-
Notifications
You must be signed in to change notification settings - Fork 211
/
Copy pathflights2.py
900 lines (763 loc) · 27.5 KB
/
flights2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
# /// script
# requires-python = ">=3.12"
# dependencies = [
# "niquests",
# "polars",
# ]
# ///
"""
Retrieve, extract, transform, and export `BTS`_ (U.S.) `On-Time Flight Performance`_-derived datasets.
See Also
--------
``Flights``
``Spec``
``DateTimeFormat``
.. _BTS:
https://www.transtats.bts.gov/Homepage.asp
.. _On-Time Flight Performance:
https://www.transtats.bts.gov/TableInfo.asp?gnoyr_VQ=FGJ&QO_fu146_anzr=b0-gvzr&V0s1_b0yB=D
"""
from __future__ import annotations
# ruff: noqa: PLC1901
import asyncio
import datetime as dt
import io
import logging
import tomllib
import zipfile
from collections import defaultdict, deque
from collections.abc import Iterable, Sequence
from functools import cached_property
from pathlib import Path
from typing import TYPE_CHECKING, Annotated, Literal
import niquests
import polars as pl
from polars import col
from polars import selectors as cs
if TYPE_CHECKING:
import sys
from collections.abc import Iterator, Mapping
from typing import Any, ClassVar, LiteralString
if sys.version_info >= (3, 13):
from typing import TypeIs
else:
from typing_extensions import TypeIs
logger = logging.getLogger(__name__)
type Rows = Literal[
1_000,
2_000,
5_000,
10_000,
20_000,
100_000,
200_000,
500_000,
1_000_000,
3_000_000,
5_000_000,
10_000_000,
100_000_000,
500_000_000,
1_000_000_000,
]
"""Number of rows to include in the output."""
type Extension = Literal[".arrow", ".csv", ".json", ".parquet"]
"""File extension/output format."""
type Column = Literal[
"date",
"time",
"delay",
"distance",
"origin",
"destination",
"ScheduledFlightDate",
"ScheduledFlightTime",
"DepDelay",
]
"""
Columns available for ``flights`` datasets.
Descriptions
------------
*date*
Either a **datetime-typed** value, or a formatted datetime string
*time*
Either a **time-typed** value, or decimal hours.minutes when using decimal format (e.g., 6.5 for 6:30)
*distance*
Flight distance in miles (integer)
*delay*
Arrival delay in minutes (integer)
*origin*
Origin airport code
*destination*
Destination airport code
*ScheduledFlightDate*
Original scheduled flight date (YYYY-MM-DD)
*ScheduledFlightTime*
Original scheduled departure time (HHMM)
*DepDelay*
Departure delay in minutes (integer)
See Also
--------
- https://www.bts.gov/topics/airlines-and-airports/world-airport-codes
- https://www.transtats.bts.gov/TableInfo.asp?gnoyr_VQ=FGJ&QO_fu146_anzr=b0-gvzr&V0s1_b0yB=D
"""
type YearMonthDay = tuple[int, int, int] | Sequence[int]
"""Arguments passed to ``datetime.date(...)``."""
type IntoDate = dt.date | dt.datetime | YearMonthDay
"""Anything that can be converted into a ``datetime.date``."""
type IntoDateRange = (
tuple[IntoDate, IntoDate] | Mapping[Literal["start", "end"], IntoDate]
)
"""Anything that can be converted into a ``DateRange``."""
def is_chrono_str(s: Any) -> TypeIs[_ChronoFormat]:
return s == "%Y/%m/%d %H:%M" or (isinstance(s, str) and s.startswith("%"))
def is_datetime_format(s: Any) -> TypeIs[DateTimeFormat]:
return s in {"iso", "iso:strict", "decimal"} or is_chrono_str(s) or s is None
type _ChronoFormat = Literal["%Y/%m/%d %H:%M"] | Annotated[LiteralString, is_chrono_str]
"""https://docs.rs/chrono/latest/chrono/format/strftime/index.html"""
type DateTimeFormat = Literal["iso", "iso:strict", "decimal"] | _ChronoFormat | None
"""
Anything that is resolvable to a date/time column transform.
