-
Notifications
You must be signed in to change notification settings - Fork 84
/
counter.py
1274 lines (1136 loc) · 69.6 KB
/
counter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import re
import sys
import gzip
import logging
import random
import string
from typing import *
from collections import defaultdict
from itertools import chain
from collections import OrderedDict
from collections import Counter
import velocyto as vcy
import h5py
import pysam
import numpy as np
import os
import sys
class ExInCounter:
""" Main class to do the counting of introns and exons """
def __init__(self, sampleid: str, logic: vcy.Logic, valid_bcset: Set[str]=None,
umi_extension: str="no", onefilepercell: bool=False, dump_option: str="0",
outputfolder: str="./", loom_numeric_dtype: str=vcy.LOOM_NUMERIC_DTYPE) -> None:
self.outputfolder = outputfolder
self.sampleid = sampleid
self.loom_numeric_dtype = loom_numeric_dtype
self.logic = logic()
# NOTE: maybe there shoulb be a self.logic.verify_inputs(args) step at the end of init
if valid_bcset is None:
self.valid_bcset: Set[str] = set()
self.filter_mode = False
self.counter = 0
else:
self.valid_bcset = valid_bcset
self.filter_mode = True
self.annotations_by_chrm_strand: Dict[str, Dict[str, vcy.TranscriptModel]] = {}
self.mask_ivls_by_chromstrand = defaultdict(list) # type: Dict[str, List]
self.geneid2ix: Dict[str, int] = {}
self.genes: Dict[str, vcy.GeneInfo] = {}
if umi_extension.lower() == "no":
self.umi_extract = self._no_extension
elif umi_extension.lower() == "chr":
self.umi_extract = self._extension_chr
elif umi_extension.lower() == "gene" or umi_extension.lower() == "gx":
self.umi_extract = self._extension_Gene
elif umi_extension[-2:] == "bp":
self.umi_bp = int(umi_extension[:-2])
self.umi_extract = self._extension_Nbp
elif umi_extension.lower() == "without_umi":
self.umi_extract = self._placeolder_umi
else:
raise ValueError(f"umi_extension {umi_extension} is not allowed. Use `no`, `Gene` or `[N]bp`")
if onefilepercell:
self.cell_barcode_get = self._bam_id_barcode
else:
self.cell_barcode_get = self._normal_cell_barcode_get
if self.logic.stranded:
if self.logic.accept_discordant:
self.count_cell_batch = self._count_cell_batch_stranded_discordant
else:
self.count_cell_batch = self._count_cell_batch_stranded
else:
self.count_cell_batch = self._count_cell_batch_non_stranded
# NOTE: by using a default dict and not logging access to keys that do not exist, we might miss bugs!!!
self.test_flag = None
if dump_option[0] == "p":
self.kind_of_report = "p"
self.report_state = 0
self.every_n_report = int(dump_option[1:])
else:
self.kind_of_report = "h"
self.report_state = 0
self.every_n_report = int(dump_option)
self.cellbarcode_str = "NULL_BC" # This value should never be used this is just to initialize it and detect if there are bugs downstream
self.umibarcode_str = "NULL_UB" # This value should never be used this is just to initialize it and detect if there are bugs downstream
# NOTE: not supported anymore because now we support variable length barcodes
# @property
# def bclen(self) -> int:
# try:
# return len(next(iter(self.valid_bcset)))
# except StopIteration:
# return None
@staticmethod
def parse_cigar_tuple(cigartuples: List[Tuple], pos: int) -> Tuple[List[Tuple[int, int]], bool, int, int]:
segments = []
hole_to_remove = set()
ref_skip = False
clip5 = clip3 = 0
p = pos
for i, (operation_id, length) in enumerate(cigartuples):
if operation_id == 0: # vcy.CIGAR[operation_id] == "BAM_CMATCH"
segments.append((p, p + length - 1))
p += length
elif operation_id == 3: # A splice || vcy.CIGAR[operation_id] == 'BAM_CREF_SKIP'
ref_skip = True
p += length
elif operation_id == 2: # A deletion || cy.CIGAR[operation_id] == 'BAM_CDEL'
if length <= vcy.PATCH_INDELS:
try:
if cigartuples[i + 1][0] == 0 and cigartuples[i - 1][0] == 0:
hole_to_remove.add(len(segments) - 1)
except IndexError:
pass
p += length
elif operation_id == 4: # bases at 5' or 3' are NOT part of the alignment || vcy.CIGAR[operation_id] == 'BAM_CSOFT_CLIP'
if p == pos:
clip5 = length # At start of alignment
else:
clip3 = length # Must be at end of alignment vcy.CIGAR[operation_id] in ["BAM_CINS", "BAM_CHARD_CLIP"]
p += length
elif operation_id == 1: # An insertion BAM_CINS
if length <= vcy.PATCH_INDELS:
try:
if cigartuples[i + 1][0] == 0 and cigartuples[i - 1][0] == 0:
hole_to_remove.add(len(segments) - 1)
except IndexError:
pass
# else do nothing
# NOTE: maybe we should make so that the reads get discarded
elif operation_id == 5: # BAM_CHARD_CLIP
logging.warn("Hard clip was encountered! All mapping are assumed soft clipped")
# Merge segments separated by small insertions and deletions
for a, b in enumerate(sorted(hole_to_remove)): # NOTE maybe sorted is not required realy
segments[b - a] = (segments.pop(b - a)[0], segments[b - a][1])
return segments, ref_skip, clip5, clip3
def peek(self, bamfile: str, lines: int=1000) -> None:
"""Peeks into the samfile to determine if it is a cellranger or dropseq file
"""
logging.debug(f"Peeking into {bamfile}")
fin = pysam.AlignmentFile(bamfile) # type: pysam.AlignmentFile
cellranger: int = 0
dropseq: int = 0
failed: int = 0
for i, read in enumerate(fin):
if read.is_unmapped:
continue
if read.has_tag("CB") and read.has_tag("UB"):
cellranger += 1
elif read.has_tag("XC") and read.has_tag("XM"):
dropseq += 1
else:
logging.warn(f"Not found cell and umi barcode in entry {i} of the bam file")
failed += 1
if cellranger > lines:
self.cellbarcode_str = "CB"
self.umibarcode_str = "UB"
break
elif dropseq > lines:
self.cellbarcode_str = "XC"
self.umibarcode_str = "XM"
break
elif failed > 5 * lines:
raise IOError("The bam file does not contain cell and umi barcodes appropriatelly formatted. If you are runnin UMI-less data you should use the -U flag.")
