-
Notifications
You must be signed in to change notification settings - Fork 1
/
01.tex
495 lines (415 loc) · 15 KB
/
01.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
\section{Lecture: 25/09/2024}
The objective of the first five lectures is to extract certain properties inherent to integers and adapt them for broader applications. Initially, we will identify similarities between the ring of integers and the ring of real polynomials,
followed by a more in-depth exploration of these specific attributes in more general contexts. A pivotal similarity between integers and real polynomials lies in the existence of the division algorithm. Nevertheless, it is essential to emphasize that $\Z$ and $\R[X]$ are fundamentally distinct entities, like apples and oranges. For instance, in $\R[X]$,
the presence of the variable $X$ allows us to utilize formal derivatives
(with respect to $X$), a feature absent in the ring of integers.
\subsection{Rings}
\begin{definition}
\index{Ring}
A \emph{ring} is a non-empty set $R$ with two binary operations, the addition
$R\times R\to R$, $(x,y)\mapsto x+y$, and the multiplication
$R\times R\to R$, $(x,y)\mapsto xy$, such that
the following properties hold:
\begin{enumerate}
\item $(R,+)$ is an abelian group.
\item $(xy)z=x(yz)$ for all $x,y,z\in R$.
\item $x(y+z)=xy+xz$ for all $x,y,z\in R$.
\item $(x+y)z=xz+yz$ for all $x,y,z\in R$.
\item There exists $1_R\in R$ such that $x1_R=1_Rx=x$ for all $x\in R$.
\end{enumerate}
\end{definition}
Our definition of a ring is that of a ring with identity. In general one
writes the identity element $1_R$ as $1$ if there is no risk of confusion.
\begin{definition}
\index{Ring!commutative}
A ring $R$ is said to be \emph{commutative} if $xy=yx$ for all $x,y\in R$.
\end{definition}
\begin{example}
$\Z$, $\Q$, $\R$, and $\C$ are commutative rings.
\end{example}
Most of the students will have some familiarity with
real polynomials from their school days.
\begin{example}
\index{Degree of a polynomial}
The set
\[
\R[X]=\left\{\sum_{i=0}^na_iX^i:n\in\Z_{\geq0},\,a_0,\dots,a_n\in \R\right\}
\]
of real polynomials in one variable
is a commutative ring with the usual operations.
For example, if $f(X)=1+5X^3$ and $g(X)=3X-2X^3$, then
\begin{align*}
f(X)+g(X) &= 1+3X+3X^3,\\
f(X)g(X) &= 3X-2X^3+15X^4-10X^6.
\end{align*}
Recall that, if
\[
f(X)=a_0+a_1X+a_2X^2+\cdots+a_nX^n
\]
and $a_n\ne0$, then $a_n$ is the \emph{leading coefficient} of $f(X)$ and
$n$ is the \emph{degree} of $f(X)$. In this case, we use the notation
$n=\deg f(X)$.
\end{example}
More generally, if $R$ is a commutative ring, then $R[X]$ is a commutative ring. This construction
allows us to define
the polynomial ring $R[X,Y]$ in two commuting variables $X$ and $Y$ and coefficients in $R$ as
$R[X,Y]=(R[X])[Y]$. One can also define the ring
$R[X_1,\dots,X_n]$ of polynomials
in $n$ commuting variables $X_1,\dots,X_n$ with coefficients in $R$ as
\[
R[X_1,\dots,X_n]
=(R[X_1,\dots,X_{n-1}])[X_n].
\]
\begin{example}
If $A$ is an abelian group, then
the set
$\End(A)$ of group homomorphisms $A\to A$ is a ring with
\[
(f+g)(x)=f(x)+g(x),\quad
(fg)(x)=f(g(x)),\quad f,g\in\End(A)\text{ and }x\in A.
\]
\end{example}
If $X$ is a set, we write $|X|$ to denote
the size of $X$.
\begin{exercise}
\label{xca:basic_formulas}
Let $R$ be a ring. Prove the following facts:
\begin{enumerate}
\item $x0=0x=0$ for all $x\in R$.
