str = "ai4bharat/indictrans2-en-indic-1B",
input_column: str = "indic_proc_text",
batch_size: int = 128,
autocast: bool = False,
):
self.pretrained_model_name_or_path = pretrained_model_name_or_path
self.input_column = input_column
self.batch_size = batch_size
self.autocast = autocast
self.translation_config = TranslationConfig(
pretrained_model_name_or_path=self.pretrained_model_name_or_path,
max_length=256,
num_beams=5,
autocast=self.autocast,
)
self.model = ModelForSeq2SeqModel(self.translation_config)
super().__init__(
model=self.model,
batch_size=self.batch_size,
device_type="cuda",
autocast=self.autocast,
labels=None,
filter_by=None,
out_dim=None,
pred_column=None,
max_chars=None,
)
def preprocess_df(self, df: cudf.DataFrame) -> cudf.DataFrame:
ip = load_object_on_worker(
"IndicProcessor", IndicProcessor, {"inference": True}
)
indices = df["text"].index.to_arrow().to_pylist()
sentences = df["text"].to_arrow().to_pylist()
sentences = ip.preprocess_batch(
sentences, src_lang="eng_Latn", tgt_lang="hin_Deva"
)
df["indic_proc_text"] = cudf.Series(sentences, index=indices)
return df
def translate_tokens(self, df: cudf.DataFrame) -> cudf.DataFrame:
worker = get_worker()
if hasattr(worker, "IndicProcessor"):
ip = getattr(worker, "IndicProcessor")
else:
ip = load_object_on_worker(
"IndicProcessor", IndicProcessor, {"inference": True}
)
tokenizer = self.model.load_tokenizer()
indices = df["translation"].index.to_arrow().to_pylist()
generated_tokens = df["translation"].to_arrow().to_pylist()
with tokenizer.as_target_tokenizer():
generated_tokens = tokenizer.batch_decode(
generated_tokens,
skip_special_tokens=True,
)
generated_tokens = ip.postprocess_batch(generated_tokens, lang="hin_Deva")
df["translation"] = cudf.Series(data=generated_tokens, index=indices)
return df
def has_alphabet_characters(self, text: str) -> bool:
return any(c.isalpha() for c in text)
def custom_tokenize(self, text: str):
split_text = re.split(
r"(\#{2,}|\_{2,}|\…{2,}|\+{2,}|\.{2,}|\-{3,}|\*{2,}|\~{2,}|\={2,}|\!{2,}|\n|\t|\‣|\⁃|\⁌|\⁍|\●|\○|\•|\·|\◘|\◦|\⦾|\⦿|\|)",
text,
)
split_text = [s for s in split_text if len(s) > 0]
tokenized_sentences = []
len_flag = False
for line in split_text:
# Tokenize sentences using NLTK's sent_tokenize function
if self.has_alphabet_characters(line) == True:
sentences = sent_tokenize(line)
i = 0
j = 0
curr_tokenized_snt = []
non_translation_str = ""
# Comparing the list of tokenized sentences (using NLTK) and actual sentence and preserving the spaces,
# newline and other special characters
while i < len(line):
if j < len(sentences):
stripped_sent = sentences[j].strip()
if len(stripped_sent) == 0:
j += 1
continue
# If tokenized sentence matches then moving to next sentence
if line[i] == stripped_sent[0]:
if non_translation_str != "":
curr_tokenized_snt.append(non_translation_str)
curr_tokenized_snt.append(stripped_sent)
i += len(stripped_sent)
j += 1
non_translation_str = ""
else:
non_translation_str += line[i]
i += 1
else:
non_translation_str += line[i]
i += 1
if non_translation_str != "":
curr_tokenized_snt.append(non_translation_str)
# Add the tokenized sentences to the list
tokenized_sentences.extend(curr_tokenized_snt)
else:
tokenized_sentences.append(line)
tokenized_sentence_len = []
for sentence in tokenized_sentences:
sent = sentence.split()
# removing the sentences with word length greater than threshold as the model may not be able translate it due to constraint on output token size
if len(sent) <= self.translation_config.max_words_per_sen:
tokenized_sentence_len.append(sentence)
return tokenized_sentence_len
def process_input_text(self, df: cudf.DataFrame) -> cudf.DataFrame:
df = df.to_pandas()
df["text"] = df["text"].apply(self.custom_tokenize)
df["doc_id"] = np.arange(1, len(df) + 1)
df = df.explode("text", ignore_index=True)
df = df.reset_index(drop=False)
df = cudf.DataFrame.from_pandas(df)
return df
def combine_text(self, df: cudf.DataFrame) -> cudf.DataFrame:
engligh_stop_flag = df["text"].str.endswith(".")
hindi_stop_flag = df["translation"].str.endswith("|")
df["translation"][~engligh_stop_flag & hindi_stop_flag] = df[
"translation"
].str.rstrip("|")
df["translation"] = df["translation"].str.strip()
return df
def grouping(self, df: cudf.DataFrame) -> cudf.DataFrame:
df = df.to_pandas()
agg_funcs = {
"translation": lambda s: "".join(s),
"text": lambda s: "".join(s),
}
other_columns = {
col: "first"
for col in df.columns
if col not in agg_funcs and col != "doc_id"
}
agg_funcs.update(other_columns)
df = df.groupby("doc_id").agg(agg_funcs).reset_index()
df = cudf.DataFrame.from_pandas(df)
return df
def atleast_letter(self, df: cudf.DataFrame, column_name: str) -> cudf.DataFrame:
df = df.to_pandas()
df["isalpha"] = df[column_name].apply(self.has_alphabet_characters)
df = cudf.DataFrame(df)
return df
def _run_classifier(self, dataset: DocumentDataset) -> DocumentDataset:
ddf = dataset.df
# Applying process_input_text for following :
# 1. nltk tokenization to break doc into sentences
# 2. craeting a row w.r.t each sentence.
# 3. Process sentences strip symbols from start and end
ddf = ddf.map_partitions(self.process_input_text, enforce_metadata=False)
ddf["text"] = ddf["text"].astype("str")
ddf["word_count"] = ddf["text"].str.split().list.len()
ddf["word_count"] = ddf["word_count"].astype("int64")
ddf_true = ddf[(ddf["word_count"] <= self.translation_config.max_words_per_sen)]
# To filter for atleast one unicode letter in text
has_letter = ddf_true.map_partitions(self.atleast_letter, column_name="text")
ddf_trans = ddf_true[has_letter["isalpha"]]
ddf = ddf_trans.drop(columns="word_count")
## ddf false operations
ddf_false = ddf_true[~has_letter["isalpha"]]
ddf_false = ddf_false.drop(columns="word_count")
ddf_false["translation"] = ddf_false["text"]
# Applying preprocess_df for Indic preprocessing
ddf["text"] = ddf["text"].astype("str")
ddf_meta = ddf._meta.copy()
ddf_meta["indic_proc_text"] = ""
ddf = ddf.map_partitions(self.preprocess_df, meta=ddf_meta)
columns = ddf.columns.tolist()
pipe = op.Sequential(
op.Tokenizer(
self.model, cols=[self.input_column], tokenizer_type="default"
),
op.Predictor(
self.model,
sorted_data_loader=True,
batch_size=self.batch_size,
pred_output_col="translation",
),
keep_cols=columns,
)
ddf = pipe(ddf)
translated_meta = ddf._meta.copy()
translated_meta["translation"] = "DUMMY_STRING"
ddf = ddf.map_partitions(self.translate_tokens, meta=translated_meta)
ddf = ddf.map_partitions(self.combine_text, meta=translated_meta)
# Merging translated and non-translated samples
ddf_true["false_translation"] = ddf_false["translation"]
ddf_true["false_translation"] = ddf_true["false_translation"].fillna("")
ddf_true["translation"] = ddf["translation"]
ddf_true["translation"] = ddf_true["translation"].fillna("")
ddf_true["translation"] = (
ddf_true["translation"] + ddf_true["false_translation"]
)
ddf = ddf_true.map_partitions(self.grouping)
return DocumentDataset(ddf)
def attach_args():
parser = ArgumentHelper.parse_distributed_classifier_args()
parser.set_defaults(
pretrained_model_name_or_path="ai4bharat/indictrans2-en-indic-1B"
)
parser.set_defaults(input_text_field="text")
parser.set_defaults(device="gpu")
return parser
def main(args):
print(f"Arguments parsed = {args}")
st = time.time()
client = get_client(**ArgumentHelper.parse_client_args(args))
print(client.dashboard_link)
translator_model = IndicTranslation(
pretrained_model_name_or_path=args.pretrained_model_name_or_path,
input_column=args.input_text_field,
batch_size=args.batch_size,
autocast=args.autocast,
)
input_files = [
os.path.join(args.input_data_dir, x) for x in os.listdir(args.input_data_dir)
]
input_dataset = DocumentDataset.read_json(
input_files, backend="cudf", add_filename=True
)
result_dataset = translator_model(dataset=input_dataset)
result_dataset.to_json(output_file_dir=args.output_data_dir, write_to_filename=True)
print(f"Total time taken for translation: {time.time()-st} seconds", flush=True)
client.close()
if __name__ == "__main__":
main(attach_args().parse_args())