else:
pass
fin.close()
def peek_umi_only(self, bamfile: str, lines: int=30) -> None:
"""Peeks for umi into the samfile to determine if it is a cellranger or dropseq file
"""
logging.debug(f"Peeking into {bamfile}")
fin = pysam.AlignmentFile(bamfile) # type: pysam.AlignmentFile
cellranger: int = 0
dropseq: int = 0
failed: int = 0
for i, read in enumerate(fin):
if read.is_unmapped:
continue
if read.has_tag("UB"):
cellranger += 1
elif read.has_tag("XM"):
dropseq += 1
else:
logging.warn(f"Not found cell and umi barcode in entry {i} of the bam file")
failed += 1
if cellranger > lines:
self.umibarcode_str = "UB"
break
elif dropseq > lines:
self.umibarcode_str = "XM"
break
elif failed > 5 * lines:
raise IOError("The bam file does not contain umi barcodes appropriatelly formatted. If you are runnin UMI-less data you should use the -U flag.")
else:
pass
fin.close()
def _no_extension(self, read: pysam.AlignedSegment) -> str:
return read.get_tag(self.umibarcode_str)
def _extension_Nbp(self, read: pysam.AlignedSegment) -> str:
return read.get_tag(self.umibarcode_str) + read.query_alignment_sequence[:self.umi_bp]
def _extension_Gene(self, read: pysam.AlignedSegment) -> str:
try:
return read.get_tag(self.umibarcode_str) + "_" + read.get_tag("GX") # catch the error
except KeyError:
return read.get_tag(self.umibarcode_str) + "_withoutGX"
def _placeolder_umi(self, read: pysam.AlignedSegment) -> str:
return ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(vcy.PLACEHOLDER_UMI_LEN))
def _extension_chr(self, read: pysam.AlignedSegment) -> str:
return read.get_tag(self.umibarcode_str) + f"_{read.rname}:{read.reference_start // 10000000}" # catch the error
def _normal_cell_barcode_get(self, read: pysam.AlignedSegment) -> str:
return read.get_tag(self.cellbarcode_str).split("-")[0]
def _bam_id_barcode(self, read: pysam.AlignedSegment) -> str:
return f"{self._current_bamfile}"
def iter_alignments(self, bamfiles: Tuple[str], unique: bool=True, yield_line: bool=False) -> Iterable:
"""Iterates over the bam/sam file and yield Read objects
Arguments
---------
bamfiles: Tuple[str]
path to the bam files
unique: bool
yield only unique alignments
yield_line: bool
whether to yield the raw sam line
Returns
-------
yields vcy.Read for each valid line of the bam file
or a Tuple (vcy.Read, sam_line) if ``yield_line==True``
NOTE: At the file change it yields a `None`
"""
# No peeking here, this will happen a layer above, and only once on the not sorted file! before it was self.peek(samfile, lines=10)
bamfile_name_seen: Set[str] = set()
counter_skipped_no_barcode = 0
if Counter(bamfiles).most_common(1)[0][1] != 1:
logging.warning("The bamfiles names are not unique. The full path to them will be used as unique identifier")
use_basename = False
else:
use_basename = True
for bamfile in bamfiles:
if use_basename:
self._current_bamfile = os.path.basename(bamfile)
else:
self._current_bamfile = str(bamfile)
logging.debug(f"Reading {bamfile}")
fin = pysam.AlignmentFile(bamfile) # type: pysam.AlignmentFile
for i, read in enumerate(fin):
if i % 10000000 == 0:
logging.debug(f"Read first {i // 1000000} million reads")
if read.is_unmapped:
continue
# If unique parameter is set to True, skip not unique alignments
if unique and read.get_tag("NH") != 1:
continue
try:
bc = self.cell_barcode_get(read) # NOTE: this rstrip is relevant only for cellranger, should not cause trouble in Dropseq
umi = self.umi_extract(read) # read.get_tag(self.umibarcode_str)
except KeyError:
if read.has_tag(self.cellbarcode_str) and read.has_tag(self.umibarcode_str):
raise KeyError(f"Some errors in parsing the cell barcode has occurred {self.cellbarcode_str}, {self.umibarcode_str}\n{read}")
counter_skipped_no_barcode += 1
continue # NOTE: Here errors could go unnoticed
if bc not in self.valid_bcset:
if self.filter_mode:
continue
else:
self.valid_bcset.add(bc)
strand = '-' if read.is_reverse else '+'
chrom = fin.get_reference_name(read.rname) # this is return a string otherwise read.rname for the integer
if chrom.startswith('chr'):