\item $x(-y)=-xy$ for all $x,y\in R$.
\item If $1=0$, then $|R|=1$.
\end{enumerate}
\end{exercise}
\begin{example}
The real vector space $H(\R)=\{a1+bi+cj+dk:a,b,c,d\in\R\}$ with basis $\{1,i,j,k\}$
is a ring with the multiplication induced by
the formulas
\[
i^2=j^2=k^2=-1,
\quad ij=k,
\quad jk=i,
\quad ki=j.
\]
As an example, let us perform a calculation in $H(\R)$:
\[
(1+i+j)(i+k)=i+k-1+ik+ji+jk=i+k-1-j-k+i=-1+2i-j,
\]
as $ik=i(ij)=-j$ and $ji=-k$. This is the ring of real \emph{quaternions}.
\end{example}
\begin{example}
Let $n\geq2$.
The abelian group $\Z/n=\{0,1,\dots,n-1\}$ of integers modulo $n$ is a ring
with the usual multiplication modulo $n$.
\end{example}
\begin{example}
Let $n\geq1$.
The set $M_n(\R)$ of real $n\times n$ matrices is a ring with the usual matrix operations. Recall
that if $a=(a_{ij})$ and $b=(b_{ij})$, the multiplication $ab$ is given by
\[
(ab)_{ij}=\sum_{k=1}^n a_{ik}b_{kj}.
\]
Note that $M_n(\R)$ is conmutative if and only if $n=1$.
\end{example}
Similarly, for any ring $R$ one defines the ring $M_n(R)$ of $n\times n$ matrices
with coefficients in $R$.
\begin{example}
\label{exa:direct_rings}
\index{Product direct of rings}
Let $R$ and $S$ be rings. Then
$R\times S=(\{(r,s):r\in R,s\in S\}$
is a ring with the operations
\[
(r,s)+(r_1,s_1)=(r+r_1,s+s_1),\quad
(r,s)(r_1,s_1)=(rr_1,ss_1).
\]
The zero of $R\times S$ is $(0_R,0_S)$ and
the unit element of $R\times S$ is $(1_R,1_S)$. The ring
$R\times S$ is known as the \emph{direct product} of $R$ and $S$.
\end{example}
\begin{definition}
\index{Subring}
Let $R$ be a ring. A \emph{subring} $S$ of $R$ is a subset $S$ such that
$(S,+)$ is a subgroup of $(R,+)$ such that $1\in S$ and
if $x,y\in S$, then $xy\in S$.
\end{definition}
For example, $\Z\subseteq\Q\subseteq\R\subseteq\C$ is a chain of subrings.
\begin{example}
\index{Gauss integers}
$\Z[i]=\{a+bi:a,b\in\Z\}$ is a subring of $\C$.
This is known as the ring of \emph{Gauss integers}.
\end{example}
A \emph{square-free} integer is an integer that is divisible by
no perfect square other than 1. Some examples: 2, 3, 5, 6, 7, and 10.
The numbers 4, 8, 9, and 12 are not square-free.
\begin{example}
Let $N$ be a square-free integer. Then $\Z[\sqrt{N}]$ is
a subring of $\C$.
\end{example}
If $N$ is a square-free integer, then
$a+b\sqrt{N}=c+d\sqrt{N}$ in $\Z[\sqrt{N}]$
if and only if $a=c$ and $b=d$. Why?
\begin{example}
$\Q[\sqrt{2}]=\{a+b\sqrt{2}:a,b\in\Q\}$ is a subring of $\R$.
\end{example}
Why in the ring $\Q[\sqrt{2}]$
equality $a+b\sqrt{2}=c+d\sqrt{2}$ implies $a=c$ and $b=d$?
\begin{example}
\index{Center!of a ring}
If $R$ is a ring, then the \emph{center}
\[
Z(R)=\{x\in R:xy=yx\text{ for all $y\in R$}\}
\]
is a subring of $R$.
