-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_lambada.py
406 lines (324 loc) · 20.1 KB
/
run_lambada.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
import os
import numpy
import argparse
import math
from src.gpt2_for_finetune import GPT2FinetuneCell, GPT2Lambada
from src.GPT2ForLambada import GPT2LambadaModel
from src.finetune_eval_config import cfg, gpt2_net_cfg
from src.utils.metric_method import LastTokenAccuracy,LastWordAccuracy
from src.dataset import create_language_model_dataset
from src.utils.lr_schedule import GPT2LearningRate
from src.utils.losscallback import LossCallBack
from src.utils.extract_logits_lambada import extract_logits_for_lambada,extract_last_word_input_ids
from src.utils.lambada_utils import get_wholeword_label_str,get_lastword_range
from src.utils.tokenization import Tokenizer
from src.GPT2_generation import generate_for_LAMBADA_numpy_topk
from src.utils.CrossEntropy import CrossEntropyCalculationWithMask
from src.utils.CrossEntropy import cross_entropy_np
import mindspore
import mindspore.common.dtype as mstype
from mindspore import context
from mindspore import log as logger
from mindspore.ops import operations as P
from mindspore.nn import SoftmaxCrossEntropyWithLogits
from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
# from mindspore.nn import AdamWeightDecay, Lamb, Momentum, DynamicLossScaleUpdateCell
from mindspore.nn import AdamWeightDecay, Lamb, Momentum
from mindspore.common.tensor import Tensor
from mindspore.train.model import Model
from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, TimeMonitor, LossMonitor
from mindspore.train.serialization import load_checkpoint, load_param_into_net
# from src.GPT2_generation import Sample
def do_train(dataset=None, network=None, load_checkpoint_path="", save_checkpoint_path="", epoch_num=1):
"""
Do train
Args:
dataset: the train dataset.
network: the network with loss
load_checkpoint_path: the file path which saved pretrain model checkpoint.
save_checkpoint_path: the file path which will save finetune model checkpoint.
epoch_num: the number of epoch
"""
if load_checkpoint_path == "":
raise ValueError("Pretrain model missed, finetune task must load pretrain model!")
steps_per_epoch = dataset.get_dataset_size() # samples / batch_size
if cfg.optimizer == 'AdamWeightDecay':
lr_schedule = GPT2LearningRate(learning_rate=cfg.AdamWeightDecay.learning_rate,
end_learning_rate=cfg.AdamWeightDecay.end_learning_rate,
warmup_steps=int(steps_per_epoch * epoch_num * 0.1),
decay_steps=steps_per_epoch * epoch_num,
power=cfg.AdamWeightDecay.power)
params = network.trainable_params() # return a list of all trainable parmeters of the network
# Use parameter groups and set different values
decay_params = list(filter(cfg.AdamWeightDecay.decay_filter, params)) # without layernorm and bias
other_params = list(filter(lambda x: not cfg.AdamWeightDecay.decay_filter(x), params)) # with layernorm and bias
group_params = [{'params': decay_params, 'weight_decay': cfg.AdamWeightDecay.weight_decay},
{'params': other_params, 'weight_decay': 0.0}]
optimizer = AdamWeightDecay(group_params, lr_schedule, eps=cfg.AdamWeightDecay.eps)
elif cfg.optimizer == 'Lamb':
lr_schedule = GPT2LearningRate(learning_rate=cfg.Lamb.learning_rate,
end_learning_rate=cfg.Lamb.end_learning_rate,
warmup_steps=int(steps_per_epoch * epoch_num * 0.1),
decay_steps=steps_per_epoch * epoch_num,
power=cfg.Lamb.power)
optimizer = Lamb(network.trainable_params(), lr_schedule)
elif cfg.optimizer == 'Momentum':
optimizer = Momentum(network.trainable_params(), cfg.Momentum.learning_rate, cfg.Momentum.momentum)
else:
raise Exception("Optimizer not supported. support: [AdamWeightDecay, Lamb, Momentum]")
# load checkpoint into network
ckpt_config = CheckpointConfig(save_checkpoint_steps=steps_per_epoch, keep_checkpoint_max=1)
prefix_name = "gpt2_" + "lambada_" + str(cfg.gpt2_network) + "_" + str(cfg.optimizer)+ "_" + str(epoch_num) + "_bs" +str(gpt2_net_cfg.batch_size)
ckpoint_cb = ModelCheckpoint(prefix=prefix_name,
directory=None if save_checkpoint_path == "" else save_checkpoint_path,
config=ckpt_config)
param_dict = load_checkpoint(load_checkpoint_path)
final_param_dict = {}
for k, v in param_dict.items():
final_param_dict['gpt2.gpt2.' + k] = param_dict[k]
# set the weights of final linear weights to weights of gpt2 token embedding
final_param_dict['gpt2.dense1.weight'] = param_dict['gpt2_embedding_lookup.embedding_table']
load_param_into_net(network, final_param_dict)
#print("Load the 8epoch finetuned parameter successfully!\n")
print("Load the pretrained parameter successfully!\n")
update_cell = DynamicLossScaleUpdateCell(loss_scale_value=2**32, scale_factor=2, scale_window=1000)
netwithgrads = GPT2FinetuneCell(network, optimizer=optimizer, scale_update_cell=update_cell)
netwithgrads.set_train(True)
loss_cb = LossMonitor(per_print_times=1)
model = Model(netwithgrads)
# callbacks = [TimeMonitor(dataset.get_dataset_size()), LossCallBack(dataset.get_dataset_size()), ckpoint_cb]
callbacks = [TimeMonitor(dataset.get_dataset_size()), loss_cb, ckpoint_cb]
print("============== Starting Training ==============")
model.train(epoch_num, dataset, callbacks=callbacks, dataset_sink_mode=False)
print("============== Training Success ==============")
def eval_result_print(metric="accuracy", callback=None):
""" print eval result"""
if metric.lower() == "accuracy":
print("acc_num {}, total_num {}, accuracy {:.6f}".format(callback.acc_num, callback.total_num,
callback.acc_num / callback.total_num))
else:
raise ValueError("metric method not supported, support: [accuracy]")
def do_eval(dataset=None, network=None, metric=None, load_checkpoint_path="", eval_type=None, generate_length_dynamically=True):
"""
Do eval
Args:
dataset: the eval dataset.
network: the network with loss.
metric: the evaluation method.
load_checkpoint_path: the file path which saved finetune model checkpoint.
"""
if load_checkpoint_path == "":
raise ValueError("Finetune model missed, evaluation task must load finetune model!")
tokenizer = Tokenizer(vocab_file='./src/utils/pretrain-data/gpt2-vocab.json',
merge_file='./src/utils/pretrain-data/gpt2-merges.txt')
if metric.lower() == "accuracy":
print("Prepare to calculate the accuracy score ...")
# callback = Accuracy()
# callback = LastWordAccuracy()
# callback = LastTokenAccuracy()
callback = LastWordAccuracy(smooth=False)
gpt2_loss = GPT2LambadaModel(config=gpt2_net_cfg,
is_training=False,
use_one_hot_embeddings=False)
gpt2_loss.set_train(False)
param_dict = load_checkpoint(load_checkpoint_path)
if eval_type == "zero-shot":
final_param_dict = {}
for k, v in param_dict.items():
final_param_dict['gpt2.gpt2.' + k] = param_dict[k]
# set the weights of final linear weights to weights of gpt2 token embedding
final_param_dict['gpt2.dense1.weight'] = param_dict['gpt2_embedding_lookup.embedding_table']
load_param_into_net(gpt2_loss, final_param_dict)
print("load pretrained parameter successfully!\n")
elif eval_type == "finetuned":
load_param_into_net(gpt2_loss, param_dict)
print("load finetuned parameter successfully!\n")
model = Model(gpt2_loss)
# sample = Sample(decoder = model,model_config=gpt2_net_cfg,tokenizer=tokenizer,topk_num=1,topp_prob=1,return_ids=True)
columns_list = ["input_ids", "input_mask", "label_ids"]
print("============= Testing LAMBADA ACC =============")
cnt = 0
for data in dataset.create_dict_iterator():
input_data = []
for i in columns_list:
input_data.append(data[i])
input_ids, input_mask, label_ids = input_data
print("===========LAMBADA ACC DATA NUM:{}===========".format(cnt))
# print("input_ids_shape: {}".format(input_ids.shape))
# print("input_mask_shape: {}".format(input_mask.shape))
# print("label_ids_shape: {}".format(label_ids.shape))
logits = model.predict(input_ids, input_mask)
# print("="*40)
# print("after predict logits shape:",logits.shape) (8,1024,50257)
# output_str = sample.generate_for_LAMBADA(input_ids = input_ids,logits = logits, max_generate_length=3, max_iterations=200)
output_str = generate_for_LAMBADA_numpy_topk(decoder=model,input_ids = input_ids,
logits = logits, tokenizer=tokenizer, max_iterations=200,
generate_length_dynamically=generate_length_dynamically,
stop_word_file="src/utils/pretrain-data/stopwords.txt")
label_str = get_wholeword_label_str(input_ids=input_ids,config=gpt2_net_cfg,tokenizer=tokenizer)
# print("logits shape: {}".format(logits.shape))
# print("logits: \n{}".format(logits))
# print("===================================")
# print("==============================================")
# print("output_str:{}".format(output_str[0]))
# print("label_str:{}".format(label_str[0].strip()))
callback.update(output_str, label_str)
eval_result_print(metric, callback)
# callback.update(logits, label_ids)
print("==============================================\n")
cnt += 1
print("=============== Final score ==================")
eval_result_print(metric, callback)
print("************** Testing Finished **************")
elif metric.lower() == "ppl":
print("Prepare to calculate the ppl score ...")
# ppl metric can be calculated by using the loss, so the difference is 'is_training'
gpt2_loss = GPT2Lambada(config=gpt2_net_cfg,
is_training=False,
use_one_hot_embeddings=False)
gpt2_loss.set_train(False)
model = Model(gpt2_loss)
param_dict = load_checkpoint(load_checkpoint_path)
if eval_type == "zero-shot":
final_param_dict = {}
for k, v in param_dict.items():
final_param_dict['gpt2.gpt2.' + k] = param_dict[k]
# set the weights of final linear weights to weights of gpt2 token embedding
final_param_dict['gpt2.dense1.weight'] = param_dict['gpt2_embedding_lookup.embedding_table']
load_param_into_net(gpt2_loss, final_param_dict)
print("load pretrained parameter successfully!\n")
elif eval_type == "finetuned":
load_param_into_net(gpt2_loss, param_dict)
print("load finetuned parameter successfully!\n")
columns_list = ["input_ids", "input_mask", "label_ids"]
num_data = 0
total_ppl = 0.0
total_loss = 0.0
print("================= Testing LAMBADA PPL =================")
for data in dataset.create_dict_iterator():
print("=========== LAMBADA PPL Test iteration:{}==========".format(num_data))
input_data = []
for i in columns_list:
input_data.append(data[i])
input_ids, input_mask, label_ids = input_data
print("input_ids_shape: {}".format(input_ids.shape))
print("input_mask_shape: {}".format(input_mask.shape))
print("label_ids_shape: {}".format(label_ids.shape))
logits = model.predict(input_ids, input_mask) # (batch_size,seq_len,vocab_size)
# print("*"*30)
last_word_range_ = get_lastword_range(input_ids=input_ids, config=gpt2_net_cfg,tokenizer=tokenizer) # [(left_pos,right_pos)]
last_word_range = (last_word_range_[0][0] + 1, last_word_range_[0][1] + 1)
last_word_logits_start_pos = last_word_range[0] - 1
last_word_logits_end_pos = last_word_range[1] - 1
# last_word_token_len = last_word_range[1] - last_word_range[0]
# print(" | Last word token length:", last_word_token_len)
# print(last_word_ids)
# last_word_ids = P.Reshape()(last_word_ids,(-1,)).asnumpy().tolist()
# print(last_word_ids)
label_ids = extract_last_word_input_ids(input_ids=input_ids,seq_pos=last_word_range) # (batch_size=1,x=lastword token num)
label_input_mask = extract_last_word_input_ids(input_ids=input_mask,seq_pos=last_word_range)
gold_logits = logits[::, last_word_logits_start_pos:last_word_logits_end_pos:1, ::]
label_ids = P.Reshape()(label_ids, (-1,)) # (x,)
gold_logits = P.Reshape()(gold_logits, (-1, gpt2_net_cfg.vocab_size))
label_word_ids = label_ids.asnumpy().tolist()
label_word = tokenizer.decode(label_word_ids)
print("label word: ", label_word)
# generate_word = tokenizer.decode([generate_ids])
# print("generate word:", generate_word)
# cross_entropy = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
# cross_entropy = CrossEntropyCalculationWithMask(is_training=True, num_labels=tokenizer.vocab_size, config=gpt2_net_cfg)
# loss = cross_entropy(gold_logits,label_ids,label_input_mask)
# calculate cross entropy with numpy
loss = cross_entropy_np(gold_logits.asnumpy(),label_ids.asnumpy())
#print(" | after SoftmaxCrossEntropyWithLogits....")
# loss = cross_entropy(gold_logits, label_ids)
# print(" | after cross entropy...")
# loss = model.predict(input_ids, input_mask, label_ids)
# loss = loss.asnumpy()
print(" | Loss: {:.6f}".format(float(loss)))
num_data += 1
total_loss += loss
avg_loss = total_loss / num_data
print(" | Current AVG loss:", avg_loss)
print(" | Current AVG ppl:", math.exp(avg_loss))
ppl = math.exp(avg_loss)
# avg_ppl = total_loss / num_data
print("-----------------------------------------")
print(" PPL: {:.6f}".format(ppl))
print("************** Testing Finished **************")
else:
raise ValueError("metric method not supported, support: [accuracy, ppl]")
def run_lambada():
"""
run Language Modeling task
"""
parser = argparse.ArgumentParser(description="Finetune and Evaluate languagemodel")
parser.add_argument("--device_target", type=str, default="Ascend",
help="Device type. Default: Ascend.")
parser.add_argument("--device_id", type=int, default=2,
help="ID of target device. ")
parser.add_argument("--metric_method", type=str, default="PPL",
help="The eval method including [Accuracy, PPL]. Default: Accuracy.")
parser.add_argument("--do_train", type=str, default="false",
help="Enable train. Default: false.")
parser.add_argument("--do_eval", type=str, default="false",
help="Enable evaluation. Default: false.")
parser.add_argument("--eval_type", type=str, default="zero-shot",
help="The type of evaluation including [zero-shot, finetuned]. Default: zero-shot.")
parser.add_argument("--epoch_num", type=int, default=3,
help="Epoch number. Default: 1.")
parser.add_argument("--train_data_shuffle", type=str, default="false",
help="Enable train data shuffle. Default: true.")
parser.add_argument("--eval_data_shuffle", type=str, default="false",
help="Enable eval data shuffle. Default: false.")
parser.add_argument("--generate_length_dynamically", type=str, default="true",
help="Enable generate_length_Dynamically. Default: true.")
parser.add_argument("--save_finetune_ckpt_path", type=str, default="/data/tju/pretrained-weight/lambada_saved/",
help="Save the checkpoint path.")
## modify
parser.add_argument("--load_pretrain_ckpt_path", type=str, default="/data/tju/pretrained-weight/mindspore_model_small.ckpt",
help="Load the checkpoint file path.")
parser.add_argument("--load_finetune_ckpt_path", type=str, default="/data/tju/pretrained-weight/mindspore_model_medium.ckpt",
help="Load the checkpoint file path.")
parser.add_argument("--train_data_file_path", type=str, default="/data/tju/mindspore-dataset/lambada-development-mindrecord",
help="Data path, it is better to use absolute path")
parser.add_argument("--eval_data_file_path", type=str, default="/data/tju/mindspore-dataset/lambada-control-test-deep-mindrecord",
help="Data path, it is better to use absolute path")
args_opt = parser.parse_args()
epoch_num = args_opt.epoch_num
metric = args_opt.metric_method
save_finetune_ckpt_path = args_opt.save_finetune_ckpt_path
load_finetune_ckpt_path = args_opt.load_finetune_ckpt_path
load_pretrain_ckpt_path = args_opt.load_pretrain_ckpt_path
if args_opt.do_train.lower() == "false" and args_opt.do_eval.lower() == "false":
raise ValueError("At least one of 'do_train' or 'do_eval' must be true")
if args_opt.do_train.lower() == "true" and args_opt.train_data_file_path == "":
raise ValueError("'train_data_file_path' must be set when do finetune task")
if args_opt.do_eval.lower() == "true" and args_opt.eval_data_file_path == "":
raise ValueError("'eval_data_file_path' must be set when do evaluation task")
device = args_opt.device_target
if device == "Ascend":
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
context.set_auto_parallel_context(parallel_mode="stand_alone")
print(" | Device: {} | Device id: {}".format(device, args_opt.device_id))
else:
raise Exception("Device target error, Ascend is supported.")
gpt2_loss = GPT2Lambada(config=gpt2_net_cfg,
is_training=True,
use_one_hot_embeddings=False)
if args_opt.do_train.lower() == "true":
print("============== Start Loading Train Dataset ============")
print(" | Train Dataset: {}".format(args_opt.train_data_file_path))
print(" | Checkpoint: {}".format(args_opt.load_pretrain_ckpt_path))
train_dataset = create_language_model_dataset(do_shuffle=(args_opt.train_data_shuffle.lower() == "true"),
dataset_path=args_opt.train_data_file_path)
do_train(train_dataset, gpt2_loss, load_pretrain_ckpt_path, save_finetune_ckpt_path, epoch_num)
if args_opt.do_eval.lower() == "true":
print("============== Start Loading Evaluation Dataset ============")
print(" | Eval Dataset: {}".format(args_opt.eval_data_file_path))
print(" | Checkpoint: {}".format(args_opt.load_finetune_ckpt_path))
eval_dataset = create_language_model_dataset(do_shuffle=(args_opt.eval_data_shuffle.lower() == "true"),
dataset_path=args_opt.eval_data_file_path)
do_eval(eval_dataset, GPT2Lambada, metric, load_finetune_ckpt_path, args_opt.eval_type, args_opt.generate_length_dynamically)
if __name__ == "__main__":
run_lambada()