# I have to deal with incongruences with the .gft (what is cellranger doing???)
# NOTE Why this happens?
if "_" in chrom:
chrom = chrom.split("_")[1]
else:
chrom = chrom[3:]
if chrom == "M":
chrom = "MT"
pos = read.reference_start + 1 # reads in pysam are always 0-based, but 1-based is more convenient to wor with in bioinformatics
segments, ref_skipped, clip5, clip3 = self.parse_cigar_tuple(read.cigartuples, pos)
if segments == []:
logging.debug("No segments in read:%s" % read.qname)
read_object = vcy.Read(bc, umi, chrom, strand, pos, segments, clip5, clip3, ref_skipped)
if yield_line:
if read_object.span > 3000000: # Longest locus existing
logging.warn(f"Trashing read, too long span\n{read.tostring(fin)}")
else:
yield read_object, read.tostring(fin)
else:
if read_object.span > 3000000: # Longest locus existing
logging.warn(f"Trashing read, too long span\n{read.tostring(fin)}")
else:
yield read_object
fin.close()
# NOTE Yielding None counts as a flag that the file read has been changed
if yield_line:
yield None, None
else:
yield None
logging.debug(f"{counter_skipped_no_barcode} reads were skipped because no apropiate cell or umi barcode was found")
def read_repeats(self, gtf_file: str, tolerance: int=5) -> Dict[str, List[vcy.Feature]]:
"""Read repeats and merge close ones into highly repetitive areas
Arguments
---------
gtf_file: str
file to read
tolerance: int, default=5
if two repeats intervals to be masked are found closer than tolerance bases from each other they are fused in one bigger masked interval.
Notice that in the downstream analysis only reads that are fall inside mask intervals are discarded
Returns
-------
mask_ivls_by_chromstrand: Dict[str, List[vcy.Feature]]
A dictionary key: chromosome+strand value: list of features (repeat intervals)
(The reference is returned but an internal attribure self.self.masked_by_chrm_strand is kept)
"""
# Example code to sort the gtf file
# sorted_filename = gtffile.split(".")[0] + "_sorted.gtf"
# logging.debug(f"Sorting by `sort -k1,1 -k7,7 -k4,4n {gtffile} > {sorted_filename}`")
# with open(sorted_filename, "w") as f:
# p1 = subprocess.run(["sort", "-k1,1", "-k7,7", "-k4,4n", gtffile],
# stdout=f)
# Parse arguments
logging.debug(f'Reading {gtf_file}, the file will be sorted in memory')
# Read up skipping headers up to the first valid entry
repeat_ivls_list: List[vcy.Feature] = []
# fin = open(gtf_file)
gtf_lines = [line for line in open(gtf_file) if not line.startswith('#')]
def sorting_key(entry: str) -> Tuple[str, bool, int, str]:
"""This sorting strategy is equivalent to sort -k1,1 -k7,7 -k4,4n"""
x = entry.split("\t")
return (x[0], x[6] == "+", int(x[3]), entry) # The last element of the touple corresponds to the `last resort comparison`
gtf_lines = sorted(gtf_lines, key=sorting_key)
###
line = gtf_lines.pop(0)
fields = line.rstrip().split('\t')
chrom, feature_class, feature_type, start_str, end_str, junk, strand, junk, tags = fields
# Removing chr from the chromosome name to uniform different formats of gtf files, taht might or might not have the prefix "chr"
if chrom[:3].lower() == "chr":
chrom = chrom[3:]
start = int(start_str)
end = int(end_str)
chromstrand: str = chrom + strand
# Set this tu the current entry
curr_chrom: str = chrom
curr_feature_class: str = feature_class
curr_feature_type: str = feature_type
curr_start: int = start
curr_end: int = end
curr_n: int = 1
curr_strand: str = strand
curr_tags: str = tags
curr_chromstrand: str = chromstrand
for line in gtf_lines:
fields = line.rstrip().split('\t')
chrom, feature_class, feature_type, start_str, end_str, junk, strand, junk, tags = fields
# Removing chr from the chromosome name to uniform different formats of gtf files, taht might or might not have the prefix "chr"
if chrom[:3].lower() == "chr":
chrom = chrom[3:]
start = int(start_str)
end = int(end_str)
chromstrand = chrom + strand
# On chromosome or strand change: save and clean after yourself
if chromstrand != curr_chromstrand:
self.mask_ivls_by_chromstrand[curr_chromstrand] = repeat_ivls_list
repeat_ivls_list = []
curr_chrom = chrom
curr_strand = strand
curr_chromstrand = curr_chrom + curr_strand
# If there is no overlap/contiguity within a certain tolerance with the next
if start > curr_end + tolerance:
# Close and store the previus interval
repeat_ivls_list.append(vcy.Feature(start=curr_start, end=curr_end, kind=ord("r"), exin_no=curr_n))
# NOTE exin_no is being used to store curr_n, and kind could be used to store tag for some extra memory cost
# Remember the newly parsed interval
curr_start = start
curr_end = end
curr_n = 1 # number of original repeat regions included
# this is extra information that right now is not stored in vcy.Feature (not to waste memory) since is not used
curr_feature_class = feature_class
curr_feature_type = feature_type
curr_tags = tags
else:
# Extend the masked interval!
curr_end = end
curr_n += 1
# this is extra information that right now is not saved (not to waste memory) since is not used
gap = start - curr_end
curr_tags = f"{curr_tags} gap {gap}; {tags}" if gap > 0 else curr_tags + tags
n = 0
for chromstrand, feature_list in self.mask_ivls_by_chromstrand.items():
feature_list.sort() # relies on the __lt__ method of vcy.Feature
n += len(feature_list)
logging.debug(f'Processed masked annotation .gtf and generated {n} intervals to mask!')