\end{example}
If $S$ is a subring of a ring $R$, then the zero-element
of $S$ is the zero-element of $R$, i.e., $0_R=0_S$. Moreover,
the additive inverse of an element $s\in S$
is the additive inverse of $s$ as an element of $R$.
\begin{exercise}\
\label{xca:subrings}
\begin{enumerate}
\item If $S$ and $T$ are subrings of $R$, then $S\cap T$ is a subring of $R$.
\item If $R_1\subseteq R_2\subseteq\cdots$ is a sequence of subrings of $R$, then
$\cup_{i\geq1}R_i$ is a subring of $R$.
\end{enumerate}
\end{exercise}
\begin{definition}
\index{Units}
Let $R$ be a ring. An element $x\in R$ is
a \emph{unit} if there exists $y\in R$ such that $xy=yx=1$.
\end{definition}
The set $\mathcal{U}(R)$ of units of a ring $R$ form
a group with the multiplication. For example, $\mathcal{U}(\Z)=\{-1,1\}$ and
$\mathcal{U}(\Z/8)=\{1,3,5,7\}$.
\begin{exercise}
\label{xca:units_R[X]}
Compute $\mathcal{U}(\R[X])$.
\end{exercise}
\begin{definition}
\index{Ring!division}
A \emph{division ring} is a ring $R\neq\{0\}$
such that $\mathcal{U}(R)=R\setminus\{0\}$.
\end{definition}
\index{Quaternions}
The ring $H(\R)$ of \emph{real quaternions} is a non-commutative division ring. Find the inverse of
an arbitrary element $a1+bi+cj+dk\in H(\R)$.
\begin{definition}
\index{Field}
A \emph{field} is a commutative division ring (with $1\ne 0$).
\end{definition}
For example, $\Q$, $\R$, and $\C$ are fields.
If $p$ is a prime number, then $\Z/p$ is a field.
\begin{exercise}
\label{xca:Qsqrt2}
Prove that $\Q[\sqrt{2}]$ is a field.
Find the multiplicative inverse of a non-zero element of the form
$x+y\sqrt{2}\in\Q[\sqrt{2}]$.
\end{exercise}
More challenging: Prove that
\[
\Q[\sqrt[3]{2}]=\{x+y\sqrt[3]{2}+z\sqrt[3]{4}:x,y,z\in\Q\}
\]
is a field. What is the inverse of a non-zero element of the form $x+y\sqrt[3]{2}+z\sqrt[3]{4}$?
\subsection{Ideals}
\begin{definition}
\index{Ideal!left}
Let $R$ be a ring. A \emph{left ideal} of $R$ is a subset $I\subseteq R$ such that
$(I,+)$ is a subgroup of $(R,+)$ and $RI\subseteq I$,
i.e. $ry\in I$ for all $r\in R$ and $y\in I$.
\end{definition}
\index{Ideal!right}
Similarly, one defines \emph{right ideals}, one needs
to replace the condition $RI\subseteq I$ by
the inclusion
$IR\subseteq I$.
\begin{example}
Let $R=M_{2}(\mathbb{R})$. Then
\[
I=\left(\begin{array}{cc}
\mathbb{R} & \mathbb{R}\\
0 & 0
\end{array}\right)=\left\{ \left(\begin{array}{cc}
x & y\\
0 & 0
\end{array}\right):x,y\in\mathbb{R}\right\}
\]
is a right ideal $R$ that is not a left ideal.
\end{example}
Can you find an
example of a right ideal that is not a left ideal?
\begin{definition}
\index{Ideal}
Let $R$ be a ring. An \emph{ideal} of $R$
is a subset that is both a left and a right ideal of $R$.
\end{definition}
If $R$ is a ring, then $\{0\}$ and $R$ are both ideals of $R$.
\begin{exercise}
\label{xca:ideals}
Let $R$ be a ring.
\begin{enumerate}
\item If $\{I_\alpha:\alpha\in\Lambda\}$ is a collection of ideals of $R$, then $\cap_{\alpha}I_\alpha$ is an ideal of $R$.
\item If $I_1\subseteq I_2\subseteq\cdots$ is a sequence of ideals of $R$, then $\cup_{i\geq1}I_i$ is an ideal of $R$.
\end{enumerate}
\end{exercise}
\begin{example}
Let $R=\R[X]$. If $f(X)\in R$, then the set
\[
(f(X))=\{f(X)g(X):g(X)\in R\}
\]
of multiples of $f(X)$ is an ideal of $R$. One can prove that this is the smallest
ideal of $R$ containing $f(X)$.
\end{example}
If $R$ is a ring and $X$ is a subset of $R$, one defines
the ideal generated by $X$ as the smallest ideal of $R$ containing $X$, that is
\[
(X)=\bigcap\{I:\text{$I$ ideal of $R$ such that $X\subseteq I$}\}.
\]
One proves that
\[
(X)=\left\{\sum_{i=1}^mr_ix_is_i:m\in\Z_{\geq0},\,x_1,\dots,x_m\in X,\,r_1,\dots,r_m,s_1,\dots,s_m\in R\right\},
\]
where by convention, the empty sum is equal to zero. If $X=\{x_1,\dots,x_n\}$ is a finite
set, then we write $(X)=(x_1,\dots,x_n)$.
\begin{exercise}
\label{xca:ideals_Z}
Prove that every ideal of $\Z$ is of the form $n\Z$ for some $n\geq0$.
\end{exercise}
\begin{exercise}
\label{xca:ideals_Zn}
Let $n\geq2$. Find the ideals of $\Z/n$.
\end{exercise}
\begin{exercise}
\label{xca:ideals_R}
Find the ideals of $\R$.
\end{exercise}
A similar exercise is to find the ideals of any division ring.
\begin{exercise}
\label{xca:ideals_matrices}
Let $R$ be a commutative ring. Prove that every ideal of $M_n(R)$ is
of the form $M_n(I)$ for some ideal $I$ of $R$.
\end{exercise}
%\begin{sol}{xca:ideals}
% Recall the formula $E_{ij}E_{jk}=E_{ik}$ for elementary matrices.
%
% Let $J$ be an ideal of $M_n(R)$. For a matrix $A=(a_{ij})$,
% $E_{ki}AE_{jl}=a_{ij}E_{kl}$ for all $i,j,k,l$. Let
% \[
% I=\{r\in R:rE_{11}\in J\}.
% \]
% Then $I$ is an ideal of $R$. Since $a_{ij}E_{11}=E_{1i}AE_{j1}$,
% $J\subseteq M_n(I)$.
%
% Conversely, if $A\in M_n(I)$, then $A$ is a sum of elements
% of the form $rE_{ij}$ for $r\in I$. Thus $rE_{ij}\in J$ for $r\in I$
% and hence $A\in J$.
%\end{sol}
\begin{definition}
\index{Ideal!principal}
Let $R$ be a ring and $I$ be an ideal of $R$. Then $I$ is \emph{principal}
if $I=(x)$ for some $x\in R$.
\end{definition}
The division algorithm shows that every ideal of $\Z$ is principal,
see Exercise~\ref{xca:ideals_Z}.
The ring $\R[X]$ of real polynomials also has a division algorithm. Given the polynomials
$f(X)\in\R[X]$ and $g(X)\in\R[X]$ with $g(X)\ne 0$, there are
polynomials $q(X)\in\R[X]$ and $r(X)\in\R[X]$ such that
\[
f(X)=q(X)g(X)+r(X),
\]
where $r(X)=0$ or $\deg r(X)<\deg g(X)$.
For example,
if $f(X)=2X^5-X$ and $g(X)=X^2+1$, then
\[
f(X)=q(X)g(X)+r(X),
\]
where $q(X)=2X^3-2X$ and $r(X)=X$.
\begin{exercise}
\label{xca:R[X]_principal}
Prove that every ideal of $\R[X]$ is principal.