Notes
-----
When not provided:
- {``.arrow``, ``.parquet``} preserve temporal data types on write
- ``.json`` defaults to **"iso"**
- ``.csv`` defaults to **"iso:strict"**
Examples
--------
Each example will use the same input datetime:
from datetime import datetime
datetime(2020, 3, 1, 6, 30, 0)
**"iso"**, **"iso:strict"**: variants of `ISO 8601`_ used in `pl.Expr.dt.to_string`_:
"2020-03-01 06:30:00.000000"
"2020-03-01T06:30:00.000000"
**"decimal"**: represents **time only** with fractional minutes::
6.5 # stored as a float
A format string using `chrono`_ specifiers:
"%Y/%m/%d %H:%M" -> "2020/03/01 06:30"
"%s" -> "1583044200" # UNIX timestamp
"%c" -> "Sun Mar 1 06:30:00 2020"
"%T" -> "06:30:00"
"%Y-%B-%d" -> "2020-March-01"
"%e-%b-%Y" -> " 1-Mar-2020"
.. _ISO 8601:
https://en.wikipedia.org/wiki/ISO_8601
.. _pl.Expr.dt.to_string:
https://docs.pola.rs/api/python/stable/reference/expressions/api/polars.Expr.dt.to_string.html
.. _chrono:
https://docs.rs/chrono/latest/chrono/format/strftime/index.html
"""
BASE_URL: LiteralString = "https://www.transtats.bts.gov/"
ROUTE_ZIP: LiteralString = f"{BASE_URL}PREZIP/"
REPORTING_PREFIX: LiteralString = (
"On_Time_Reporting_Carrier_On_Time_Performance_1987_present_"
)
ZIP: Literal[".zip"] = ".zip"
PARQUET: Literal[".parquet"] = ".parquet"
PATTERN_PARQUET: LiteralString = f"*{REPORTING_PREFIX}*{PARQUET}"
COLUMNS_DEFAULT: Sequence[Column] = (
"date",
"delay",
"distance",
"origin",
"destination",
)
"""Copied default from ``flights.py``."""
SCAN_SCHEMA: pl.Schema = pl.Schema({
"FlightDate": pl.Date,
"CRSDepTime": pl.String,
"DepTime": pl.String,
"DepDelay": pl.Float64,
"ArrDelay": pl.Float64,
"Distance": pl.Float64,
"Origin": pl.String,
"Dest": pl.String,
"Cancelled": pl.Float64,
})
def _approx_latest(*, months_ago: int) -> dt.date:
# Very loose, aiming for the last day of `today - months_ago`
# In December, months_ago = 3 -> (2024, 8, 31)
weeks_ago = dt.timedelta(weeks=months_ago * 4)
current_month_start = dt.date.today().replace(day=1)
return (current_month_start - weeks_ago).replace(day=1) - dt.timedelta(days=1)
def _into_date(obj: IntoDate, /) -> dt.date:
"""Normalize date input."""
if isinstance(obj, dt.datetime):
return obj.date()
if isinstance(obj, dt.date):
return obj
if isinstance(obj, Sequence):
match obj:
case int(year), int(month), int(day):
return dt.date(year, month, day)
case int(year), int(month):
return dt.date(year, month, 1)
case (int(year),):
return dt.date(year, 1, 1)
case _:
raise TypeError(type(obj))
else:
raise TypeError(type(obj))
class DateRange:
"""
Matching a time period w/ required files.
- Validates provided dates are in range of known data
- Converts (*start*, *end*) to monthly file names
- Acts as a key, for detecting unique periods
Notes
-----
`Latest Available Data`_ extends to roughly 2-4 months before current date
.. _Latest Available Data:
https://www.transtats.bts.gov/TableInfo.asp?gnoyr_VQ=FGJ&QO_fu146_anzr=b0-gvzr&V0s1_b0yB=D
"""
_EARLIEST: ClassVar[dt.date] = dt.date(1987, 10, 1)
_LATEST: ClassVar[dt.date] = _approx_latest(months_ago=3)
def __init__(self, start: IntoDate, end: IntoDate, /) -> None:
start = _into_date(start)
end = _into_date(end)
if start >= end:
msg = (
f"Unable to generate negative date range:\n"
f"{start!r} - {end!r}\n\n"
f"Try reversing `start`, `end`."
)
raise TypeError(msg)
elif start < self._EARLIEST or end > self._LATEST:
msg = (
f"Unable to request data for date range:\n"
f"{start!r} - {end!r}\n\n"
f"Available data spans {self._EARLIEST!r} - {self._LATEST!r}."
)
raise TypeError(msg)
self.start: pl.Expr = pl.lit(start)
self.end: pl.Expr = pl.lit(end)
@classmethod
def from_dates(cls, dates: IntoDateRange, /) -> DateRange:
"""Construct from a sequence/mapping defined time period."""
match dates:
case (start, end):
return cls(start, end)
case {"start": start, "end": end}:
return cls(start, end)
case _:
raise TypeError(type(dates))
@property
def monthly(self) -> pl.Expr:
"""Generate a date range expression, with a monthly interval."""
return pl.date_range(self.start, self.end, interval="1mo").alias("date")
@cached_property
def file_stems(self) -> Sequence[str]:
"""Returns the file stems of all sources the input would require."""
date = col("date")
year, month = (date.dt.year().alias("year"), date.dt.month().alias("month"))
return tuple(
pl.select(self.monthly)
.lazy()
.select(_file_stem_source(year, month).sort_by(date))
.collect()
.to_series()
.to_list()
)
def paths(self, input_dir: Path, /) -> list[Path]:
return [input_dir / f"{stem}{PARQUET}" for stem in self.file_stems]
def __eq__(self, other: Any, /) -> bool:
"""Two ``DateRange``s are equivalent if they would require the same files."""
return isinstance(other, DateRange) and self.file_stems == other.file_stems
def __hash__(self) -> int:
return hash(self.file_stems)
class Spec:
"""
Describes a target output file, based on flights data.
Parameters
----------
range
Time period used for source data.
The end date is rounded up to the end of the month.
n_rows
Number of rows to include in the output.
suffix
File extension/output format.
dt_format
Datetime conversion for semi-structured outputs,
see ``DateTimeFormat`` doc.
columns
Columns included in the output.
"""
_name_prefix: ClassVar[Literal["flights-"]] = "flights-"
def __init__(
self,
range: DateRange | IntoDateRange,
n_rows: Rows,
suffix: Extension,
dt_format: DateTimeFormat = None,
columns: Sequence[Column] = COLUMNS_DEFAULT,
) -> None:
if {"date", "time"}.isdisjoint(columns):
msg = (
f"Must specify one of {['date', 'time']!r} columns, "
f"but got:\n{columns!r}"
)
raise TypeError(msg)
if not is_datetime_format(dt_format):
msg = f"Unrecognized datetime format: {dt_format!r}"
raise TypeError(msg)
self.range: DateRange = (
range if isinstance(range, DateRange) else DateRange.from_dates(range)
)
self.n_rows: Rows = n_rows
self.suffix: Extension = suffix
self.dt_format: DateTimeFormat = dt_format
self.columns: Sequence[Column] = columns
@classmethod
def from_dict(cls, mapping: Mapping[str, Any], /) -> Spec:
"""Construct from a toml table definition."""
match mapping:
case {"range": (start, end), **rest} if {"start", "end"}.isdisjoint(rest):
range = start, end
case {"start": start, "end": end, **rest} if {"range"}.isdisjoint(rest):
range = start, end
case _:
msg = (
"Must provide start/end dates as either:\n"
" - {'range': (..., ...)}\n"
" - {'start': ..., 'end': ...}\n\n"
f"But got:\n{mapping!r}"
)
raise TypeError(msg)
return cls(range, **rest)
@property
def name(self) -> str:
"""
Encodes a short form of ``n_rows`` into the file name.
Examples
--------
Note that the final name depends on ``suffix``:
| n_rows | stem |
| -------------- | ------------- |
| 10_000 | "flights-10k" |
| 1_000_000 | "flights-1m" |
| 12_000_000_000 | "flights-12b" |
"""
frac = self.n_rows // 1_000
if frac >= 1_000_000:
s = f"{frac // 1_000_000}b"
elif frac >= 1_000:
s = f"{frac // 1_000}m"
elif frac >= 1:
s = f"{frac}k"
else:
raise TypeError(self.n_rows)
return f"{self._name_prefix}{s}{self.suffix}"
@property
def sort_by(self) -> Column:
"""Temporal column used to sort the transformed data."""
return "time" if "time" in self.columns else "date"
def transform(self, ldf: pl.LazyFrame, /) -> pl.DataFrame:
"""
Materialize the spec for export.
Parameters
----------
ldf
Cleaned source data, spanning ``self.range``.
"""
return (
self._transform_temporal(ldf)
.select(self.columns)
.collect()
.sample(self.n_rows)
.sort(self.sort_by)
)
def write(self, df: pl.DataFrame, output_dir: Path, /) -> None:
"""
Export the materialized spec.
Parameters
----------
df
Materialized spec data, the result of ``self.transform(...)``.
output_dir
Output directory.
"""
fp: Path = output_dir / self.name
fp.touch()
msg = f"Writing {fp.as_posix()!r} ..."
logger.info(msg)
match self.suffix:
case ".arrow":
df.write_ipc(fp, compression="zstd")
case ".csv":
df.write_csv(
fp,
date_format=None,
datetime_format=None,
time_format=None,
null_value=None,
)
case ".json":
df.write_json(fp)
case ".parquet":
df.write_parquet(fp, compression="zstd", compression_level=22)
case _:
fp.unlink()
msg = f"Unexpected extension {self.suffix!r}"
raise NotImplementedError(msg)
def _transform_temporal(self, ldf: pl.LazyFrame, /) -> pl.LazyFrame:
if not self.dt_format:
return ldf
date: pl.Expr = col("date")
if self.dt_format == "decimal":
return ldf.select(
(date.dt.hour() + date.dt.minute() / 60).alias("time"), cs.exclude(date)
)
return ldf.with_columns(date.dt.to_string(self.dt_format))
class SourceMap:
"""
Group specs by common data, scanning a `pl.LazyFrame`_ per-group.
Parameters
----------
input_dir
Directory containing monthly input files.
.. _pl.LazyFrame:
https://docs.pola.rs/api/python/stable/reference/lazyframe/index.html
"""
def __init__(self, input_dir: Path, /) -> None:
self.input_dir: Path = input_dir
self._mapping = defaultdict[DateRange, deque[Spec]](deque)
self._frames: dict[DateRange, pl.LazyFrame] = {}
@classmethod
def from_specs(cls, specs: Iterable[Spec], input_dir: Path, /) -> SourceMap:
"""
Construct with all dependent data grouped and loaded.
Parameters
----------
specs
Target dataset definitions.
input_dir
Directory containing monthly input files.
"""
obj = cls(input_dir)
logger.info("Scanning dependencies ...")
for spec in specs:
obj.add_spec(spec)
msg = f"Finished scanning {len(obj)!r} date ranges."
logger.info(msg)
return obj
def add_spec(self, spec: Spec, /) -> None:
"""
Adds a spec dependency, detecting and loading any shared resources.
Required files for each unique ``DateRange`` are lazily read into a single table.
Parameters
----------
spec
Describes a target output file.
"""
d_range: DateRange = spec.range
if d_range not in self._mapping:
paths = d_range.paths(self.input_dir)
self._frames[d_range] = self.clean(pl.scan_parquet(paths))
self._mapping[d_range].append(spec)
def iter_tasks(self) -> Iterator[tuple[Spec, pl.LazyFrame]]:
"""Yields each spec, with its respective clean source data."""
if not len(self):
msg = (
"Dependent specs have not yet been added.\n\n"
f"Try calling {self.add_spec.__qualname__}(...) first."
)
raise TypeError(msg)
for d_range, frame in self._frames.items():
for spec in self._mapping[d_range]:
yield spec, frame
@staticmethod
def clean(ldf: pl.LazyFrame, /) -> pl.LazyFrame:
"""
Fix *known* dataset issues, coerce types, rename columns.
Parameters
----------
ldf
Monthly datasets, concatenated as a single table.
Notes
-----
- Rows containing cancelled flights or null values are dropped (~3.16%)
- Non compliant* `ISO-8601`_ times are corrected
*Invalid midnight representation prior to `ISO-8601-1-2019-Amd-1-2022`_
**Input schema**:
{
"FlightDate": datetime.date,
"CRSDepTime": str,
"DepTime": str,
"DepDelay": float,
"ArrDelay": float,
"Distance": float,
"Origin": str,
"Dest": str,
"Cancelled": float,
}
**Output schema**:
{
"date": datetime.datetime,
"delay": int,
"distance": int,
"origin": str,
"destination": str,
"ScheduledFlightDate": datetime.date,
"ScheduledFlightTime": datetime.time,
"DepDelay": int,
}
.. _ISO-8601:
https://en.wikipedia.org/wiki/ISO_8601
.. _ISO-8601-1-2019-Amd-1-2022:
https://cdn.standards.iteh.ai/samples/81801/f527872a9fe34281ae3a4af8e730f3f8/ISO-8601-1-2019-Amd-1-2022.pdf#page=8
"""
cancelled = col("Cancelled").cast(bool)
flight_date = col("FlightDate")
dep_time = col("DepTime")
times = cs.ends_with("DepTime")
wrap_midnight = times.str.replace("2400", "0000").str.to_time("%H%M")
datetime = flight_date.dt.combine(dep_time)
flight_date_corrected = (
pl.when(dep_time == pl.time(0, 0, 0, 0))
.then(datetime.dt.offset_by("1d"))
.otherwise(datetime)
)
return (
ldf.filter(
~pl.any_horizontal(cancelled, dep_time == "", cs.float().is_null())
)
.with_columns(wrap_midnight, cs.float().cast(int))
.select(
flight_date_corrected.alias("date"),
col("ArrDelay").alias("delay"),
col("Distance", "Origin").name.to_lowercase(),
col("Dest").alias("destination"),
flight_date.alias("ScheduledFlightDate"),
col("CRSDepTime").alias("ScheduledFlightTime"),
"DepDelay",
)
)
def __len__(self) -> int:
return len(self._frames)
class Flights:
"""
Orchestrates flights dataset generation.
