Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Sample for nebula-ngql data source #72

Closed
porscheme opened this issue Mar 22, 2023 · 11 comments
Closed

Sample for nebula-ngql data source #72

porscheme opened this issue Mar 22, 2023 · 11 comments
Labels
doc affected Solution: improvements or additions to documentation

Comments

@porscheme
Copy link

General Question

Hi @wey-gu

Per comment on the application.conf file, data source can be nebula-ngql, can you please provide a sample? I want to try this feature.

Thanks

Below is an extract from the application.conf file

data: {
    # data source. optional of nebula,nebula-ngql,csv,json
    source: csv
    # data sink, means the algorithm result will be write into this sink. optional of nebula,csv,text
    sink: csv
    # if your algorithm needs weight
    hasWeight: false
  }
@wey-gu
Copy link
Contributor

wey-gu commented Mar 22, 2023

should be like this, @Nicole00 could you help confirm this will work? if so, I could prepare pr for examples in conf file.

data: {
    # data source. optional of nebula,nebula-ngql,csv,json
    source: nebula-ngql
...
  nebula: {
    read: {
        metaAddress: "127.0.0.1:9559"
        graphAddress: "127.0.0.1:9669"
        space: basketballplayer
        labels: ["follow"]
        weightCols: ["degree"]
        ngql: "MATCH ()-[e:follow]->() RETURN e LIMIT 100000"
    }

@porscheme
Copy link
Author

porscheme commented Mar 22, 2023

Thanks @wey-gu for the quick reply.
It looks like nebula-algorithm doesn't work with string VID, can you confirm?
And then I see this, how I convert our string VID to integer using algorithm interface?

For non-integer String data, it is recommended to use the algorithm interface. You can use the dense_rank function of SparkSQL to encode the data as the Long type instead of the String type.

@wey-gu
Copy link
Contributor

wey-gu commented Mar 22, 2023

Actually, it now supports to do the numerical vid generation and auto-mapping, just add encodeId:true to the algo config, see #68

@wey-gu wey-gu added the doc affected Solution: improvements or additions to documentation label Mar 22, 2023
@porscheme
Copy link
Author

You mean like below?

  algorithm: {
    executeAlgo: node2vec
    node2vec:{
      encodeId:true
       maxIter: 5,
       lr: 0.025,
       dataNumPartition: 15,
       modelNumPartition: 10,
       dim: 9,
       window: 2,
       walkLength: 4,
       numWalks: 10,
       p: 05,
       q: 0.5,
       directed: false,
       degree: 2,
       embSeparate: ",",
       modelPath: "/mnt/data/sparkdata/word2vec"
    }
  }

@wey-gu
Copy link
Contributor

wey-gu commented Mar 22, 2023

You mean like below?

  algorithm: {
    executeAlgo: node2vec
    node2vec:{
      encodeId:true
       maxIter: 5,
       lr: 0.025,
       dataNumPartition: 15,
       modelNumPartition: 10,
       dim: 9,
       window: 2,
       walkLength: 4,
       numWalks: 10,
       p: 05,
       q: 0.5,
       directed: false,
       degree: 2,
       embSeparate: ",",
       modelPath: "/mnt/data/sparkdata/word2vec"
    }
  }

Yes

@porscheme
Copy link
Author

porscheme commented Mar 22, 2023

Yes

I'm getting this error, not sure why?
Below "0033af94-95f2-ec6d-ac72-f75f4d00622a" is a VID

{"level":"WARN","timestamp":"2023-03-22 04:43:17,806","thread":"main","message":"The jar local:///mnt/spark/work/nebula-algorithm-3.0-SNAPSHOT.jar has been added already. Overwriting of added jars is not supported in the current version."}
{"level":"WARN","timestamp":"2023-03-22 04:43:18,145","thread":"main","message":"returnCols is empty and your result will contain all properties for HAS_CONDITION"}
{"level":"WARN","timestamp":"2023-03-22 04:43:20,948","thread":"Executor task launch worker for task 0","message":"Putting block rdd_6_0 failed due to exception java.lang.NumberFormatException: For input string: "0033af94-95f2-ec6d-ac72-f75f4d00622a"."}
{"level":"WARN","timestamp":"2023-03-22 04:43:20,949","thread":"Executor task launch worker for task 0","message":"Block rdd_6_0 could not be removed as it was not found on disk or in memory"}
{"level":"ERROR","timestamp":"2023-03-22 04:43:20,959","thread":"Executor task launch worker for task 0","message":"Exception in task 0.0 in stage 0.0 (TID 0)"}
java.lang.NumberFormatException: For input string: "0033af94-95f2-ec6d-ac72-f75f4d00622a"
	at java.lang.NumberFormatException.forInputString(NumberFormatException.java:65)
	at java.lang.Long.parseLong(Long.java:589)
	at java.lang.Long.parseLong(Long.java:631)
	at scala.collection.immutable.StringLike$class.toLong(StringLike.scala:277)
	at scala.collection.immutable.StringOps.toLong(StringOps.scala:29)
	at com.vesoft.nebula.algorithm.utils.NebulaUtil$$anonfun$1.apply(NebulaUtil.scala:29)
	at com.vesoft.nebula.algorithm.utils.NebulaUtil$$anonfun$1.apply(NebulaUtil.scala:25)
	at org.apache.spark.sql.execution.MapElementsExec$$anonfun$7$$anonfun$apply$1.apply(objects.scala:236)
	at org.apache.spark.sql.execution.MapElementsExec$$anonfun$7$$anonfun$apply$1.apply(objects.scala:236)
	at scala.collection.Iterator$$anon$11.next(Iterator.scala:410)
	at scala.collection.Iterator$$anon$11.next(Iterator.scala:410)
	at scala.collection.Iterator$class.foreach(Iterator.scala:891)
	at scala.collection.AbstractIterator.foreach(Iterator.scala:1334)
	at org.apache.spark.graphx.EdgeRDD$$anonfun$1.apply(EdgeRDD.scala:107)
	at org.apache.spark.graphx.EdgeRDD$$anonfun$1.apply(EdgeRDD.scala:105)
	at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$anonfun$apply$25.apply(RDD.scala:875)
	at org.apache.spark.rdd.RDD$$anonfun$mapPartitionsWithIndex$1$$anonfun$apply$25.apply(RDD.scala:875)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
	at org.apache.spark.rdd.RDD$$anonfun$7.apply(RDD.scala:359)
	at org.apache.spark.rdd.RDD$$anonfun$7.apply(RDD.scala:357)
	at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1165)
	at org.apache.spark.storage.BlockManager$$anonfun$doPutIterator$1.apply(BlockManager.scala:1156)
	at org.apache.spark.storage.BlockManager.doPut(BlockManager.scala:1091)
	at org.apache.spark.storage.BlockManager.doPutIterator(BlockManager.scala:1156)
	at org.apache.spark.storage.BlockManager.getOrElseUpdate(BlockManager.scala:882)
	at org.apache.spark.rdd.RDD.getOrCompute(RDD.scala:357)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:308)
	at org.apache.spark.graphx.EdgeRDD.compute(EdgeRDD.scala:50)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
	at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
	at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
	at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
	at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
	at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
	at org.apache.spark.scheduler.Task.run(Task.scala:123)
	at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
	at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
	at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
	at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
	at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
	at java.lang.Thread.run(Thread.java:748)

@wey-gu
Copy link
Contributor

wey-gu commented Mar 22, 2023

@Nicole00 I think the encodeId:true for the main entry of nebula-algorithm is supported, or it's actually not?

@wey-gu
Copy link
Contributor

wey-gu commented Mar 22, 2023

And @porscheme you are using the latest version of nebula-algo, right?

@porscheme
Copy link
Author

And @porscheme you are using the latest version of nebula-algo, right?

I cloned https://github.com/vesoft-inc/nebula-algorithm few hours ago. Therefore, I'm using latest.

@wey-gu
Copy link
Contributor

wey-gu commented Mar 22, 2023

oh, now I know, the node2vec is not yet supported for the encodeId, you have to do it yourself to map vid to int for now.

@QingZ11
Copy link

QingZ11 commented May 5, 2023

@porscheme Hi, same to the previous issue you created, this issue has been closed due to a lack of updates for a long time. If you have any updates, it's OK to reopen it.

Again, thanks a lot for your contribution anyway 😊

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
doc affected Solution: improvements or additions to documentation
Projects
None yet
Development

No branches or pull requests

3 participants