return self.mask_ivls_by_chromstrand
def assign_indexes_to_genes(self, features: Dict[str, vcy.TranscriptModel]) -> None:
"""Assign to each newly encoutered gene an unique index corresponding to the output matrix column ix
"""
logging.debug("Assigning indexes to genes")
for name, trmodel in features.items():
if trmodel.geneid in self.geneid2ix:
if self.genes[trmodel.geneid].start > trmodel.start:
self.genes[trmodel.geneid].start = trmodel.start
if self.genes[trmodel.geneid].end < trmodel.end:
self.genes[trmodel.geneid].end = trmodel.end
else:
self.geneid2ix[trmodel.geneid] = len(self.geneid2ix)
self.genes[trmodel.geneid] = vcy.GeneInfo(trmodel.genename, trmodel.geneid, trmodel.chromstrand, trmodel.start, trmodel.end)
def read_transcriptmodels(self, gtf_file: str) -> Dict[str, Dict[str, vcy.TranscriptModel]]:
"""Reads transcript models from a sorted .gtf file
Arguments
---------
gtf_file: str
Path to the sorted gtf file
Returns
-------
annotations_by_chrm_strand: Dict[str, List[vcy.TrancriptModel]]
A dictionary key: chromosome+strand value: list of trascript models
(The reference is returned but an internal attribure self.annotations_by_chrm_strand is kept)
There will exist an object vcy.Features for the same exon appearing in a different vcy.TranscriptModel. (his is desired)
"""
# Define the regexes for the parsing
regex_trid = re.compile('transcript_id "([^"]+)"')
regex_trname = re.compile('transcript_name "([^"]+)"')
regex_geneid = re.compile('gene_id "([^"]+)"')
regex_genename = re.compile('gene_name "([^"]+)"')
regex_exonno = re.compile('exon_number "*?([\w]+)') # re.compile('exon_number "([^"]+)"')
# Initialize containers
# headerlines: List[str] = []
gtf_lines = [line for line in open(gtf_file) if not line.startswith('#')]
def sorting_key(entry: str) -> Tuple[str, bool, int, str]:
"""This sorting strategy is equivalent to sort -k1,1 -k7,7 -k4,4n"""
x = entry.split("\t")
return (x[0], x[6] == "+", int(x[3]), entry) # The last element of the touple corresponds to the `last resort comparison`
gtf_lines = self.peek_and_correct(gtf_lines)
gtf_lines = sorted(gtf_lines, key=sorting_key)
curr_chromstrand = None
features: Dict[str, vcy.TranscriptModel] = OrderedDict()
# Loop throug gtf file (assumes it is ordered)
for nth_line, line in enumerate(gtf_lines):
# Deal with headers
# if line.startswith('#'):
# headerlines.append(line)
# continue
fields = line.rstrip().split('\t')
chrom, feature_class, feature_type, start_str, end_str, junk, strand, junk, tags = fields
# Deal with possible incongruences between .gtf and bam file chromosome naming
# We keep the name of the chromosome removing the chr from the name and removing part after the . if present
if "chr" in chrom[:4]:
chrom = chrom[3:] # NOTE before it was chrom[3:].split(".")[0]
else:
pass # NOTE before it was chrom.split(".")[0]
# A new chromosome/strand encountered
if chrom + strand != curr_chromstrand:
if curr_chromstrand is not None: # Every time with exception with first and the last chromosome
if not chrom + strand not in self.annotations_by_chrm_strand:
# NOTE this is not enough as a check but it will detect with few checks if file is not sorted at all
raise IOError(f"Genome annotation gtf file is not sorted correctly! Run the following command:\nsort -k1,1 -k7,7 -k4,4n -o [GTF_OUTFILE] [GTF_INFILE]")
else:
logging.debug(f"Done with {curr_chromstrand} [line {nth_line-1}]")
self.assign_indexes_to_genes(features)
self.annotations_by_chrm_strand[curr_chromstrand] = features
logging.debug(f"Seen {len(self.geneid2ix)} genes until now")
features = OrderedDict()
logging.debug(f"Parsing Chromosome {chrom} strand {strand} [line {nth_line}]")
curr_chromstrand = chrom + strand
if feature_type in ("exon"):
trid = regex_trid.search(tags).group(1)
_trname_search = regex_trname.search(tags)
if _trname_search is None:
trname = trid
else:
trname = _trname_search.group(1)
geneid = regex_geneid.search(tags).group(1)
_genename_search = regex_genename.search(tags)
if _genename_search is None:
genename = geneid
else:
genename = _genename_search.group(1)
try:
exonno = regex_exonno.search(tags).group(1)
except AttributeError:
# NOTE: Don't try to release this constraint, velocyto relies on it for safe calculations! Rather make a utility script that does putative annotation separatelly.
raise IOError("The genome annotation .gtf file provided does not contain exon_number. `exon_number` is described as a mandatory field by GENCODE gtf file specification and we rely on it for easier processing")
start = int(start_str)
end = int(end_str)
chromstrand = chrom + strand
try:
features[trid].append_exon(vcy.Feature(start=start, end=end, kind=ord("e"), exin_no=exonno))
except KeyError:
features[trid] = vcy.TranscriptModel(trid=trid, trname=trname, geneid=geneid, genename=genename, chromstrand=chromstrand)
features[trid].append_exon(vcy.Feature(start=start, end=end, kind=ord("e"), exin_no=exonno))
# Do it for the last chromosome
self.assign_indexes_to_genes(features)
self.annotations_by_chrm_strand[curr_chromstrand] = features
logging.debug(f"Done with {curr_chromstrand} [line {nth_line-1}]")
logging.debug(f"Fixing corner cases of transcript models containg intron longer than {vcy.LONGEST_INTRON_ALLOWED//1000}Kbp")
# Fix corner cases of extremelly long introns ~1Mbp that would be masking genes that are found internally
for tmodels_orddict in self.annotations_by_chrm_strand.values():
for tm in tmodels_orddict.values():
tm.chop_if_long_intron() # Change it in place
# Respect the sorting it had before
# NOTE: not sure it is needed downstream anymore also not sure it guarantees exactly the same order
for chromstrand in self.annotations_by_chrm_strand.keys():
tmp = OrderedDict((i.trid, i) for i in sorted(self.annotations_by_chrm_strand[chromstrand].values()))
self.annotations_by_chrm_strand[chromstrand] = tmp
return self.annotations_by_chrm_strand
def peek_and_correct(self, gtf_lines: List[str]) -> List[str]:
"""Look at the first 20 instances of a list of lines of a gtf file to dermine if exon number is specified as it should.