Parameters
----------
specs
Target dataset definitions.
input_dir
Directory to store monthly input files.
output_dir
Directory to write realised specs to.
Notes
-----
- Detecting & downloading dependencies
- Sharing common data
- Extracting & concatenating
- Transforms to meet a given spec
- Writing to target formats
Examples
--------
Specs can be defined programatically:
>>> from pathlib import Path
>>> input_dir = Path.cwd()
>>> output_dir = Path.cwd() / "output"
>>> date_range = DateRange((2001, 1), (2001, 12))
>>> prog = Flights([
... Spec(date_range, 5_000, ".csv", dt_format="iso:strict"),
... Spec(date_range, 20_000, ".parquet"),
... Spec(
... date_range,
... 200_000,
... ".json",
... dt_format="%Y/%m/%d %H:%M",
... columns=("date", "origin", "destination"),
... ),
... Spec(((2001, 1, 1), (2001, 3, 31)), 100_000, ".arrow"),
... ])
>>> prog.run() # doctest: +SKIP
Or they can be loaded in from a ``.toml`` file:
>>> source = Path.cwd() / "source.toml"
>>> decl = Flights.from_toml(source, input_dir, output_dir) # doctest: +SKIP
>>> decl.run() # doctest: +SKIP
"""
input_dir: Path
output_dir: Path
specs: Sequence[Spec]
sources: SourceMap
def __init__(
self, specs: Sequence[Spec], input_dir: str | Path, output_dir: str | Path
) -> None:
self.input_dir = Path(input_dir)
self.output_dir = Path(output_dir)
self.input_dir.mkdir(exist_ok=True)
self.output_dir.mkdir(exist_ok=True)
self.specs = specs
@classmethod
def from_toml(
cls,
source: str | Path,
/,
input_dir: str | Path | None,
output_dir: str | Path | None,
) -> Flights:
"""Construct from a toml file."""
fp = Path(source)
msg = f"Reading specs from {fp.as_posix()!r}"
logger.info(msg)
mapping = tomllib.loads(fp.read_text("utf-8"))
if specs_array := mapping.get("specs"):
return cls(
specs=[Spec.from_dict(spec) for spec in specs_array],
input_dir=input_dir or mapping["input_dir"],
output_dir=output_dir or mapping["output_dir"],
)
msg = (
f"Expected to find an array of tables keyed to `'specs'`, but got\n"
f"{mapping!r}"
)
raise TypeError(msg)
def __iter__(self) -> Iterator[Spec]:
yield from self.specs
@property
def ranges(self) -> pl.LazyFrame:
return pl.select(pl.concat(spec.range.monthly for spec in self), eager=False)
@property
def _required_stems(self) -> set[str]:
date = col("date")
return set(
self.ranges.select(
date.dt.year().alias("year"), date.dt.month().alias("month")
)
.unique()
.select(_file_stem_source("year", "month"))
.collect()
.to_series()
.to_list()
)
@property
def _existing_stems(self) -> set[str]:
it = self.input_dir.glob(PATTERN_PARQUET)
return {_without_suffixes(fp.name) for fp in it}
@property
def missing_stems(self) -> set[str]:
missing = self._required_stems - self._existing_stems
if n := len(missing):
msg = f"Missing {n} sources"
logger.info(msg)
if n >= 5:
logger.warning("Downloads may exceed 100MB")
if n >= 11:
logger.warning("Total number of rows will exceed 5_000_000")
return missing
async def _download_sources_async(self, names: Iterable[str], /) -> list[Path]:
"""Request, write missing data."""
session = niquests.AsyncSession(base_url=ROUTE_ZIP)
aws = (_request_async(session, name) for name in names)
buffers = await asyncio.gather(*aws)
writes = (_write_zip_to_parquet_async(self.input_dir, buf) for buf in buffers)
return await asyncio.gather(*writes)
def download_sources(self) -> None:
"""
Ensure all required source data is saved to ``self.input_dir``.
