-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathutils.py
141 lines (113 loc) · 3.65 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import getpass
import os
import torch
import numpy as np
# Folders
def create_folders(args):
try:
os.makedirs('outputs')
except OSError:
pass
try:
os.makedirs('outputs/' + args.exp_name)
except OSError:
pass
# Model checkpoints
def save_model(model, path):
torch.save(model.state_dict(), path)
def load_model(model, path):
model.load_state_dict(torch.load(path))
model.eval()
return model
# Gradient clipping
class Queue():
def __init__(self, max_len=50):
self.items = []
self.max_len = max_len
def __len__(self):
return len(self.items)
def add(self, item):
self.items.insert(0, item)
if len(self) > self.max_len:
self.items.pop()
def mean(self):
return np.mean(self.items)
def std(self):
return np.std(self.items)
def gradient_clipping(flow, gradnorm_queue):
# Allow gradient norm to be 150% + 2 * stdev of the recent history.
max_grad_norm = 1.5 * gradnorm_queue.mean() + 2 * gradnorm_queue.std()
# Clips gradient and returns the norm
grad_norm = torch.nn.utils.clip_grad_norm_(
flow.parameters(), max_norm=max_grad_norm, norm_type=2.0)
if float(grad_norm) > max_grad_norm:
gradnorm_queue.add(float(max_grad_norm))
else:
gradnorm_queue.add(float(grad_norm))
if float(grad_norm) > max_grad_norm:
print(f'Clipped gradient with value {grad_norm:.1f} '
f'while allowed {max_grad_norm:.1f}')
return grad_norm
# Rotation data augmntation
def random_rotation(x):
bs, n_nodes, n_dims = x.size()
device = x.device
angle_range = np.pi * 2
if n_dims == 2:
theta = torch.rand(bs, 1, 1).to(device) * angle_range - np.pi
cos_theta = torch.cos(theta)
sin_theta = torch.sin(theta)
R_row0 = torch.cat([cos_theta, -sin_theta], dim=2)
R_row1 = torch.cat([sin_theta, cos_theta], dim=2)
R = torch.cat([R_row0, R_row1], dim=1)
x = x.transpose(1, 2)
x = torch.matmul(R, x)
x = x.transpose(1, 2)
elif n_dims == 3:
# Build Rx
Rx = torch.eye(3).unsqueeze(0).repeat(bs, 1, 1).to(device)
theta = torch.rand(bs, 1, 1).to(device) * angle_range - np.pi
cos = torch.cos(theta)
sin = torch.sin(theta)
Rx[:, 1:2, 1:2] = cos
Rx[:, 1:2, 2:3] = sin
Rx[:, 2:3, 1:2] = - sin
Rx[:, 2:3, 2:3] = cos
# Build Ry
Ry = torch.eye(3).unsqueeze(0).repeat(bs, 1, 1).to(device)
theta = torch.rand(bs, 1, 1).to(device) * angle_range - np.pi
cos = torch.cos(theta)
sin = torch.sin(theta)
Ry[:, 0:1, 0:1] = cos
Ry[:, 0:1, 2:3] = -sin
Ry[:, 2:3, 0:1] = sin
Ry[:, 2:3, 2:3] = cos
# Build Rz
Rz = torch.eye(3).unsqueeze(0).repeat(bs, 1, 1).to(device)
theta = torch.rand(bs, 1, 1).to(device) * angle_range - np.pi
cos = torch.cos(theta)
sin = torch.sin(theta)
Rz[:, 0:1, 0:1] = cos
Rz[:, 0:1, 1:2] = sin
Rz[:, 1:2, 0:1] = -sin
Rz[:, 1:2, 1:2] = cos
x = x.transpose(1, 2)
x = torch.matmul(Rx, x)
#x = torch.matmul(Rx.transpose(1, 2), x)
x = torch.matmul(Ry, x)
#x = torch.matmul(Ry.transpose(1, 2), x)
x = torch.matmul(Rz, x)
#x = torch.matmul(Rz.transpose(1, 2), x)
x = x.transpose(1, 2)
else:
raise Exception("Not implemented Error")
return x.contiguous()
if __name__ == "__main__":
# Test random_rotation
bs = 2
n_nodes = 16
n_dims = 3
x = torch.randn(bs, n_nodes, n_dims)
print(x)
x = random_rotation(x)
# print(x)