# Run the main file (at the root of the project)
python main_ZINC_graph_regression.py --config 'configs/GatedGCN_ZINC_LSPE.json' # for CPU
python main_ZINC_graph_regression.py --gpu_id 0 --config 'configs/GatedGCN_ZINC_LSPE.json' # for GPU
The training and network parameters for each experiment is stored in a json file in the configs/
directory.
Output results are located in the folder defined by the variable out_dir
in the corresponding config file (eg. configs/GatedGCN_ZINC_LSPE.json
file).
If out_dir = 'out/GatedGCN_ZINC_LSPE_noLapEigLoss/'
, then
- Go to
out/GatedGCN_ZINC_LSPE_noLapEigLoss/results
to view all result text files. - Directory
out/GatedGCN_ZINC_LSPE_noLapEigLoss/checkpoints
contains model checkpoints.
- Go to the logs directory, i.e.
out/GatedGCN_ZINC_LSPE_noLapEigLoss/logs/
. - Run the commands
source activate gnn_lspe
tensorboard --logdir='./' --port 6006
- Open
http://localhost:6006
in your browser. Note that the port information (here 6006 but it may change) appears on the terminal immediately after starting tensorboard.
- Go to the logs directory, i.e.
out/GatedGCN_ZINC_LSPE_noLapEigLoss/logs/
. - Run the script with
bash script_tensorboard.sh
. - On your local machine, run the command
ssh -N -f -L localhost:6006:localhost:6006 [email protected]
. - Open
http://localhost:6006
in your browser. Note that[email protected]
corresponds to your user login and the IP of the remote machine.
# At the root of the project
bash scripts/ZINC/script_ZINC_all.sh
bash scripts/OGBMOL/script_MOLTOX21_all.sh
bash scripts/OGBMOL/script_MOLPCBA_all.sh
Scripts are located at the scripts/
directory of the repository.