Any month(s) that are missing will be requested from `transtats`_.
.. _transtats:
https://www.transtats.bts.gov
"""
logger.info("Detecting required sources ...")
if missing := self.missing_stems:
asyncio.run(self._download_sources_async(missing))
logger.info("Successfully downloaded all missing sources.")
else:
logger.info("Sources already downloaded.")
def run(self) -> None:
"""Top-level command providing fully managed data collection, transformation and export."""
logger.info("Starting job ...")
self.download_sources()
self.sources = SourceMap.from_specs(self, self.input_dir)
for spec, frame in self.sources.iter_tasks():
result = spec.transform(frame)
spec.write(result, self.output_dir)
logger.info("Finished job.")
async def _request_async(session: niquests.AsyncSession, name: str, /) -> io.BytesIO:
name = f"{_without_suffixes(name)}{ZIP}"
msg = f"Requesting {name!r} ..."
logger.info(msg)
async with session:
response = await session.get(name)
if response.ok and (content := response.content):
buf = io.BytesIO()
buf.write(content)
msg = f"Successful {name!r}"
logger.info(msg)
return buf
msg = f"Failed for {name!r}"
raise NotImplementedError(msg)
def _write_zip_to_parquet(input_dir: Path, buf: io.BytesIO, /) -> Path:
"""
Extract inner ``.csv`` from ``.zip``, write to ``.parquet``of the same name.
Parameters
----------
input_dir
Directory to store monthly input files.
buf
Buffer containing the zipped response.
Notes
-----
- We pay the *decompress*->*compress* cost only **once** per-download
- Only the subset of columns defined in ``SCAN_SCHEMA`` are preserved
- Further reduces file size
- Also, some unused columns contain invalid utf8 values
Original file:
On_Time_Reporting_Carrier_On_Time_Performance_1987_present_YYYY_M.zip
├──On_Time_Reporting_Carrier_On_Time_Performance_(1987_present)_YYYY_M.csv
└──readme.html
Result file:
On_Time_Reporting_Carrier_On_Time_Performance_1987_present_YYYY_M.parquet
Size comparison:
| format | min (KB) | max (KB) |
| -------- | -------- | --------- |
| .parquet | 1_800 | 3_000 |
| .zip | 15_000 | 30_000 |
| .csv | 200_000 | 250_000 |
"""
zip_csv = next(zipfile.Path(zipfile.ZipFile(buf)).glob("*.csv"))
stem = zip_csv.at.replace("(", "").replace(")", "")
output = (input_dir / stem).with_suffix(".parquet")
output.touch()
msg = f"Writing {output.as_posix()!r}"
logger.debug(msg)
with zip_csv.open("rb") as strm:
ldf = pl.scan_csv(
strm,
try_parse_dates=True,
schema_overrides=SCAN_SCHEMA,
encoding="utf8-lossy",
).select(SCAN_SCHEMA.names())
ldf.collect().write_parquet(output, compression="zstd", compression_level=17)
return output
async def _write_zip_to_parquet_async(input_dir: Path, buf: io.BytesIO, /) -> Path:
"""
Wraps ``_write_zip_to_parquet`` to run in a separate thread.
- **Greatly** reduces the cost of the decompress > compress operations
- During testing, each write would block for ~10s
"""
return await asyncio.to_thread(_write_zip_to_parquet, input_dir, buf)
def _file_stem_source[T: (str, pl.Expr)](year: T, month: T, /) -> pl.Expr:
"""Returns an expression that composes the file stem for a single month."""
return pl.concat_str(pl.lit(REPORTING_PREFIX), year, pl.lit("_"), month)
def _without_suffixes[T: (str, Path)](source: T, /) -> T:
"""Ensure all suffixes (not just the last) are removed."""
if isinstance(source, str):
return source.removesuffix("".join(Path(source).suffixes))
return Path(str(source).removesuffix("".join(source.suffixes)))
def main() -> None:
logging.basicConfig(level=logging.INFO)
repo_root = Path(__file__).parent.parent
source_toml = repo_root / "_data" / "flights.toml"
app = Flights.from_toml(
source_toml,
input_dir=Path.home() / ".vega_datasets",
output_dir=repo_root / "data",
)
app.run()
if __name__ == "__main__":
main()