If econ number is not contained it will infer the exon number sorting the list by lexicographic ordering tr_id, start, end
Arguments
---------
gtf_lines:
a list of the lines of a gtf file
Returns
-------
gtf_lines:
the same list or the list corrected with added a exon number (filtered to contain only exons)
"""
regex_exonno = re.compile('exon_number "*?([\w]+)')
flag = False
# Scan the first 500 lines for an occurrence of exon
for lin in gtf_lines[:500]:
chrom, feature_class, feature_type, start_str, end_str, junk, strand, junk, tags = lin.split("\t")
if feature_type == "exon":
exonno = regex_exonno.search(tags)
if exonno is None:
flag = True
# If at least one exon was missing the exon number create the entry for all the others
if flag:
logging.warning("The entry exon_number was not present in the gtf file. It will be infferred from the position.")
regex_trid = re.compile('transcript_id "([^"]+)"')
min_info_lines_minus: List[List] = []
min_info_lines_plus: List[List] = []
for lin in gtf_lines:
chrom, feature_class, feature_type, start_str, end_str, junk, strand, junk, tags = lin.split("\t")
if feature_type == "exon":
try:
trid = regex_trid.search(tags).group(1)
except AttributeError:
raise AttributeError(f"transcript_id entry not found in line: {lin}")
if strand == "-":
min_info_lines_minus.append([trid, int(start_str), int(end_str), lin])
else:
min_info_lines_plus.append([trid, int(start_str), int(end_str), lin])
min_info_lines_minus = sorted(min_info_lines_minus)
min_info_lines_plus = sorted(min_info_lines_plus)
current_trid = "None"
exon_n = 1
modified_lines_plus: List[str] = []
for i in min_info_lines_plus:
if current_trid != i[0]:
current_trid = i[0]
exon_n = 1
else:
exon_n += 1
modified_lines_plus.append(f'{i[3][:-1]} exon_number "{exon_n}";\n')
exon_n = 1
modified_lines_minus: List[str] = []
for i in min_info_lines_minus[::-1]:
if current_trid != i[0]:
current_trid = i[0]
exon_n = 1
else:
exon_n += 1
modified_lines_plus.append(f'{i[3][:-1]} exon_number "{exon_n}";\n')
return modified_lines_plus + modified_lines_minus
else:
return gtf_lines
def mark_up_introns(self, bamfile: Tuple[str], multimap: bool) -> None:
""" Mark up introns that have reads across exon-intron junctions
Arguments
---------
bamfile: Tuple[str]
path to the bam files to markup
logic: vcy.Logic
The logic object to use, changes in different techniques / levels of strictness
NOTE: Right now it is not used
Returns
-------
Nothing it just add to validation to the vcy.Features
Note
----
Situations not considered:
# If an the exon is so short that is possible to get both exonA-exonB junction and exonB-intronB boundary in the same read
"""
if not self.logic.perform_validation_markup:
return
else:
# Since I support multiple files (Smart seq2 it makes sense here to load the feature indexes into memory)
# NOTE this means that maybe I could do this once at a level above
# NOTE if this is not done in count then I need to bring it before the if/else statement
self.feature_indexes: DefaultDict[str, vcy.FeatureIndex] = defaultdict(vcy.FeatureIndex)
for chromstrand_key, annotions_ordered_dict in self.annotations_by_chrm_strand.items():
self.feature_indexes[chromstrand_key] = vcy.FeatureIndex(sorted(chain.from_iterable(annotions_ordered_dict.values())))
# VERBOSE: dump_list = []
# Read the file
currchrom = ""
set_chromosomes_seen: Set[str] = set()
for r in self.iter_alignments(bamfile, unique=not multimap):
# Don't consider spliced reads (exonic) in this step
# NOTE Can the exon be so short that we get splicing and exon-intron boundary
if r is None:
# This happens only when there is a change of file
currchrom = ""
set_chromosomes_seen = set()
# I need to reset indexes in position before the next file is restarted
# NOTE this is far from optimal for lots of cells
logging.debug("End of file. Reset index: start scanning from initial position.")
for chromstrand_key, annotions_ordered_dict in self.annotations_by_chrm_strand.items():
self.feature_indexes[chromstrand_key].reset()
continue
if r.is_spliced:
continue
# When the chromosome mapping of the read changes, change interval index.
if r.chrom != currchrom:
if r.chrom in set_chromosomes_seen:
raise IOError(f"Input .bam file should be chromosome-sorted. (Hint: use `samtools sort {bamfile}`)")
set_chromosomes_seen.add(r.chrom)
logging.debug(f"Marking up chromosome {r.chrom}")
currchrom = r.chrom
if currchrom + '+' not in self.annotations_by_chrm_strand:
logging.warn(f"The .bam file refers to a chromosome '{currchrom}+' not present in the annotation (.gtf) file")
iif = vcy.FeatureIndex([])
else:
iif = self.feature_indexes[currchrom + '+']
if currchrom + '-' not in self.annotations_by_chrm_strand:
logging.warn(f"The .bam file refers to a chromosome '{currchrom}-' not present in the annotation (.gtf) file")
iir = vcy.FeatureIndex([])
else:
iir = self.feature_indexes[currchrom + '-']
# Consider the correct strand
ii = iif if r.strand == '+' else iir
# VERBOSE: # Look for overlap between the intervals and the read
# VERBOSE: dump_list += ii.mark_overlapping_ivls(r)
ii.mark_overlapping_ivls(r)
# VERBOSE: import pickle
# VERBOSE: pickle.dump(dump_list, open("dump_mark_overlapping_ivls.pickle", "wb"))
def count(self, bamfile: Tuple[str], multimap: bool, cell_batch_size: int=100, molecules_report: bool=False) -> Tuple[Dict[str, List[np.ndarray]], List[str]]:
""" Do the counting of molecules
Arguments
---------
bamfile: str
path to the bam files to markup
cell_batch_size: int, default = 50
it defines whether to require or not exon-intron spanning read to consider an intron valid.
Returns
-------
dict_list_arrays, cell_bcs_order
Note
----
The memory footprint could be reduced allocating scipy sparse arrays
"""
# Initialize variables and containers
self.cell_batch: Set[str] = set()
self.reads_to_count: List[vcy.Read] = []
# self.cells_since_last_count = 0
# Analysis is cell wise so the Feature Index swapping is happening often and it is worth to preload everything in memory
# NOTE: for the features this was already done at markup time, maybe I should just reset them
self.feature_indexes: DefaultDict[str, vcy.FeatureIndex] = defaultdict(vcy.FeatureIndex)
for chromstrand_key, annotions_ordered_dict in self.annotations_by_chrm_strand.items():
self.feature_indexes[chromstrand_key] = vcy.FeatureIndex(sorted(chain.from_iterable(annotions_ordered_dict.values())))
self.mask_indexes: DefaultDict[str, vcy.FeatureIndex] = defaultdict(vcy.FeatureIndex)
for chromstrand_key, annotions_list in self.mask_ivls_by_chromstrand.items():
self.mask_indexes[chromstrand_key] = vcy.FeatureIndex(annotions_list) # This suould be sorted
logging.debug(f"Features available for chromosomes : {list(self.feature_indexes.keys())}")
logging.debug(f"Mask available for chromosomes : {list(self.mask_indexes.keys())}")
# Before counting, report how many features where validated
logging.debug(f"Summarizing the results of intron validation.")
n_is_intron = 0
n_is_intron_valid = 0
unique_valid = set()
for chromstrand_key, feature_index in self.feature_indexes.items():
for ivl in feature_index.ivls:
if ivl.kind == ord("i"):
n_is_intron += 1
if ivl.is_validated:
n_is_intron_valid += 1
unique_valid.add((ivl.start, ivl.end))
logging.debug(f"Validated {n_is_intron_valid} introns (of which unique intervals {len(unique_valid)}) out of {n_is_intron} total possible introns (considering each possible transcript models).")
cell_bcs_order: List[str] = []
dict_list_arrays: Dict[str, List[np.ndarray]] = {layer_name: [] for layer_name in self.logic.layers}
nth = 0
# Loop through the aligment of the bamfile
for r in self.iter_alignments(bamfile, unique=not multimap):
if (r is None) or (len(self.cell_batch) == cell_batch_size and r.bc not in self.cell_batch):
# Perfrom the molecule counting
nth += 1
logging.debug(f"Counting for batch {nth}, containing {len(self.cell_batch)} cells and {len(self.reads_to_count)} reads")
dict_layer_columns, list_bcs = self.count_cell_batch()
# This is to avoid crazy big matrix output if the barcode selection is not chosen
if not self.filter_mode:
logging.warning("The barcode selection mode is off, no cell events will be identified by <80 counts")
tot_mol = dict_layer_columns["spliced"].sum(0) + dict_layer_columns["unspliced"].sum(0)
cell_bcs_order += list(np.array(list_bcs)[tot_mol > 80])
for layer_name, layer_columns in dict_layer_columns.items():
dict_list_arrays[layer_name].append(layer_columns[:, tot_mol > 80])
logging.warning(f"{np.sum(tot_mol < 80)} of the barcodes where without cell")
else:
# The normal case
cell_bcs_order += list_bcs
for layer_name, layer_columns in dict_layer_columns.items():
dict_list_arrays[layer_name].append(layer_columns)
self.cell_batch = set()
# Drop the counted reads (If there are no other reference to it) and reset the indexes to 0
self.reads_to_count = []
for chromstrand_key, annotions_ordered_dict in self.annotations_by_chrm_strand.items():
self.feature_indexes[chromstrand_key].reset()
for chromstrand_key, annotions_list in self.mask_ivls_by_chromstrand.items():
self.mask_indexes[chromstrand_key].reset()
if r is not None:
self.cell_batch.add(r.bc)
self.reads_to_count.append(r)
# NOTE: Since iter_allignments is yielding None at each file change (even when only one bamfile) I do not need the following
# logging.debug(f"Counting molecule for last batch of {len(self.cell_batch)}, total reads {len(self.reads_to_count)}")
# spliced, unspliced, ambiguous, list_bcs = self.count_cell_batch()
# cell_bcs_order += list_bcs
# list_spliced_arrays.append(spliced)
# list_unspliced_arrays.append(unspliced)
# list_ambiguous_arrays.append(ambiguous)
# self.cell_batch = set()
# self.reads_to_count = []
logging.debug(f"Counting done!")
