-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathStructural_Modelling_notes.lyx
8275 lines (5915 loc) · 141 KB
/
Structural_Modelling_notes.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass book
\begin_preamble
\usepackage{babel}
\usepackage{babel}
\usepackage{babel}
\providecommand{\assumptionname}{Assumption}
\providecommand{\axiomname}{Axiom}
\providecommand{\claimname}{Claim}
\providecommand{\definitionname}{Definition}
\providecommand{\lemmaname}{Lemma}
\providecommand{\propositionname}{Proposition}
\providecommand{\remarkname}{Remark}
\providecommand{\corollaryname}{Corollary}
\providecommand{\theoremname}{Theorem}
\providecommand{\axiomname}{Axiom}
\providecommand{\claimname}{Claim}
\providecommand{\definitionname}{Definition}
\providecommand{\remarkname}{Remark}
\providecommand{\corollaryname}{Corollary}
\providecommand{\theoremname}{Theorem}
\end_preamble
\use_default_options false
\begin_modules
theorems-ams-bytype
theorems-ams-extended-bytype
\end_modules
\maintain_unincluded_children false
\language english
\language_package default
\inputencoding iso8859-15
\fontencoding default
\font_roman "cmr" "default"
\font_sans "cmss" "default"
\font_typewriter "cmtt" "default"
\font_math "auto" "auto"
\font_default_family rmdefault
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing double
\use_hyperref true
\pdf_bookmarks true
\pdf_bookmarksnumbered false
\pdf_bookmarksopen false
\pdf_bookmarksopenlevel 1
\pdf_breaklinks false
\pdf_pdfborder true
\pdf_colorlinks false
\pdf_backref false
\pdf_pdfusetitle true
\papersize a4paper
\use_geometry true
\use_package amsmath 2
\use_package amssymb 2
\use_package cancel 0
\use_package esint 2
\use_package mathdots 0
\use_package mathtools 0
\use_package mhchem 0
\use_package stackrel 0
\use_package stmaryrd 0
\use_package undertilde 0
\cite_engine natbib
\cite_engine_type authoryear
\biblio_style plainnat
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 0
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\leftmargin 1.25in
\topmargin 1.25in
\rightmargin 1.25in
\bottommargin 1.25in
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Title
Computational Economics: Topics on Decision Making
\end_layout
\begin_layout Author
Victor H.
Aguiar
\end_layout
\begin_layout Date
This version: January 2024
\end_layout
\begin_layout Part
Parametric Methods
\end_layout
\begin_layout Chapter
Structural Modeling
\end_layout
\begin_layout Standard
The Cowles Commision defined econometrics as a
\begin_inset Quotes eld
\end_inset
branch of economics in which economic theory and statistical methods are
fused in the analysis of numerical and institutional data
\begin_inset Quotes erd
\end_inset
Hood and Koopmans (1953).
Econometrics nowadays has a broader definition, but the branch of econometrics
that combines economic theories with statistical models is called structural
econometric models.
\end_layout
\begin_layout Section
The Gravity Model of Trade
\end_layout
\begin_layout Standard
We will illustrate an instance of structural modeling using an example from
international trade.
The gravity model of trade as formalized by Anderson and Van Wincoop (2003)
is one of the most successful applications of structural modeling.
The gravity model of trade tries to provide a theoretical explanation of
the following empirical fact the nominal bilateral trade is directly proportion
al to the mass of the countries and inversely proportional to distance.
This fact can be generalized to many countries.
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Example
(Theory) Gravity model of trade.
\end_layout
\begin_layout Example
We have
\begin_inset Formula $I$
\end_inset
countries, with typical elements
\begin_inset Formula $i,j\in I$
\end_inset
.
\end_layout
\begin_layout Example
We assume that each country specializes in the production of only one good.
The supply of each good is fixed (equivalently, each region is endowed
with only positive quantity of one good, and there is no production).
