-
Notifications
You must be signed in to change notification settings - Fork 519
/
schema.py
997 lines (839 loc) · 37.5 KB
/
schema.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
# Copyright 2011 Viewfinder Inc. All Rights Reserved.
"""Schema definition.
The first set of classes in this file handle the underlying storage
for a single column of a datastore object. The base class for this,
_Value, defines the interface. There are three subclasses:
_SingleValue, which handles one piece of data, whatever the type
(e.g. an integer, floating point, latitude/longitude pair, string,
etc.); _SetValue, which handles a set of _SingleValue
data; and _KeyValue, which hold an immutable key value.
_SetValue objects are used to represent one or more similar
items for an object. For example, a user object might contain one
email string for each verified identity.
This module provides the following utilities for packing / unpacking
data between a database-friendly ASCII data and structured named tuples.
PackLocation: Location from named tuple to DB data
UnpackLocation: from DB data to Location named tuple
PackPlacmark: Placemark from named tuple to DB data
UnpackPlacemark: from DB data to Placemark named tuple
This module provides the following external classes:
Column: a single value column definition
SetColumn: a set of values column definition
Table: Contains one or more columns
IndexedTable: Variant of Table which maintains secondary indexes
IndexTable: Variant of Table which stores index info
Schema: Contains one or more tables
SchemaException: exception class for schema operations
"""
__author__ = '[email protected] (Spencer Kimball)'
import json
import logging
import struct
from collections import namedtuple
from functools import partial
from tornado import options
from viewfinder.backend.base import base64hex, secrets, util
from viewfinder.backend.db import db_client, indexers
options.define('delete_vestigial', default=False, help='deletes vestigial tables')
options.define('verify_provisioning', default=True,
help='abort if provisioned capacity does not match schema values')
Location = namedtuple('Location', ['latitude', 'longitude', 'accuracy'])
Placemark = namedtuple('Placemark', ['iso_country_code', 'country', 'state', 'locality',
'sublocality', 'thoroughfare', 'subthoroughfare'])
def PackLocation(location):
"""Converts 'location' named tuple into a packed, base64-hex-encoded
string representation for storage in DynamoDB.
"""
packed = struct.pack('>ddd', *[float(x) for x in location])
return base64hex.B64HexEncode(packed)
def UnpackLocation(value):
"""Converts from a packed, base64-hex-encoded representation of
latitude, longitude and accuracy into a Location namedtuple.
"""
packed = base64hex.B64HexDecode(value)
latitude, longitude, accuracy = struct.unpack('>ddd', packed)
return Location(latitude=latitude, longitude=longitude, accuracy=accuracy)
def PackPlacemark(placemark):
"""Converts 'placemark' named tuple into a packed,
base64-hex-encoded, comma-separated representation for storage in
DynamoDB.
"""
return ','.join([base64hex.B64HexEncode(x.encode('utf-8'), padding=False) for x in placemark])
def UnpackPlacemark(value):
"""Converts from a comma-separated, base64-hex-encoded
representation of hierarchical place names into 'Placemark' named
tuple with an utf-8 encoded place names.
"""
pm_values = []
for x in value.split(','):
try:
# TODO(spencer): the rstrip() below is necessary as data in the
# index has already been encoded with a bug in the base64 padding
# We need to rebuild the index before reverting this.
decoded_x = base64hex.B64HexDecode(x.rstrip('='), padding=False).decode('utf-8')
except:
decoded_x = ''
pm_values.append(decoded_x)
return Placemark(*pm_values)
class SchemaException(Exception):
pass
class _Value(object):
"""Holds a column value. Each column type decides how to store its
in-memory representation. Some column types are like _PlacemarkValue,
where the raw db value is stored in memory as a more useful Python
object. Other column types are like _JSONValue -- the raw db value
is stored in memory and converted to a useful Python object on demand.
"""
__slots__ = ['col_def', '_modified', '_value']
def __init__(self, col_def):
self.col_def = col_def
self._modified = False
self._value = None
def IsModified(self):
return self._modified
def SetModified(self, modified):
self._modified = modified
def Get(self, asdict=False):
"""Returns the value of the column in a format that is convenient
for use in Python. If 'asdict' is true, then convert to a Python
dict if this column type supports it.
"""
raise NotImplementedError()
def Load(self, value):
"""Loads the value of the column from the format that is stored in the
database. Sets the IsModified bit to false.
"""
raise NotImplementedError()
def Set(self, value):
"""Updates the value of the column with any type that can be converted
into the column type. Sets the IsModified bit to true if the value of
the column actually changes.
"""
raise NotImplementedError()
def Del(self):
raise NotImplementedError()
def Update(self):
raise NotImplementedError()
def OnUpdate(self):
"""Called on completion of an update."""
self.SetModified(False)
def IndexTerms(self):
"""Returns an index term dict in conjunction with PUT. If the term
dict is empty, returns an empty term dict. In either case, the
previous set of index terms is queried and the difference between
the old and new sets is used to delete or add this object's key to
the term posting lists.
"""
assert self.col_def.indexer
try:
if self.Get():
index_terms = self.col_def.indexer.Index(self.col_def, self.Get())
else:
index_terms = {}
except:
logging.exception('generation of index terms for %s' % repr(self.Get()))
index_terms = {}
return db_client.UpdateAttr(value=index_terms or None, action='PUT')
def _CheckType(self, value):
"""Ensure that "value" has a type that matches the type of the column.
"""
def _CheckSingleValue(single_value):
assert single_value != '', value
if self.col_def.value_type in ['S', 'SS']:
is_expected_type = type(single_value) in [str, unicode]
else:
assert self.col_def.value_type in ['N', 'NS'], self.col_def
is_expected_type = type(single_value) in [int, long, float]
assert is_expected_type, \
(self.col_def.table.name, self.col_def.value_type, self.col_def.name, value)
if value is not None:
if self.col_def.value_type in ['SS', 'NS']:
[_CheckSingleValue(v) for v in value if v is not None]
else:
_CheckSingleValue(value)
class _SingleValue(_Value):
"""Holds a column with a single value (such as a string, a timestamp, etc.).
"""
def Get(self, asdict=False):
"""Returns the value in the raw db format by default."""
return self._value
def Load(self, value):
"""Stores the raw db value by default."""
self._CheckType(value)
self._value = value
def Set(self, value):
"""Stores the raw db value by default."""
assert value != '', 'DynamoDB does not support setting attributes to the empty string'
if value != self._value:
assert not self.col_def.read_only or self._value is None, \
'cannot modify read-only column "%s": %s=>%s' % (self.col_def.name, self._value, repr(value))
self._CheckType(value)
self.SetModified(True)
self._value = value
def Update(self):
"""Returns PUT and the new value if modified. If new value is
None, returns DELETE.
"""
assert self.IsModified()
if self._value is not None:
return db_client.UpdateAttr(value=self._value, action='PUT')
else:
return db_client.UpdateAttr(value=None, action='DELETE')
class _LatLngValue(_Value):
"""Subclass of _Value that holds latitude, longitude and an accuracy
measure, all double-precision floating point values. They are
stored together as a base64hex-encoded struct-packed string for
storage, but are available as a Location namedtuple.
This value may be set via either Set(Location(latitude, longitude, accuracy)),
Set({'latitude': <latitude>, 'longitude': <longitude>, 'accuracy': <accuracy>}),
or Set(packed-b64hex-encoded-string).
"""
def Get(self, asdict=False):
"""Gets the value as a Location or dict object."""
if asdict:
return self._value._asdict()
else:
return self._value
def Load(self, value):
"""Stores the raw db str as a Location object in memory."""
assert isinstance(value, (str, unicode)), value
self._value = UnpackLocation(value)
def Set(self, value):
"""Converts 'value' to a Location and store."""
if value is None:
location = None
elif isinstance(value, dict):
location = Location(**value)
elif isinstance(value, (str, unicode)):
location = UnpackLocation(value)
else:
assert isinstance(value, Location), value
location = value
if location != self._value:
self.SetModified(True)
self._value = location
def Update(self):
"""Returns PUT and the new value if modified. If new value is
None, returns DELETE.
"""
assert self.IsModified()
if self._value is not None:
return db_client.UpdateAttr(value=PackLocation(self._value), action='PUT')
else:
return db_client.UpdateAttr(value=None, action='DELETE')
class _PlacemarkValue(_Value):
"""Subclass of _Value that holds hierarchical placenames. They are stored
together in the datastore as a url-encoded, comma-separated string, but are
available in python as a Placemark namedtuple.
This value may be set via either Set(Placemark), or
Set({'iso_country_code', 'country': <country>, 'state': <state>,
'locality': <locality>, 'sublocality': <sublocality>,
'thoroughfare': <thoroughfare>, 'subthoroughfare':
<subthoroughfare>}), or Set(<url-encoded, comma-separated string>).
"""
def Get(self, asdict=False):
"""Gets the value as a Placemark or dict object."""
if asdict:
# Cannot return empty strings for missing placemark fields as
# JSON validator doesn't allow empty strings.
return dict([(k, v) for k, v in self._value._asdict().items() \
if v is not None and v != ''])
else:
return self._value
def Load(self, value):
"""Stores the raw db str as a Placemark object in memory."""
assert isinstance(value, (str, unicode)), value
self._value = UnpackPlacemark(value)
def Set(self, value):
"""Converts 'value' to a Placemark and store."""
if value is None:
placemark = None
elif isinstance(value, dict):
placemark = Placemark(value.get('iso_country_code', ''), value.get('country', ''),
value.get('state', ''), value.get('locality', ''),
value.get('sublocality', ''), value.get('thoroughfare', ''),
value.get('subthoroughfare', ''))
elif isinstance(value, (str, unicode)):
placemark = UnpackPlacemark(value)
else:
assert isinstance(value, Placemark), value
placemark = value
if placemark != self._value:
self.SetModified(True)
self._value = placemark
def Update(self):
"""Returns PUT and the new value if modified. If new value is
None, returns DELETE.
"""
assert self.IsModified()
if self._value is not None:
return db_client.UpdateAttr(value=PackPlacemark(self._value), action='PUT')
else:
return db_client.UpdateAttr(value=None, action='DELETE')
class _JSONValue(_Value):
"""Subclass of _Value that holds a python data structure, which is
stored as a JSON-encoded string.
"""
def Get(self, asdict=False):
"""Returns the JSON-encoded string converted to a Python data type."""
if self._value:
return json.loads(self._value)
else:
return None
def Load(self, value):
"""Stores the raw string value loaded from the db."""
assert isinstance(value, (str, unicode)), value
self._value = value
def Set(self, value):
"""Converts 'value' to a JSON-encoded string before storing it."""
value = util.ToCanonicalJSON(value)
if value != self._value:
self.SetModified(True)
self._value = value
def Update(self):
assert self.IsModified()
if self._value is not None:
return db_client.UpdateAttr(value=self._value, action='PUT')
else:
return db_client.UpdateAttr(value=None, action='DELETE')
class _DelayedCrypt(object):
"""This class delays the decryption of an encrypted value until the class is invoked. This
level of indirection ensures that the caller must take explicit action in order to decrypt
a value. This helps to prevent accidental logging or use of the plaintext.
"""
def __init__(self, encrypted_value):
self._encrypted_value = encrypted_value
def Decrypt(self):
"""Returns the decrypted value."""
crypter = _CryptValue._GetCrypter()
return json.loads(crypter.Decrypt(self._encrypted_value))
def __eq__(self, other):
"""Returns true if self._encrypted_value is equal to the other's _encrypted_value."""
if isinstance(other, _DelayedCrypt):
return self._encrypted_value == other._encrypted_value
return NotImplemented
def __ne__(self, other):
"""Returns true if self._encrypted_value is not equal to the other's _encrypted_value."""
if isinstance(other, _DelayedCrypt):
return self._encrypted_value != other._encrypted_value
return NotImplemented
class _CryptValue(_JSONValue):
"""Subclass of _Value that holds a python data structure, which is stored as a JSON-encoded
string that has been encrypted with the service-wide db crypt key.
"""
@classmethod
def _GetCrypter(cls):
if not hasattr(cls, '_crypter'):
cls._crypter = secrets.GetCrypter('db_crypt')
return cls._crypter
def Get(self, asdict=False):
"""Gets the encrypted value as an instance of _DelayedCrypt. This instance's Decrypt method
must be invoked in order to extract the unencrypted value. See the docs for _DelayedCrypt
for details.
"""
if self._value is not None:
# Return JSON-friendly format when _asdict() is used. The default JSONEncoder does not
# handle anything other than the basic Python types. Note that in this case, decrypting
# the value via invocation is not possible, but it is useful for getting an object as a
# dict, and then serializing or copying it elsewhere.
if asdict:
return {'__crypt__': self._value}
return _DelayedCrypt(self._value)
else:
return None
def Set(self, value):
"""Converts 'value' to a JSON-encoded string and encrypts it before storing it."""
if value is None:
encrypted_value = None
elif isinstance(value, _DelayedCrypt):
encrypted_value = value._encrypted_value
elif isinstance(value, dict) and '__crypt__' in value:
encrypted_value = value['__crypt__']
else:
crypter = _CryptValue._GetCrypter()
encrypted_value = crypter.Encrypt(json.dumps(value))
if self._value != encrypted_value:
self.SetModified(True)
self._value = encrypted_value
class _LayeredSet(frozenset):
"""A special frozenset subclass which handles deletions and
additions without necessarily knowing about the contents of the
canonical set (as it exists at the current moment in the
datastore). This is useful for describing changes to a set of
values in the datastore without requiring the contents be
queried. It redefines add, clear, discard & remove by augmenting
additional, internal set() objects to track additions and
deletions. These are then used to update the datastore as
incremental changes.
Once a value has been removed, it cannot then be added and vice-
versa. Values which have been added or removed are transient and
have no effect on tests for whether an element is 'in' the set, on
set equality, or on set operations. These types of set operations
are valid only with the results of set values queried from the
datastore. clear() adds all elements which were queried (ones in the
underlying frozenset) to the deleted set. Any elements previously
added to additions are discarded.
The return values of various methods must be judiciously
interpreted. Asking if 'x in _LayeredSet' may yield an answer only
in relation to imperfect knowledge of the canonical set.
"""
def __init__(self, s=[]):
super(_LayeredSet, self).__init__(s)
self.additions = set()
self.deletions = set()
def __repr__(self):
return '%s +%s -%s' % (super(_LayeredSet, self).__repr__(),
self.additions.__repr__(),
self.deletions.__repr__())
def add(self, elem):
assert not self.deletions
assert elem != ''
if elem not in self:
self.additions.add(elem)
def clear(self):
self.deletions = set(self)
self.additions.clear()
def discard(self, elem):
self.remove(elem)
def remove(self, elem):
assert not self.additions
self.deletions.add(elem)
def combine(self):
"""Return a set that adds the additions and removes the deletions."""
return self.additions.union(self).difference(self.deletions)
class _SetValue(_Value):
"""Holds a set of values using a LayeredSet to keep track of
incremental additions and deletions.
"""
def __init__(self, col_def):
super(_SetValue, self).__init__(col_def)
self._value = _LayeredSet()
def IsModified(self):
"""True if _modified or if additions or deletions are not empty."""
return self._modified or self._value.additions or self._value.deletions
def Get(self, asdict=False):
"""Returns the partial set."""
if asdict:
return list(self._value)
else:
return self._value
def Load(self, value):
"""Stores the raw set value as a LayeredSet."""
assert value is None or isinstance(value, (list, tuple, set, frozenset)), type(value)
if value is None:
self._value = _LayeredSet()
else:
self._value = _LayeredSet(value)
def Set(self, value):
"""Sets the contents of the entire set. This sets a flag which
indicates that the DynamoDB update should use a PUT action to
replace the previous contents of the set.
"""
self.SetModified(True)
self.Load(value)
def Update(self):
"""Returns an action {ADD, DELETE, PUT} and the set of values for
an update depending on the state of the layered set. If the set
was assigned directly, use PUT. If there are set additions, use
ADD; otherwise DELETE.
"""
if self._modified:
if self._value.additions:
value = list(self._value.union(self._value.additions))
else:
value = list(self._value.difference(self._value.deletions))
# DynamoDB does not support PUT of empty set, so instead DELETE the attribute entirely.
if not value:
return db_client.UpdateAttr(None, action='DELETE')
return db_client.UpdateAttr(value=value, action='PUT')
else:
if self._value.additions:
return db_client.UpdateAttr(value=list(self._value.additions), action='ADD')
elif self._value.deletions:
return db_client.UpdateAttr(value=list(self._value.deletions), action='DELETE')
else:
assert False, 'Update called with unmodified set'
def OnUpdate(self):
"""Called on completion of an update."""
self._modified = False
new_set = self._value.combine()
self._value = _LayeredSet(new_set)
def IndexTerms(self):
"""Returns the set of index terms in conjunction with the action,
which is one of {PUT, ADD, DELETE}. Index terms which are meant to
replace the former set are returned with PUT. This requires the
previous terms be queried. The differences between the old and the
new term sets determines which old terms are deleted and which new
terms are added to the index. ADD and DELETE do not require the
previous terms be queried.
"""
assert self.col_def.indexer and \
isinstance(self.col_def.indexer, indexers.SecondaryIndexer)
update = self.Update()
# Create the term dict.
term_dict = {}
if update.value is not None:
for term in update.value:
term_dict.update(self.col_def.indexer.Index(self.col_def, term).items())
return db_client.UpdateAttr(value=term_dict, action=update.action)
class _KeyValue(_SingleValue):
"""Holds a column with a single value (such as a string, a timestamp, etc.).
"""
def Set(self, value):
if self._value is None and value is not None:
self._CheckType(value)
self.SetModified(True)
self._value = value
elif self._value != value:
assert False, "cannot modify a key value: %s=>%s" % (self._value, repr(value))
def Update(self):
"""Key values are not updated. On creation, the key is already
specified as part of the request.
"""
assert self.IsModified()
return None
class Column(object):
"""A single-value column.
The '_type' values are specified as 'struct' format characters:
http://docs.python.org/library/struct.html
"""
def __init__(self, name, key, value_type, indexer=None, read_only=False):
self.name = name.lower()
self.key = key.lower()
self.value_type = value_type
self.read_only = read_only
self.indexer = indexer
# The back link to the table is set by the containing table.
self.table = None
def NewInstance(self):
return _SingleValue(self)
class HashKeyColumn(Column):
"""A column to designate the primary key of a row in the datastore.
In DynamoDB, this is referred to as the 'hash-key', and is used to
randomly & uniformly disperse items in a particular table across the
key range.
"""
def __init__(self, name, key, value_type):
super(HashKeyColumn, self).__init__(name, key, value_type, indexer=None)
def NewInstance(self):
return _KeyValue(self)
class RangeKeyColumn(Column):
"""A column to designate the secondary key of a row in the datastore.
In DynamoDB, this is referred to as the 'range-key', and is used to
provide a sort order on items with identical 'hash-key' values.
"""
def __init__(self, name, key, value_type, indexer=None):
super(RangeKeyColumn, self).__init__(name, key, value_type, indexer=indexer)
def NewInstance(self):
return _KeyValue(self)
class SetColumn(Column):
"""A subclass of column whose column value in the datastore is a
set of values, each with value as specified by value_type.
"""
def __init__(self, name, key, value_type, indexer=None, read_only=False):
super(SetColumn, self).__init__(name, key, value_type, indexer=indexer, read_only=read_only)
def NewInstance(self):
return _SetValue(self)
class IndexTermsColumn(Column):
"""A subclass of column for the list of index terms generated by an
indexed column. These columns are special in that they don't actually
create an instance of a value class to hold the contents. They are
ephemeral and exist only in the database; they cannot be accessed via
the column name on a DBObject, as for all other column types.
The value type is always a string set 'SS'.
"""
def __init__(self, name, key):
super(IndexTermsColumn, self).__init__(name, key, 'SS', indexer=False)
def NewInstance(self):
raise TypeError('IndexTermsColumn is ephemeral')
class LatLngColumn(Column):
"""Column subclass to handle geographic coordinates measured in
degrees of latitude and longitude. An accuracy is also include,
measured in meters. Stores values as double precision floating point
numbers via struct. The results are base64hex encoded for storage in
the backend datastore. Takes either a LocationIndexer or
BreadcrumbIndexer depending on the type of geo search desired.
"""
def __init__(self, name, key, indexer=None):
"""Creates a geographic location indexer if 'indexed'."""
if indexer is not None:
assert isinstance(indexer, indexers.BreadcrumbIndexer) or \
isinstance(indexer, indexers.LocationIndexer)
super(LatLngColumn, self).__init__(name, key, 'S', indexer=indexer)
def NewInstance(self):
return _LatLngValue(self)
class PlacemarkColumn(Column):
"""Column to handle hiearchical place names from country to street-
level. Stores value as comma-separated url-quoted string value in
datastore, but makes value available via a namedtuple. If indexer
is not None, must be of type PlacemarkIndexer.
"""
def __init__(self, name, key, indexer=None):
if indexer is not None:
assert isinstance(indexer, indexers.PlacemarkIndexer)
super(PlacemarkColumn, self).__init__(name, key, 'S', indexer)
def NewInstance(self):
return _PlacemarkValue(self)
class JSONColumn(Column):
"""Column to handle JSON-encoded python data structure.
"""
def __init__(self, name, key, read_only=False):
super(JSONColumn, self).__init__(name, key, 'S', indexer=None, read_only=read_only)
def NewInstance(self):
return _JSONValue(self)
class CryptColumn(Column):
"""Column with contents that are encrypted with the service-wide db
crypt key.
"""
def __init__(self, name, key):
super(CryptColumn, self).__init__(name, key, 'S', None)
def NewInstance(self):
return _CryptValue(self)
class Table(object):
"""A table contains an array of Column objects."""
VERSION_COLUMN = Column('_version', '_ve', 'N')
def __init__(self, name, key, read_units, write_units, columns, name_in_db=None):
# Add special column for _version, used in migrating the data model
# as new features demand.
columns.append(Table.VERSION_COLUMN)
# Set up back links in each column definition to this table. The columns
# need the back link for the table key when they generate index terms.
for c in columns:
c.table = self
self.name = name
self.name_in_db = name_in_db if name_in_db else name
self.key = key
self._VerifyColumns(columns)
self._all_column_names = [c.name for c in columns]
self._column_names = [c.name for c in columns if not isinstance(c, IndexTermsColumn)]
self._columns = dict([(c.name, c) for c in columns])
self._key_to_name = dict([(c.key, c.name) for c in columns])
self.read_units = read_units
self.write_units = write_units
self.hash_key_col = columns[0]
self.hash_key_schema = db_client.DBKeySchema(
name=self.hash_key_col.key, value_type=self.hash_key_col.value_type)
if len(columns) > 1 and isinstance(columns[1], RangeKeyColumn):
self.range_key_col = columns[1]
self.range_key_schema = db_client.DBKeySchema(
name=self.range_key_col.key, value_type=self.range_key_col.value_type)
else:
self.range_key_col = None
self.range_key_schema = None
def GetColumnName(self, key):
"""Returns the column name for a column key."""
return self._key_to_name[key]
def GetColumnNames(self, all_columns=False):
"""Returns a list of column names (sorted in original order). Specify
'all_columns' as True to include index term columns as well.
"""
if all_columns:
return self._all_column_names
else:
return self._column_names
def GetColumns(self, all_columns=False):
"""Returns a list of column definitions. Specify 'all_columns' as True
to include index term columns as well.
"""
if all_columns:
return self._columns.values()
else:
return [c for c in self._columns.values() if not isinstance(c, IndexTermsColumn)]
def GetColumn(self, name):
"""Returns the named column definition. Column names are not case
sensitive.
"""
return self._columns[name.lower()]
def GetColumnByKey(self, key):
"""Returns the column definition by key.
"""
return self._columns[self._key_to_name[key]]
def _VerifyColumns(self, columns):
"""Verifies the columns are appropriately configured.
- First column is a HashKeyColumn
- Only second column may be a RangeKeyColumn
- All column names are unique
- All column keys are unique
- If any columns are indexed, table is IndexedTable
- SetColumns may only use SecondaryIndexer
"""
# Verify only one ID column, the first.
assert isinstance(columns[0], HashKeyColumn)
column_keys = set([columns[0].key])
column_names = set([columns[0].name])
for i in xrange(1, len(columns)):
c = columns[i]
assert not isinstance(c, HashKeyColumn)
if i >= 2:
assert not isinstance(c, RangeKeyColumn)
assert c.name not in column_names, (c.name, column_names)
column_names.add(c.name)
assert c.key not in column_keys, c.key
column_keys.add(c.key)
if c.indexer:
assert isinstance(self, IndexedTable)
if isinstance(c, SetColumn):
assert isinstance(c.indexer, indexers.SecondaryIndexer)
class IndexedTable(Table):
"""A table whose data is indexed. An indexed table may not use a
composite key. Each column can specify an optional indexing function
('indexer' to each column definition). The indexer transforms the
column value into a set of terms, each of which is inserted into an
index table, which has a composite key of hash-key=term,
range-key=obj_key. The data is for the column is optional, but might
include term positions in the document, for example, to support
phrase searches.
Using an indexed table, you can create a full-text search over table
data (e.g. the captions of all images), or an arbitrary secondary
index (e.g., an ordinal popularity ranking of photos).
When an indexer generates index terms for a column, the terms are
stored near the column data for subsequent reference. For example,
if the column data are modified, the old terms are compared against
the new terms. Terms which have been discarded (diff between old and
new) are deleted from the index table. Terms which have been added
(diff between new and old) are added to the index table. This also
solves the problem of how to handle changes in the indexers, which
might make it impossible to re-derive the previous set of index
terms in order to delete them.
For each indexed column we generate an additional column to hold the
list of indexed terms. These are ephemeral and not accessible via
the normal DBObject getters and setters.
"""
def __init__(self, name, key, read_units, write_units, columns, name_in_db=None):
index_term_cols = [IndexTermsColumn(c.name + ':t', c.key + ':t') for c in columns if c.indexer]
columns += index_term_cols
super(IndexedTable, self).__init__(name, key, read_units, write_units, columns, name_in_db=name_in_db)
class IndexTable(Table):
"""A table used to store reverse index data. This is a composite key
table with the indexed term as the hash key and the doc-id as the
range key. Depending on the application, the doc-id may be an
amalgamation of object key and some other value to affect the order
in which results are fed to the query evaluator. Most commonly, the
doc-id is prefixed with a 'reversed' timestamp to yield doc-ids from
posting lists in order of most to least recent. The type (whether a
string or a number) are specified for both the term and the doc-id
to the constructor.
"""
def __init__(self, name, term_type, key_type, read_units, write_units, scan_limit=50, name_in_db=None):
super(IndexTable, self).__init__(name, 'ix', read_units, write_units,
[HashKeyColumn('term', 't', term_type),
RangeKeyColumn('key', 'k', key_type),
Column('data', 'd', 'S')], name_in_db=name_in_db)
self.scan_limit = scan_limit
class Schema(object):
"""A collection of table definitions. Table names are not case sensitive."""
def __init__(self, tables):
"""A schema based on the provided sequence of table definitions."""
# Create dictionary mapping from table name to table instance. Due to upgrades, some tables
# may have a different name in the database, so create a set of those names to be used
# during verification.
self._tables = dict()
self._tables_in_db = dict()
for table in tables:
self.AddTable(table)
def GetTables(self):
"""Returns a list of tables in the schema."""
return sorted(self._tables.values())
def GetTable(self, table):
"""Returns the descriptor for the named table."""
return self._tables[table.lower()]
def TranslateNameInDb(self, name_in_db):
"""Given the name of a table in the database, translate to the name
for that table that the application uses (which may be different if
we've done an upgrade). If the table exists in the database, but not
in the application, just return the name in the database.
"""
key = name_in_db.lower()
return self._tables_in_db[key].name if key in self._tables_in_db else name_in_db
def AddTable(self, table):
"""Adds the specified table to the schema."""
assert table.name not in self._tables, table
assert table.name_in_db not in self._tables_in_db, table
self._tables[table.name.lower()] = table
self._tables_in_db[table.name_in_db.lower()] = table
def VerifyOrCreate(self, client, callback, verify_only=False):
"""Verifies the schema if it exists or creates it if not.
Verification checks existing tables match the schema definition,
warns of vestigial tables, and creates any tables which are
missing.
Vestigial tables may be deleted by specifying the --delete_vestigial
command line flag.
On completion, invokes callback with a list of verified table schemas.
"""
def _OnDescribeTable(table, verify_cb, result):
"""Verifies the table description in schema matches the
table in the database.
"""
if verify_only:
verify_cb((table.name, result))
return
assert isinstance(result, db_client.DescribeTableResult), result
if options.options.verify_provisioning:
# TODO(mike): Longer term, consider using values read from dymamodb for provisioned throughput as authoritative
# or consider some other mechanism for monitoring mismatches. We shouldn't prevent server startup just
# because of a mismatch in provisioned read or write units.
if table.read_units != result.schema.read_units:
logging.warning('%s: read units mismatch %d != %d', table.name, table.read_units, result.schema.read_units)
if table.write_units != result.schema.write_units:
logging.warning('%s: write units mismatch %d != %d', table.name, table.write_units, result.schema.write_units)
assert table.hash_key_schema == result.schema.hash_key_schema, \
'%s: hash key schema mismatch %r != %r' % \
(table.name, table.hash_key_schema, result.schema.hash_key_schema)
assert table.range_key_schema == result.schema.range_key_schema, \
'%s: range key schema mismatch %r != %r' % \
(table.name, table.range_key_schema, result.schema.range_key_schema)
assert result.schema.status in ['CREATING', 'ACTIVE'], \
'%s: table status invalid: %s' % (table.name, result.schema.status)
if result.schema.status == 'CREATING':
logging.info('table %s still in CREATING state...waiting 1s' % table.name)
client.AddTimeout(1.0, partial(_VerifyTable, table, verify_cb))
return
else:
logging.debug('verified table %s' % table.name)
verify_cb((table.name, result))
def _VerifyTable(table, verify_cb):
"""Gets table description and verifies via _OnDescribeTable."""
client.DescribeTable(table=table.name,
callback=partial(_OnDescribeTable, table, verify_cb))
def _OnCreateTable(table, verify_cb, result):
"""Invoked on creation of a table; moves to verification step."""
assert isinstance(result, db_client.CreateTableResult), result
logging.debug('created table %s: %s' % (table.name, repr(result.schema)))
_VerifyTable(table, verify_cb)
def _OnListTables(result):
"""First callback with results of a list-tables command.
Creates a results barrier which will collect all table schemas
and return 'callback' on successful verification of all tables.
"""
# Create and/or verifies all tables in schema.
with util.ArrayBarrier(callback) as b:
read_capacity = 0
write_capacity = 0
for table in self._tables.values():
read_capacity += table.read_units
write_capacity += table.write_units
if table.name not in result.tables:
if verify_only:
b.Callback()((table.name, None))
else:
logging.debug('creating table %s...' % table.name)
client.CreateTable(table=table.name, hash_key_schema=table.hash_key_schema,
range_key_schema=table.range_key_schema,
read_units=table.read_units, write_units=table.write_units,
callback=partial(_OnCreateTable, table, b.Callback()))
else:
_VerifyTable(table, b.Callback())
# Warn of vestigial tables.
for table in result.tables:
if table.lower() not in self._tables:
logging.warning('vestigial table %s exists in DB, not in schema' % table)
if options.options.delete_vestigial and options.options.localdb:
logging.warning('deleting vestigial table %s')
client.DeleteTable(table=table, callback=util.NoCallback)
# Cost metric.
def _CostPerMonth(units, read=True):
return 30 * 24 * 0.01 * (units / (50 if read else 10))
logging.debug('total tables: %d' % len(self._tables))
logging.debug('total read capacity: %d, $%.2f/month' % (read_capacity, _CostPerMonth(read_capacity, True)))
logging.debug('total write capacity: %d, $%.2f/month' % (write_capacity, _CostPerMonth(write_capacity, False)))
client.ListTables(callback=_OnListTables)