return dict_list_arrays, cell_bcs_order
def _count_cell_batch_stranded(self) -> Tuple[Dict[str, np.ndarray], List[str]]:
"""It performs molecule counting for the current batch of cells in the case of stranded method
Returns
-------
dict_layers_columns: Dict[str, np.ndarray]
name_layer->np.ndarray of the batch
idx2bc: List[str]
list of barcodes
NOTE This duplications of method is bad for code mantainance
"""
molitems: DefaultDict[str, vcy.Molitem] = defaultdict(vcy.Molitem)
# Sort similarly to what the sort linux command would do. (implemented using Read.__lt__)
# NOTE NOTE!!!! Here I changed the way to sort because it was using the strand causing to skip a lot of reads in SmartSeq2
self.reads_to_count.sort()
# NOTE: I could start by sorting the reads by chromosome, strand, position but for now let's see if it is fast without doing do
repeats_reads_count = 0
for r in self.reads_to_count:
# Consider the correct strand
ii = self.feature_indexes[r.chrom + r.strand]
iim = self.mask_indexes[r.chrom + r.strand]
# Check if read is fully inside a masked region, in that case skip it
if iim.has_ivls_enclosing(r):
repeats_reads_count += 1 # VERBOSE
continue
# Look for overlap between the intervals and the read
mappings_record = ii.find_overlapping_ivls(r)
if len(mappings_record):
# logging.debug("IN: Non empty mapping record")
bcumi = f"{r.bc}${r.umi}"
molitems[bcumi].add_mappings_record(mappings_record)
# if len(molitems[bcumi].mappings_record):
# logging.debug("OUT: Non empty")
# else:
# logging.debug("OUT: Empty")
logging.debug(f"{repeats_reads_count} reads not considered because fully enclosed in repeat masked regions") # VERBOSE
# initialize np.ndarray
shape = (len(self.geneid2ix), len(self.cell_batch))
dict_layers_columns: Dict[str, np.ndarray] = {}
for layer_name in self.logic.layers:
dict_layers_columns[layer_name] = np.zeros(shape, dtype=self.loom_numeric_dtype, order="C")
bc2idx: Dict[str, int] = dict(zip(self.cell_batch, range(len(self.cell_batch))))
# After the whole file has been read, do the actual counting
failures = 0
counter: Counter = Counter()
for bcumi, molitem in molitems.items():
bc = bcumi.split("$")[0] # extract the bc part from the bc+umi
bcidx = bc2idx[bc]
rcode = self.logic.count(molitem, bcidx, dict_layers_columns, self.geneid2ix)
if rcode:
failures += 1
counter[rcode] += 1
# before it was molitem.count(bcidx, spliced, unspliced, ambiguous, self.geneid2ix)
if failures > (0.25 * len(molitems)):
logging.warn(f"More than 20% ({(100*failures / len(molitems)):.1f}%) of molitems trashed, of those:")
logging.warn(f"A situation where many genes were compatible with the observation in {(100*counter[1] / len(molitems)):.1f} cases")
logging.warn(f"No gene is compatible with the observation in {(100*counter[2] / len(molitems)):.1f} cases")
logging.warn(f"Observation compatible with more genes {(100*counter[3] / len(molitems)):.1f} of the cases")
logging.warn(f"Situation that were not described by the logic in the {(100*counter[4] / len(molitems)):.1f} of the cases")
if self.every_n_report and ((self.report_state % self.every_n_report) == 0):
if self.kind_of_report == "p":
import pickle
first_cell_batch = next(iter(molitems.keys())).split("$")[0]
if not os.path.exists("pickle_dump"):
os.makedirs("pickle_dump")
pickle.dump(molitems, open(f"pickle_dump/molitems_dump_{first_cell_batch}.pickle", "wb"))
pickle.dump(self.reads_to_count, open(f"pickle_dump/reads_to_count{first_cell_batch}.pickle", "wb"))
else:
if not os.path.exists(os.path.join(self.outputfolder, "dump")):
os.makedirs(os.path.join(self.outputfolder, "dump"))
f = h5py.File(os.path.join(self.outputfolder, f"dump/{self.sampleid}.hdf5")) # From the docs: Read/write if exists, create otherwise (default)
if "info/tr_id" not in f:
logging.warning("The hdf5 report is less accurate in reporting exactly all the information than the pickle.")