\end_layout
\begin_layout Example
If
\begin_inset Formula $c_{ij}$
\end_inset
is the consumption by country
\begin_inset Formula $j$
\end_inset
consumers of goods from region
\begin_inset Formula $i$
\end_inset
, consumers in region
\begin_inset Formula $j$
\end_inset
maximize
\end_layout
\begin_layout Example
\begin_inset Formula
\[
U_{j}(c)=\left(\sum_{i\in I}\beta_{i}^{(1-\sigma)/\sigma}c_{ij}^{(\sigma-1)/\sigma}\right)^{\sigma/(\sigma-1)},
\]
\end_inset
\end_layout
\begin_layout Example
subject to the budget constraint
\end_layout
\begin_layout Example
\begin_inset Formula
\[
\sum_{i}p_{ij}c_{ij}=y_{j}.
\]
\end_inset
\end_layout
\begin_layout Example
We have
\begin_inset Formula $\sigma$
\end_inset
as the elasticity of substitution between all goods,
\begin_inset Formula $\beta_{i}$
\end_inset
is a positive distribution parameter,
\begin_inset Formula $y_{j}$
\end_inset
is a regional income of country
\begin_inset Formula $j$
\end_inset
consumers, and
\begin_inset Formula $p_{ij}$
\end_inset
is the price of region
\begin_inset Formula $i$
\end_inset
good for
\begin_inset Formula $j$
\end_inset
consumers.
\end_layout
\begin_layout Example
Notice that
\begin_inset Formula $p_{ij}$
\end_inset
differs per location
\begin_inset Formula $j$
\end_inset
due to trade-costs.
\end_layout
\begin_layout Example
Let
\begin_inset Formula $p_{i}$
\end_inset
denote the exporter's supply price, net of trade costs, and
\begin_inset Formula $t_{ij}\geq1$
\end_inset
is the trade cost factor between
\begin_inset Formula $i,j$
\end_inset
(when
\begin_inset Formula $t_{ij}=1$
\end_inset
then there is free-trade).
\end_layout
\begin_layout Example
\begin_inset Formula
\[
p_{ij}=p_{i}t_{ij}.
\]
\end_inset
\end_layout
\begin_layout Example
We assume that trade costs are absorbed by the exporter.
\end_layout
\begin_layout Example
Formally, we assume that for each good shipped from
\begin_inset Formula $i$
\end_inset
to
\begin_inset Formula $j$
\end_inset
the exporter bears a costs equal to
\begin_inset Formula $t_{ij}-1$
\end_inset
of country
\begin_inset Formula $i$
\end_inset
goods.
The exporter passes on these trade costs to the importer.
\end_layout
\begin_layout Example
The nominal value of exports is:
\end_layout
\begin_layout Example
\begin_inset Formula
\[
x_{ij}=p_{ij}c_{ij}.
\]
\end_inset
\end_layout
\begin_layout Example
Market clearing implies here that in nominal terms endowments are equal
to aggregate demand:
\end_layout
\begin_layout Example
\begin_inset Formula
\[
y_{i}=\sum_{j\in I}x_{ij}.
\]
\end_inset
\end_layout
\begin_layout Example
1) Show that the nominal demand for country
\begin_inset Formula $i$
\end_inset
goods by country
\begin_inset Formula $j$
\end_inset
consumer is:
\end_layout
\begin_layout Example
\begin_inset Formula
\[
x_{ij}=\left(\frac{\beta_{i}p_{i}t_{ij}}{P_{j}}\right)^{(1-\sigma)}y_{j},
\]
\end_inset
\end_layout
\begin_layout Example
where
\begin_inset Formula $P_{j}$
\end_inset
is the consumer price index of
\begin_inset Formula $j$
\end_inset
, given by
\end_layout
\begin_layout Example
\begin_inset Formula
\[
P_{j}=\left[\sum_{i\in I}(\beta_{i}p_{i}t_{ij})^{1-\sigma}\right]^{1/(1-\sigma)}.
\]
\end_inset
\end_layout
\begin_layout Example
Important: I need step-by-step derivation.
\end_layout
\begin_layout Example
2) Show, using the nominal market-clearing conditions and the results from
1) that:
\end_layout
\begin_layout Example
\begin_inset Formula $\beta_{i}p_{i}=\frac{y_{i}^{1/(1-\sigma)}}{(\sum_{j\in I}(t_{ij}/P_{j})^{1-\sigma}y_{j})^{1/(1-\sigma)}}.$
\end_inset
\end_layout
\begin_layout Example
Important: I need step-by-step derivation.
\end_layout
\begin_layout Example
3) Let
\begin_inset Formula $y^{W}=\sum_{j\in I}y_{j}$
\end_inset
be the world income, and income share
\begin_inset Formula $\theta_{j}=y_{j}/y^{W}$
\end_inset
.
Show that, replacing
\begin_inset Formula $\beta_{i}p_{i}$
\end_inset
on the nominal demand, we can obtain:
\end_layout
\begin_layout Example
\begin_inset Formula
\[
x_{ij}=\frac{y_{i}y_{j}}{y^{W}}\left(\frac{t_{ij}}{\Pi_{i}P_{j}}\right)^{1-\sigma},
\]
\end_inset
\end_layout
\begin_layout Example
where
\end_layout
\begin_layout Example
\begin_inset Formula
\[
\Pi_{i}=\left(\sum_{j\in I}(t_{ij}/P_{j})^{1-\sigma}\theta_{j}\right)^{1/(1-\sigma)}.
\]
\end_inset
\end_layout
\begin_layout Example
Important: I need step-by-step derivation.
\end_layout
\begin_layout Example
4) Assume that
\begin_inset Formula $t_{ij}=t_{ji}$
\end_inset
, where trade barriers are symmetric, show that:
\end_layout
\begin_layout Example
\begin_inset Formula
\[
\Pi_{i}=P_{i}.
\]
\end_inset
\end_layout
\begin_layout Example
Under this condition, we have an implicit solution to the price indexes
\begin_inset Formula $P_{i}$
\end_inset
given by
\end_layout
\begin_layout Example
\begin_inset Formula
\[
P_{j}^{1-\sigma}=\sum_{i\in I}P_{i}^{\sigma-1}\theta_{i}t_{ij}^{1-\sigma}\forall j,
\]
\end_inset
\end_layout
\begin_layout Example
show that there is at least one solution to this system of equations.
\end_layout
\begin_layout Example
For this part use the file
\backslash
GitHub
\backslash
Microeconomics1
\backslash
finalexam
\backslash
theory
\backslash
fixedpoint_contraction_mapping_jacobian.pdf, Theorem 1 and Theorem 2.
In particular, show that the implicit solution to the price index
\begin_inset Formula $P_{i}$
\end_inset
for all
\begin_inset Formula $i\in I$
\end_inset
for a contraction mapping.
You can assume that
\begin_inset Formula $P_{i}$
\end_inset
take values in a closed set for simplicity.
Also note that, that you have to rewrite the price index equation in the
form.
\end_layout
\begin_layout Example
\begin_inset Formula
\[
P_{j}=g_{j}(P_{1},\cdots P_{I}).
\]
\end_inset
\end_layout
\begin_layout Example
For the gravity model
\begin_inset Formula $g$
\end_inset
is continuously differentiable, so you can compute it's Jacobian.
For the computing the norm of the Jacobian use whatever norm makes easier
your computation.
Euclidean or Max matrix norms are good candidates.
I used the Euclidean matrix norm.
\end_layout
\begin_layout Example
Important: Only for this item, assume that
\begin_inset Formula $I=\{1,2\}$
\end_inset
,
\begin_inset Formula $P_{i}\geq1\forall i$
\end_inset
,
\begin_inset Formula $\sigma=\frac{1}{2},t_{ij}=1,\theta_{i}=\frac{1}{2}.$
\end_inset
Remember you have to show that the the norm of the Jacobian of the mapping
\begin_inset Formula $g$
\end_inset
is less than 1, for all values of
\begin_inset Formula $P_{i}$
\end_inset
.
\end_layout
\begin_layout Example
5) Show that, the gravity model implies that there are constants
\begin_inset Formula $\alpha_{i}\forall i\in I$
\end_inset
, and
\begin_inset Formula $\rho=(1-\sigma)$
\end_inset
such that:
\end_layout
\begin_layout Example
\begin_inset Formula
\[
z_{ij}=logx_{ij}-log(y_{i})-log(y_{j})
\]
\end_inset
\end_layout
\begin_layout Example
\begin_inset Formula
\[
z_{ij}=-\alpha_{i}-\alpha_{j}+\rho log(t_{ij}).
\]
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Problem
(Programming Part) The results from Problem 1, can be used here even if
you did not answered correctly to the previous question.
No need to proof anything here.
With the previous results, we obtain the gravity system of equations characteri
zing the general equilibrium of trade:
\end_layout
\begin_layout Problem
\begin_inset Formula
\[
x_{ij}=\frac{y_{i}y_{j}}{y^{w}}\left(\frac{t_{ij}}{P_{i}P_{j}}\right)^{1-\sigma},
\]
\end_inset
\end_layout
\begin_layout Problem
\begin_inset Formula
\[
P_{j}^{1-\sigma}=\sum_{i\in I}P_{i}^{\sigma-1}\theta_{i}t_{ij}^{1-\sigma}\forall j.
\]
\end_inset
\end_layout
\begin_layout Problem
1) Solve this system of equations in Julia, for the parameters provided
in the file /GitHub/Microeconomics1/finalexam/programming/gravity_model_paramet
ers.jl or in the /GitHub/Microeconomics1/finalexam/programming/data t.csv,
y.csv and lxhat.csv files inside this folder.
Remember for this you have
\begin_inset Formula $I=\{1,\cdots,30\}$
\end_inset
.
\end_layout
\begin_layout Problem
Hint: This is a triangular system of equations.
The parameters are
\begin_inset Formula $y_{i},t_{i,j}\forall i,j\in I$
\end_inset
and
\begin_inset Formula $\sigma=1/2$
\end_inset
.
You do not need anything else.
\end_layout
\begin_layout Problem
Hint: Say you want to minimize the following function
\begin_inset Formula $f(z_{1},z_{1}\cdots,z_{I})=\sum_{j=1}^{I}(\sum_{i=1}^{I}z_{i}\theta_{ij})^{2}$
\end_inset
in JuMP.
\end_layout
\begin_layout Problem
\begin_inset listings
inline false
status open
\begin_layout Plain Layout
import JuMP
\end_layout
\begin_layout Plain Layout
import Ipopt
\end_layout
\begin_layout Plain Layout
##Read CSV files and DataFrames management.
\end_layout
\begin_layout Plain Layout
I=30
\end_layout
\begin_layout Plain Layout
theta=ones(I,I)
\end_layout
\begin_layout Plain Layout
example=JuMP.Model(Ipopt.Optimizer)
\end_layout
\begin_layout Plain Layout
JuMP.@variable(example,z[1:I]>=0)
\end_layout
\begin_layout Plain Layout
JuMP.@NLobjective(,Min,sum((sum( x[i]*theta[i,j] for i in 1:I))^2 for j in
1:I))
\end_layout
\begin_layout Plain Layout
JuMP.optimize!(example)
\end_layout
\begin_layout Plain Layout
#get the solution as a vector
\end_layout
\begin_layout Plain Layout
xsol=JuMP.value.(x)
\end_layout
\begin_layout Plain Layout
\end_layout
\end_inset
\end_layout
\begin_layout Problem
2) I will provide a dataset of: (i) perturbed nominal trade flows
\begin_inset Formula $log\hat{x}_{ij}=logx_{ij}+\epsilon_{ij}$
\end_inset
, where
\begin_inset Formula $\epsilon_{ij}$
\end_inset
is a draw of a random distribution that is mean zero and pure measurement
error (you can assume it is independent from the observable variables),
(ii) income by country, (iii) bilateral trade barriers.
\end_layout
\begin_layout Problem
Using this dataset, estimate
\begin_inset Formula $\sigma$
\end_inset
.
\end_layout
\begin_layout Problem
Hint: Write down in Julia a contrained OLS problem.
\end_layout
\begin_layout Problem
In Problem 1 we showed that the gravity model implies that there are constants
\begin_inset Formula $\alpha_{i}\forall i\in I$
\end_inset
, and
\begin_inset Formula $\rho=(1-\sigma)$
\end_inset
such tat:
\end_layout
\begin_layout Problem
\begin_inset Formula
\[
z_{ij}=log\hat{x}_{ij}-log(y_{i})-log(y_{j})
\]
\end_inset
\end_layout
\begin_layout Problem
\begin_inset Formula
\[
z_{ij}=\alpha_{i}-\alpha_{j}+\rho log(t_{ij})+\epsilon_{ij}.
\]
\end_inset
\end_layout
\begin_layout Problem
Estimate the linear equation above using JuMP and Ipopt.
\end_layout
\begin_layout Problem
3) As the file .../parameters.jl indicates
\begin_inset Formula $\sigma=1/2$
\end_inset
, use this parameter, to simulate a counterfactual of total trade liberalization
where
\begin_inset Formula $t_{ij}^{free}=1$
\end_inset
for all
\begin_inset Formula $j,i\in I$
\end_inset
.
\end_layout
\begin_layout Problem
Hint: Use part 1).
Note that you have to solve the model given
\begin_inset Formula $\sigma$
\end_inset
, the new
\begin_inset Formula $t_{ij}^{free}$
\end_inset
, and incomes that have not changes
\begin_inset Formula $y_{i}\forall i$
\end_inset
.
\end_layout
\begin_layout Problem
4)
\end_layout
\begin_layout Standard
\begin_inset Separator plain
\end_inset
\end_layout
\begin_layout Proof
1) See julia file.
\end_layout
\begin_layout Proof
2)
\begin_inset Formula $log\hat{x}_{ij}=log(y_{i})+log(y_{j})-log(y^{W})+(1-\sigma)logt_{ij}-(1-\sigma)logP_{i}-(1-\sigma)logP_{j}+\epsilon_{ij}$
\end_inset
\end_layout
\begin_layout Proof
\begin_inset Formula
\[
log\hat{x}_{ij}-log(y_{i})-log(y_{j})=\alpha+\beta log(\frac{t_{ij}}{P_{i}P_{j}})+\epsilon_{ij}
\]
\end_inset
\end_layout
\begin_layout Proof
\begin_inset Formula
\[
z_{ij}=\alpha+\beta[log(t_{ij})-log(P_{i})-log(P_{j})]+\epsilon_{ij}
\]
\end_inset
\end_layout
\begin_layout Proof
st.
\end_layout
\begin_layout Proof
\begin_inset Formula
\[
P_{j}^{\beta}=\sum_{i\in I}P_{i}^{-\beta}\frac{y_{i}}{\alpha}t_{ij}^{\beta}
\]
\end_inset
\end_layout
\begin_layout Section
Understanding Identification and Reduced Form: Supply and Demand.
\end_layout
\begin_layout Standard
Consider a simple market with aggregate demand given by
\begin_inset Formula $\mathbf{D}=a-bp+\mathbf{u}$
\end_inset
, with the usual convention that bold letters represent random variables.
Aggregate supply
\begin_inset Formula $\mathbf{S}=\alpha+\beta p+\mathbf{v}$
\end_inset
for a given price
\begin_inset Formula $p$
\end_inset
.
The analyst only observes price and quantities in equilibrium.
\end_layout
\begin_layout Standard
\begin_inset Formula
\[
\mathbf{y}=\frac{a\beta+b\alpha}{b+\beta}+\frac{\beta\mathbf{u}+b\mathbf{v}}{b+\beta}