\end{exercise}
If $K$ is a field, there is a division algorithm in the
polynomial ring $K[X]$. Then one proves
that every ideal of $K[X]$ is principal.
\begin{exercise}
\label{xca:x_unit}
Let $R$ be a commutative ring and $x\in R$. Prove that $x\in\mathcal{U}(R)$ if and only if
$(x)=R$. What happens if $R$ is non-commutative?
\end{exercise}
A division ring (and, in particular, a field) has only two ideals.
\subsection{Ring homomorphisms}
\begin{definition}
\index{Ring!homomorphism}
Let $R$ and $S$ be rings. A map $f\colon R\to S$ is a \emph{ring homomorphism}
if $f(1)=1$, $f(x+y)=f(x)+f(y)$ and $f(xy)=f(x)f(y)$ for all $x,y\in R$.
\end{definition}
Our definition of a ring is that of a ring with identity. This means
that the identity element $1$ of a ring $R$
is part of the structure. For that reason, in
the definition
of a ring homomorphism $f$ one needs $f(1)=1$.
\begin{example}
The map $f\colon\Z/6\to\Z/6$, $x\mapsto 3x$, satisfies
\[
f(xy)=f(x)f(y)\quad\text{and}\quad f(x+y)=f(x)+f(y)
\]
for all $x,y\in\Z/6$. However, $f$ is not a ring homomorphism because~$f(1)=3$.
\end{example}
If $R$ is a ring, then
the identity map $\id\colon R\to R$, $x\mapsto x$, is a ring homomorphism.
\begin{example}
The inclusions $\Z\hookrightarrow\Q\hookrightarrow\R\hookrightarrow\C$
are ring homomorphisms.
\end{example}
More generally, if $S$ is a subring of a ring $R$, then the inclusion map
$S\hookrightarrow R$ is a ring homomorphism.
\begin{example}
Let $R$ be a ring.
The map $\Z\to R$, $k\mapsto k1$, is a ring homomorphism.
\end{example}
\begin{example}
Let $x_0\in\R$. The evaluation map $\R[X]\to\R$, $f\mapsto f(x_0)$,
is a ring homomorphism.
\end{example}
The \emph{kernel} of a ring homomorphism
$f\colon R\to S$ is the subset
\[
\ker f=\{x\in R:f(x)=0\}.
\]
One proves that the kernel of $f$ is an ideal of $R$.
Moreover, recall from group theory that
$\ker f=\{0\}$ if and only if $f$ is injective. The image
\[
f(R)=\{f(x):x\in R\}
\]
is a subring of $S$. In general, $f(R)$ is not an ideal of $S$.
\begin{example}
The inclusion $\Z\hookrightarrow\Z[X]$ is a ring homomorphism. Then
$2\Z$ is an ideal of $\Z$ but not an ideal of $\Z[X]$.
\end{example}
\begin{example}
Let $R$ and $S$ be rings and $R\times S$ be the direct product (see Example~\ref{exa:direct_rings}).
The map $R\to R\times S$, $r\mapsto (r,0)$ is an injective ring homomorphism. The
map
\[
\pi_R\colon R\times S\to R,\quad (r,s)\mapsto r,
\]
is a surjective ring homomorphism with $\ker\pi_R=\{(0,s):s\in S\}=\{0\}\times S$.
\end{example}
\begin{example}
The map $\C\to M_2(\R)$, $a+bi\mapsto\begin{pmatrix}a&b\\-b&a\end{pmatrix}$, is an injective
ring homomorphism.
\end{example}
\begin{example}
The map $\Z[i]\to\Z/5$, $a+bi\mapsto a+2b\bmod 5$, is a ring homomorphism
with $\ker f=\{a+bi:a+2b\equiv 0\bmod 5\}$.
\end{example}
\begin{exercise}
\label{xca:Z6->Z15}
There is no ring homomorphism $\Z/6\to\Z/15$. Why?
\end{exercise}
\begin{exercise}
If $f\colon\R[X]\to\R$ is a ring homomorphism
such that the restriction $f|_{\R}$ of
$f$ onto $\R$ is the identity, then there exists $x_0\in\R$ such that
$f$ is the evaluation map at~$x_0$.
\end{exercise}