info_tr_id = []
info_features_gene = []
info_is_last3prime = []
info_is_intron = []
info_start_end = []
info_exino = []
info_strandplus = []
info_chrm = []
for k, v_dict_tm in self.annotations_by_chrm_strand.items():
for v1_tm in v_dict_tm.values():
for v2_ivl in v1_tm:
info_tr_id.append(v2_ivl.transcript_model.trid) # “info/ivls/tr_id“,
info_features_gene.append(v2_ivl.transcript_model.genename) # “info/ivls/features_gene“,
info_is_last3prime.append(v2_ivl.is_last_3prime) # “info/ivls/is_last3prime“
info_is_intron.append(v2_ivl.kind == 105) # “info/ivls/is_intron“,
info_start_end.append((v2_ivl.start, v2_ivl.end)) # “info/ivls/feture_start_end“
info_exino.append(v2_ivl.exin_no) # “info/ivls/exino“
info_strandplus.append(v2_ivl.transcript_model.chromstrand[-1:] == "+") # “info/ivls/strandplus“
info_chrm.append(v2_ivl.transcript_model.chromstrand[:-1]) # “info/ivls/chrm“
self.inv_tridstart2ix: Dict[str, int] = {}
for i in range(len(info_tr_id)):
self.inv_tridstart2ix[f"{info_tr_id[i]}_{info_start_end[i][0]}"] = i
f.create_dataset("info/tr_id", data=np.array(info_tr_id, dtype="S24"),
maxshape=(len(info_tr_id), ), chunks=(500,), compression="gzip", shuffle=False, compression_opts=4)
f.create_dataset("info/features_gene", data=np.array(info_features_gene, dtype="S15"),
maxshape=(len(info_features_gene), ), chunks=(500,), compression="gzip", shuffle=False, compression_opts=4)
f.create_dataset("info/is_last3prime", data=np.array(info_is_last3prime, dtype=bool),
maxshape=(len(info_is_last3prime), ), chunks=(500,), compression="gzip", shuffle=False, compression_opts=4)
f.create_dataset("info/is_intron", data=np.array(info_is_intron, dtype=bool),
maxshape=(len(info_is_intron), ), chunks=(500,), compression="gzip", shuffle=False, compression_opts=4)
f.create_dataset("info/start_end", data=np.array(info_start_end, dtype=np.int64),
maxshape=(len(info_start_end), 2), chunks=(500, 2), compression="gzip", shuffle=False, compression_opts=4)
f.create_dataset("info/exino", data=np.array(info_exino, dtype=np.uint8),
maxshape=(len(info_exino), ), chunks=(500,), compression="gzip", shuffle=False, compression_opts=4)
f.create_dataset("info/strandplus", data=np.array(info_strandplus, dtype=np.bool),
maxshape=(len(info_strandplus), ), chunks=(500,), compression="gzip", shuffle=False, compression_opts=4)
f.create_dataset("info/chrm", data=np.array(info_chrm, dtype="S6"),
maxshape=(len(info_chrm), ), chunks=(500,), compression="gzip", shuffle=False, compression_opts=4)
# cell_name = next(iter(molitems.keys())).split("$")[0]
pos: DefaultDict[str, List[Tuple[int, int]]] = defaultdict(list)
mol: DefaultDict[str, List[int]] = defaultdict(list)
ixs: DefaultDict[str, List[int]] = defaultdict(list)
count_i: int = 0
for mol_bc, molitem in molitems.items():
cell_name = mol_bc.split("$")[0]
try:
for match in next(iter(molitem.mappings_record.items()))[1]:
mol[cell_name].append(count_i)
pos[cell_name].append(match.segment)
ixs[cell_name].append(self.inv_tridstart2ix[f"{match.feature.transcript_model.trid}_{match.feature.start}"])
count_i += 1
except StopIteration:
pass # An empty or chimeric molitem ?
# Do the last cell and close the file
for cell_name in mol.keys():
posA = np.array(pos[cell_name], dtype=np.int32)
ixsA = np.array(ixs[cell_name], dtype=np.intp)
molA = np.array(mol[cell_name], dtype=np.uint32)
f.create_dataset(f'cells/{self.sampleid}_{cell_name}/pos', data=posA, maxshape=posA.shape, chunks=(min(500, posA.shape[0]), 2), compression="gzip", shuffle=False, compression_opts=4)
f.create_dataset(f'cells/{self.sampleid}_{cell_name}/ixs', data=ixsA, maxshape=ixsA.shape, chunks=(min(500, ixsA.shape[0]),), compression="gzip", shuffle=False, compression_opts=4)
f.create_dataset(f'cells/{self.sampleid}_{cell_name}/mol', data=molA, maxshape=molA.shape, chunks=(min(500, molA.shape[0]),), compression="gzip", shuffle=False, compression_opts=4)
f.close()
self.report_state += 1
idx2bc = {v: k for k, v in bc2idx.items()}
return dict_layers_columns, [idx2bc[i] for i in range(len(idx2bc))]
def _count_cell_batch_stranded_discordant(self) -> Tuple[Dict[str, np.ndarray], List[str]]:
"""It performs molecule counting for the current batch of cells in the case of stranded method with discordant masking
Returns
-------
dict_layers_columns: Dict[str, np.ndarray]
name_layer->np.ndarray of the batch
idx2bc: List[str]
list of barcodes
NOTE This duplications of method is bad for code mantainance
"""
molitems: DefaultDict[str, vcy.Molitem] = defaultdict(vcy.Molitem)
# Sort similarly to what the sort linux command would do. (implemented using Read.__lt__)
self.reads_to_count.sort()
# NOTE: I could start by sorting the reads by chromosome, strand, position but for now let's see if it is fast without doing do
repeats_reads_count = 0
for r in self.reads_to_count:
# Consider the correct strand
ii = self.feature_indexes[f"{r.chrom}{r.strand}"]
iir = self.feature_indexes[f"{r.chrom}{reverse(r.strand)}"]
iim = self.mask_indexes[f"{r.chrom}{r.strand}"]
iimr = self.mask_indexes[f"{r.chrom}{reverse(r.strand)}"]
# Check if read is fully inside a masked region, in that case check if it is allowed in the reverse
if iim.has_ivls_enclosing(r):
repeats_reads_count += 1 # VERBOSE
if not iimr.has_ivls_enclosing(r):
mappings_record = iir.find_overlapping_ivls(r)
else:
continue
else:
# Look for overlap between the intervals and the read
mappings_record = ii.find_overlapping_ivls(r)
if len(mappings_record):
# logging.debug("IN: Non empty mapping record")
bcumi = f"{r.bc}${r.umi}"
molitems[bcumi].add_mappings_record(mappings_record)
# if len(molitems[bcumi].mappings_record):
# logging.debug("OUT: Non empty")
# else:
# logging.debug("OUT: Empty")
logging.debug(f"{repeats_reads_count} reads not considered because fully enclosed in repeat masked regions") # VERBOSE
# initialize np.ndarray
shape = (len(self.geneid2ix), len(self.cell_batch))
dict_layers_columns: Dict[str, np.ndarray] = {}
for layer_name in self.logic.layers: