-
Notifications
You must be signed in to change notification settings - Fork 1
/
09.tex
501 lines (443 loc) · 15.3 KB
/
09.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
\section{Lecture: 27/11/2024}
\subsection{Modules}
The rest of the course will be devoted to studying modules over rings.
We first start with the main definitions and basic examples.
\begin{definition}
Let $R$ be a ring. A \emph{module} (over $R$) is an abelian group (written additively)
$M$ with a map $R\times M\to M$, $(r,m)\mapsto r\cdot m$, such that
the following conditions hold:
\begin{enumerate}
\item $(r_1+r_2)\cdot m=r_1\cdot m+r_2\cdot m$ for all $r_1,r_2\in R$ and $m\in M$.
\item $r\cdot (m_1+m_2)=r\cdot m_1+r\cdot m_2$ for all $r\in R$ and $m_1,m_2\in M$.
\item $r_1\cdot (r_2\cdot m)=(r_1r_2)\cdot m$ for all $r_1,r_2\in R$ and $m\in M$.
\item $1\cdot m=m$ for all $m\in M$.
\end{enumerate}
\end{definition}
Our definition is that of left module. Similarly, one defines right modules. We will always
consider left modules (over $R$)
so that they will be referred to simply as $R$-modules (or just modules).
\begin{example}
A module over a field is a vector space.
\end{example}
\begin{example}
Every abelian group is a module over $\Z$.
\end{example}
\begin{example}
\label{exa:left_regular}
Let $R$ be a ring. Then $R$ is a module (over $R$) with $x\cdot m=xm$.
This is the \emph{(left) regular module} over $R$, and it usually
is denoted by $\prescript{}{R}R$.
\end{example}
The module $\prescript{}{R}R$ is also known as the (left) regular representation of $R$.
\begin{example}
Let $G$ be a finite group. If $\rho\colon G\to\GL(V)$ is a representation,
then $V$ is a $\C[G]$-module with
\[
g\cdot v=\rho_g(v)
\]
for $g\in G$ and $v\in V$.
Conversely, if $V$ is a $\C[G]$-module and $V$ is a complex
finite-dimensional vector space, then
the map
\[
\rho\colon G\to\GL(V),\quad g\mapsto\rho_g,
\]
where $\rho_g(v)=g\cdot v$ for $v\in V$,
is a representation of $G$.
\end{example}
\begin{example}
If $R$ is a ring, then $R^n=\{(x_1,\dots,x_n):x_1,\dots,x_n\in R\}$
is a module (over $R$) with
$r\cdot (x_1,\dots,x_n)=(rx_1,\dots,rx_n)$.
\end{example}
\begin{example}
If $R$ is a ring, then $M_{m,n}(R)$ is a module (over $R$) with usual matrix operations.
\end{example}
Students usually ask why in the definition of a ring homomorphism, one needs
the condition $1\mapsto 1$. The following example provides a good explanation.
\begin{example}
%%\label{exa:f(1)=1}
If $f\colon R\to S$ is a ring homomorphism and $M$ is a module (over $S$) with
$(s,m)\mapsto sm$, then
$M$ is also a module (over $R$) with $r\cdot m=f(r)m$ for all $r\in R$ and $m\in M$. In fact,
\begin{align*}
&1\cdot m=f(1)m=1m=m,\\
&r_1\cdot (r_2\cdot m)=f(r_1)(r_2\cdot m)=f(r_1)(f(r_2)m)=(f(r_1)f(r_2))m=f(r_1r_2)m
\end{align*}
for all $r_1,r_2\in R$ and $m\in M$.
\end{example}
%
\begin{example}
Let $V$ be a finite-dimensional real vector space and $T\colon V\to V$ be a linear map.
Let $R=\R[X]$. Then $M=V$ with
\[
\left(\sum_{i=0}^na_iX^i\right)\cdot v=\sum_{i=0}^na_iT^i(v)
\]
is a module (over $R$), where we use the following notation: for $v\in V$, we write
\[
T^0(v)=v,\quad
T^1(v)=T(v)v,\quad
T^2(v)=T(T(v))\dots
\]
\end{example}
\begin{example}
If $\{M_i:i\in I\}$ is a family of $R$-modules, then
\[
\prod_{i\in I}M_i=\{(m_i)_{i\in I}:m_i\in M_i\text{ for all $i\in I$}\}
\]
is an $R$-module with
$x\cdot (m_i)_{i\in I}=(x\cdot m_i)_{i\in I}$,
where $(m_i)_{i\in I}$ denotes the map $I\to M_i$, $i\mapsto m_i$.
This module is the \emph{direct product} of the family $\{M_i:i\in I\}$.
\end{example}
%
\begin{example}
If $\{M_i:i\in I\}$ is family of $R$-modules, then
\[
\bigoplus_{i\in I}M_i=\{(m_i)_{i\in I}:m_i\in M_i\text{ for all $i\in I$ and $m_i=0$ except finitely many $i\in I$}\}
\]
is an $R$-module with
$x\cdot (m_i)_{i\in I}=(x\cdot m_i)_{i\in I}$.
This module is the \emph{direct sum} of the family $\{M_i:i\in I\}$.
\end{example}
%
%\begin{exercise}
If $M$ is a module, then $0\cdot m=0$ and $-m=(-1)\cdot m$ for all $m\in M$ and
$x\cdot 0=0$ for all $x\in R$.
%
\begin{example}
Let $M=\Z/6$ as a module (over $\Z$). Note that
$3\cdot 2=0$ but $3\ne 0$ (in $\Z$) and $2\ne 0$ (in $\Z/6$).
\end{example}
\begin{exercise}
\label{xca:Z4overZ2}
Prove that $\Z/4$ is not a module over $\Z/2$.
\end{exercise}
\begin{definition}
Let $M$ be a module. A subset $N$ of $M$ is a \emph{submodule} of $M$ if
$N$ is a subgroup of $M$ and $R\cdot N\subseteq N$, that is
$x\cdot n\in N$ for all $x\in R$ and $n\in N$.
\end{definition}
Clearly, if $M$ is a module, then $\{0\}$ and $M$ are submodules of $M$.
\begin{example}
Let $R$ be a field and $M$ be a module over $R$. Then
$N$ is a submodule of $M$ if and only if $N$ is a subspace of $M$.
\end{example}
\begin{example}
Let $R=\Z$ and $M$ be a module (over $R$). Then
$N$ is a submodule of $M$ if and only if $N$ is a subgroup of $M$
\end{example}
\begin{example}
If $M=\prescript{}{R}R$, then a subset $N\subseteq M$ is a submodule
of $M$ if and only if $N$ is a left ideal of $R$.
\end{example}
\begin{example}
If $V$ is a finite-dimensional real vector space and $T\colon V\to V$ is a linear map, then
$V$ is a module (over $\R[X]$) with
\[
\left(\sum_{i=0}^na_iX^i\right)\cdot v=\sum_{i=0}^na_iT^i(v).
\]
A submodule is a subspace $W$
of $V$ such that $T(W)\subseteq W$.
\end{example}
Clearly, a subset $N$ of $M$ is a submodule if and only
if $r_1n_1+r_2n_2\in N$ for all
$r_1,r_2\in R$ and $n_1,n_2\in N$.
\begin{exercise}
If $N$ and $N_1$ are submodules of $M$, then
\[
N+N_1=\{n+n_1:n\in N,\,n_1\in N_1\}
\]
is a submodule of $M$.
\end{exercise}
\begin{definition}
Let $M$ and $N$ be modules over $R$.
A map $f\colon M\to N$ is a \emph{module homomorphism} if $f(x+y)=f(x)+f(y)$ and
$f(r\cdot x)=r\cdot f(x)$ for all $x,y\in M$ and $r\in R$.
\end{definition}
We denote by $\Hom_R(M,N)$ the set of module homomorphisms $M\to N$.
\begin{exercise}
Let $f\in\Hom_R(M,N)$.
\begin{enumerate}
\item If $V$ is a submodule of $M$, then $f(V)$ is a submodule of $N$.
\item If $W$ is a submodule of $N$, then $f^{-1}(W)$ is a submodule of $M$.
\end{enumerate}
\end{exercise}
If $f\in\Hom_R(M,N)$, the \emph{kernel} of $f$ is the submodule
\[
\ker f=f^{-1}(\{0\})=\{m\in M:f(m)=0\}
\]
of $M$. We say that $f$ is a \emph{monomorphism} (resp. \emph{epimorphism})
if $f$ is injective (resp. surjective). Moreover, $f$ is an \emph{isomorphism}
if $f$ is
bijective.
\begin{exercise}
Let $f\in\Hom_R(M,N)$. Prove that the following statements are equivalent:
\begin{enumerate}
\item $f$ is a monomorphism.
\item $\ker f=\{0\}$.
\item For every module $V$ and every $g,h\in\Hom_R(V,M)$, $fg=fh\implies g=h$.
\item For every module $V$ and every $g\in\Hom(V,M)$, $fg=0\implies g=0$.
\end{enumerate}
\end{exercise}
Later we will see a similar exercise for surjective module homomorphisms.
\begin{example}
Let $R=
\begin{pmatrix}
\R & 0\\
0 & \R
\end{pmatrix}$.
We claim that
$\begin{pmatrix}
\R\\
0
\end{pmatrix}
\not\simeq\begin{pmatrix}
0\\
\R
\end{pmatrix}$
as modules over $R$, where the module structure is given by the usual matrix multiplication.
Assume that they are isomorphic.
Let $f\colon\begin{pmatrix}
0\\
\R
\end{pmatrix}
\to\begin{pmatrix}
\R\\
0
\end{pmatrix}$
be an isomorphism of modules and let
$x_0\in\R\setminus\{0\}$ be such that
$f\begin{pmatrix}0\\1\end{pmatrix}=\begin{pmatrix}x_0\\0\end{pmatrix}$. Thus
\[
f\begin{pmatrix}
0\\
1\end{pmatrix}
=f\left(\begin{pmatrix}
0&0\\
0&1\end{pmatrix}
\cdot
\begin{pmatrix}
0\\
1
\end{pmatrix}\right)
=\begin{pmatrix}
0&0\\
0&1\end{pmatrix}\cdot f\begin{pmatrix}0\\1\end{pmatrix}
=\begin{pmatrix}
0&0\\
0&1
\end{pmatrix}
\cdot
\begin{pmatrix}
x_0\\
0
\end{pmatrix}
=\begin{pmatrix}
0\\
0
\end{pmatrix},
\]
a contradiction, as $f$ is injective.
\end{example}
If $N$ and $N_1$ are submodules of $M$, we say that $M$ is the \emph{direct sum} of $N$ and $N_1$
if $M=N+N_1$ and $N\cap N_1=\{0\}$. In this case, we write $M=N\oplus N_1$. Note that if
$M=N\oplus N_1$, then each $m\in M$ can be written uniquely as $m=n+n_1$ for some
$n\in N$ and $n_1\in N_1$.
Such a decomposition exists because $M=N+N_1$. If $m\in M$ can be written as
$m=n+n_1=n'+n_1'$ for some $n,n'\in N$ and $n_1,n_1'\in N_1$, then
$-n'+n=n_1'-n_1\in N\cap N_1=\{0\}$ and hence $n=n'$ and $n_1=n_1'$. If $M=N\oplus N_1$, the submodule
$N$ (resp. $N_1$) is a \emph{direct summand} of $M$ and the submodule $N_1$ (resp $N$) is a \emph{complement} of $N$
in $M$.
\begin{example}
If $M=\R^2$ is a vector space, then every subspace of $M$ is a direct summand of $M$.
\end{example}
Clearly, the submodules $\{0\}$ and $M$ are direct summands of $M$.
\begin{example}
If $M=\Z$ as a module over $\Z$, then $m\Z$ is a direct summand of $M$ if and only if
$m\in\{0,1\}$, as $n\Z\cap m\Z=\{0\}$ if and only if $nm=0$.
\end{example}
\begin{exercise}
\label{xca:projector}
Let $M$ be a module.
A module $N$ is isomorphic to a direct summand of $M$ if and only if
there are module homomorphisms $i\colon N\to M$ and $p\colon M\to N$
such that $pi=\id_N$. In this case, $M=\ker p\oplus i(N)$.
\end{exercise}
The \emph{direct sum} of submodules can be defined for finitely many summands.
If $V_1,\dots,V_n$ are submodules of $M$, we say that $M=V_1\oplus\cdots\oplus V_n$
if every $m\in M$ can be written uniquely as $m=v_1+\cdots+v_n$ for some $v_1\in V_1,\dots,v_n\in V_n$.
\begin{exercise}
Prove that $M=V_1\oplus\cdots\oplus V_n$ if and only if
$M=V_1+\cdots+V_n$ and
\[
V_i\cap\left(\sum_{j\ne i}V_j\right)=\{0\}
\]
for all $i\in\{1,\dots,n\}$.
\end{exercise}
If $\{N_i:i\in I\}$ is a family of submodules of a module $M$, then the intersection
$\cap_{i\in I}N_i$ is also a submodule of $M$.
\begin{exercise}
\label{xca:submodules}
Let $T\colon\R^2\to\R^2$ be a linear map and $M=\R^2$ with the module structure
over $\R[X]$ given by
\[
\left(\sum_{i=0}^n a_iX^i\right)\cdot (x,y)=\sum_{i=0}^n a_iT^i(x,y).
\]
Find the submodules of $M$ in the following cases:
\begin{enumerate}
\item $T(x,y)=(0,y)$.
\item $T(x,y)=(y,x)$.
\end{enumerate}
% Prove that
% $\{0\}$, $M$, $\R\times\{0\}$ and $\{0\}\times\R$
% are the only submodules of $M$.
\end{exercise}
\begin{exercise}
\label{xca:commuting}
Let $V$ be a finite-dimensional real vector space and $T\colon V\to V$ be a linear map. Then
$V$ is a module over $\R[X]$ with
\[
\left(\sum_{i=0}^n a_iX^i\right)\cdot v=\sum_{i=0}^n a_iT^i(v).
\]
Prove that any module homomorphism $g\colon V\to V$ commutes with $T$.
% \[
% (g\circ T)(v)=g(T(v))=g(X\cdot v)=X\cdot g(v)=T(g(v))=(T\circ g)(v)
% \]
% para todo $v\in V$.x
\end{exercise}
\begin{exercise}
\label{xca:Hom}
Prove that $\Hom_R(M,N)$ is a module over $Z(R)$ with the following action: If $r\in R$ and
$f\in\Hom_R(M,N)$, then $r\cdot f\colon M\to N$, $m\mapsto f(r\cdot m)$.
\end{exercise}
Let $M$ be a module, and $N$ be a submodule of $M$. In particular, $M/N$ is an abelian group, and the map $\pi\colon M\to M/N$, $m\mapsto m+N$, is a surjective group homomorphism with kernel equal to $N$. We claim
that the \emph{quotient} $M/N$ is a module with
\[
r\cdot (m+N)=(r\cdot m)+N,\quad
r\in R,\,m\in M.
\]
Let us check that this operation on $M/N$ is well-defined. If $x+N=y+N$, then
$x-y\in N$ implies that
\[
r\cdot x-r\cdot y=r\cdot (x-y)\in N,
\]
that is $r\cdot (x+N)=r\cdot (y+N)$. It is an exercise to show that
the map $\pi\colon M\to M/N$, $x\mapsto x+N$, is a
surjective module homomorphism.
\begin{example}
If $R=M=\Z$ and $N=2\Z$, then $M/N\simeq\Z/2$.
\end{example}
\begin{example}
Let $R$ be a commutative ring and $M$ be an $R$-module. We claim that
\[
M\simeq\Hom_R(\prescript{}{R}R,M).
\]
Since $R$ is commutative, it follows that $\Hom_R(\prescript{}{R}R,M)$ is a module, see Exercise~\ref{xca:Hom}.
Let $\varphi\colon M\to\Hom_R(\prescript{}{R}R,M)$, $m\mapsto f_m$, where $f_m\colon R\to M$, $r\mapsto r\cdot m$.
To show that $\varphi$ is well-defined it is enough to see that $\varphi(m)\in\Hom_R(\prescript{}{R}R,M)$, that is
\[
f_m(r+s)=(r+s)\cdot m=r\cdot m+s\cdot m,\quad
f_m(rs)=(rs)\cdot m=r\cdot (s\cdot m)=r\cdot f_m(s).
\]
Let us show that $\varphi$ is a module homomorphism. We first note that
\[
\varphi(m+n)=\varphi(m)+\varphi(n)
\]
for all $m,n\in M$, as
\begin{align*}
\varphi(m+n)(r)&=f_{m+n}(r)=r\cdot (m+n)\\
&=r\cdot m+r\cdot n=f_m(r)+f_n(r)=\varphi(m)(r)+\varphi(n)(r).
\end{align*}
Moreover,
\[
\varphi(r\cdot m)=r\cdot\varphi(m)
\]
for all
$r\in R$ and $m\in M$, as
\begin{align*}
\varphi(r\cdot m)(s)&=f_{r\cdot m}(s)
=s\cdot (r\cdot m)
=(sr)\cdot m\\
&=(rs)\cdot m=f_m(rs)=\varphi(m)(rs)=(r\cdot\varphi(m))(s).
\end{align*}
It remains to show that $\varphi$ is bijective. We first prove that
$\varphi$ is injective. If $\varphi(m)=0$, then $r\cdot m=\varphi(m)(r)=0$ for all $r\in R$. In particular,
$m=1\cdot m=0$. We now prove that $\varphi$ is surjective. If $f\in\Hom_R(\prescript{}{R}R,M)$,
let $m=f(1)$. Then $\varphi(m)=f$, as
\[
\varphi(m)(r)=r\cdot m=r\cdot f(1)=f(r).
\]
\end{example}
As one does for groups, it is possible to show that if $M$ is a
module and $N$ is a submodule of $M$, the pair
$(M/N,\pi\colon M\to M/N)$ has the following properties:
\begin{enumerate}
\item $N\subseteq \ker \pi$.
\item If $f\colon M\to T$ is a homomorphism such that $N\subseteq \ker f$, then there exists a
unique module homomorphism $\varphi\colon M/N\to T$ such that
the diagram
\[
\begin{tikzcd}
M & T \\
{M/N}
\arrow["\pi"', from=1-1, to=2-1]
\arrow["f", from=1-1, to=1-2]
\arrow["{\varphi }"', dashed, from=2-1, to=1-2]
\end{tikzcd}
\]
is commutative, that is
$\varphi\pi =f$.
\end{enumerate}
Recall that if $S$ and $T$ are submodules of a module $M$, then
both $S\cap T$ and
\[
S+T=\{s+t:s\in S,\,t\in T\}
\]
are submodules of $M$.
The \emph{isomorphism theorems} hold:
\begin{enumerate}
\item If $f\in\Hom_R(M,N)$, then $M/\ker f\simeq f(M)$.
\item If $T\subseteq N\subseteq M$ are submodules, then
\[
\frac{M/T}{N/T}\simeq M/N
\]
\item If $S$ and $T$ are submodules of $M$, then
\[
(S+T)/S\simeq T/(S\cap T).
\]
\end{enumerate}
\begin{example}
If $K$ is a field and $V$ is a module over $K$, then $V$ is, by definition, a vector space over $K$.
If $S$ and $T$ are subspaces of $V$, then they are submodules of $V$.
By the isomorphism theorem, $(S+T)/S\simeq T/(S\cap T)$
as vector spaces. By applying dimension,
\[
\dim(S+T)-\dim S=\dim T-\dim(S\cap T).
\]
\end{example}
\begin{example}
If $N$ is a direct summand of $M$ and $M$ and $X$ is a complement for $N$, then $X\simeq M/N$, as
\[
M/N=(N\oplus X)/N\simeq X/(N\cap X)=X/\{0\}\simeq X
\]
by the second isomorphism theorem. So all complements of $N$ in $M$ are isomorphic.
\end{example}
It is also possible to prove that there exists a bijective correspondence between
submodules of $M/N$ and submodules of $M$ containing $N$. The correspondence is given by
$\pi^{-1}(Y)\mapsfrom Y$ and $X\mapsto \pi(X)$.
\begin{exercise}
Let $f\in\Hom_R(M,N)$. Prove that the following statements are equivalent:
\begin{enumerate}
\item $f$ is an epimorphism.
\item $N/f(M)\simeq\{0\}$.
\item For every module $T$ and every $g,h\in\Hom_R(N,T)$, $g f=h f\implies g=h$.
\item For every module $T$ and every $g\in\Hom_R(N,T)$, $g f=0\implies g=0$.
\end{enumerate}
\end{exercise}
\begin{exercise}
\label{xca:mod_iso_max}
Let $R$ be a ring and $M_1$ and $M_2$ be maximal ideals of $R$. Prove that
$R/M_1\simeq R/M_2$ as modules over $R$ if and only if there exists
$r\in R\setminus M_2$ such that $rM_1\subseteq M_2$.
\end{exercise}