-
Notifications
You must be signed in to change notification settings - Fork 0
/
localthickness.py
executable file
·550 lines (440 loc) · 18.6 KB
/
localthickness.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
import numpy as np
import scipy.ndimage
import matplotlib.pyplot as plt
import matplotlib.colors
import edt
#%% FUNCTIONS FOR COMPUTING LOCAL THICKNESS IN 2D AND 3D
def local_thickness(B, scale=1, mask=None):
"""
Computes local thickness in 2D or 3D, using a basic or a scaled approach.
@author: [email protected], [email protected]
Arguments:
B: binary 2D or 3D image.
scale: downscaling factor, e.g. 0.5 for halving each dim of the image.
mask: binary mask of the same size of the image defining parts of the
image to be included in the computation of the local thickness.
Returns: Local thickness of the same size as B.
"""
if scale==1:
return local_thickness_basic(B, mask)
else:
return local_thickness_scaled(B, scale, mask)
def local_thickness_basic(B, mask=None, given_dist=False):
"""
Computes local thickness in 2D or 3D (without scaling).
"""
dilate = {2: dilate2d, 3: dilate3d}[B.ndim]
# distance field, if not already given distances
if not given_dist:
out = edt.edt(B)
else:
out = B
if mask is not None:
out = out * mask
# iteratively dilate the distance field starting with max value
for r in range(0, int(out.max())):
temp = dilate(out)
change = out > r
np.copyto(out, temp, where=change)
return out
def local_thickness_scaled(B, scale=0.5, mask=None):
"""
Computes local thickness in 2D or 3D using scaled approach.
"""
dilate = {2: dilate2d, 3: dilate3d}[B.ndim]
dim = B.shape # original image dimension
dim_s = tuple(int(scale*d) for d in dim) # dowscaled image dimension
c = coords(dim, dim_s)
dist = edt.edt(B)
# downscale (order=0 is nearest-neighbor) and masking
if mask is None:
mask_s = None
else:
dist = dist * mask
mask_s = scipy.ndimage.map_coordinates(mask, c, order=0)
dist_s = scipy.ndimage.map_coordinates(dist, c, order=0) * scale
# compute local thickness for downscaled
out = local_thickness_basic(dist_s, mask=mask_s, given_dist=True)
# free up some memery (does this make difference?)
del dist_s
del mask_s
# flow-over boundary to avoid blend across boundary, will mask later
B_s = scipy.ndimage.map_coordinates(B, c, order=0)
temp = dilate(out)
out[~B_s] = temp[~B_s]
# free up some memery (does this make difference?)
del B_s
# upscale, order=1 is bi-linear
out = scipy.ndimage.map_coordinates(out, coords(dim_s, dim), order=1)
out *= (1/scale)
out *= B
# mask output
if mask is not None:
out *= mask
return out
def coords(old, new):
'''Query coordinates when rescaling the image of shape old to shape new.
Made to be used with ndimage.map_coordianges for rescaling images.
'''
if len(old)==3:
c = np.mgrid[0 : old[0]-1 : new[0] * 1j, 0 : old[1]-1 : new[1] * 1j,
0 : old[2]-1 : new[2] * 1j]
elif len(old)==2:
c = np.mgrid[0: old[0]-1 : new[0] * 1j, 0 : old[1]-1 : new[1] * 1j]
else:
return
# we had numerical problems so I make sure that we stay inside the image
for i in range(len(c)):
c[i] = np.clip(c[i], 0, old[i] - 1)
return c
def dilate3d(vol):
''' Dilation with 1-sphere approximated with small kernels.'''
IDX = [None] * 3
# Displacements left-right, to-from, up-down (6 voxels
# or a voxel in each cube face)
IDX[0] = [[0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0],
[0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0],
[1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1]]
# Face-diagonal displacements (4 voxels in each of 3 planes
# or a voxel in each cube edge)
IDX[1] = [[0, -1, 0, 0, 0, -1, 1, 0, 0, 0, 1, 0],
[0, 0, 0, -1, 0, -1, 0, 0, 1, 0, 1, 0],
[0, 0, 1, 0, 0, -1, 0, 0, 0, -1, 1, 0],
[1, 0, 0, 0, 0, -1, 0, -1, 0, 0, 1, 0],
[0, -1, 0, -1, 0, 0, 1, 0, 1, 0, 0, 0],
[0, -1, 1, 0, 0, 0, 1, 0, 0, -1, 0, 0],
[1, 0, 0, -1, 0, 0, 0, -1, 1, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0, -1, 0, -1, 0, 0],
[0, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1],
[0, 0, 0, -1, 1, 0, 0, 0, 1, 0, 0, -1],
[0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, -1],
[1, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, -1]]
# Body-diagonal displacements (a voxel in each cube corner)
IDX[2] = [[0, -1, 0, -1, 0, -1, 1, 0, 1, 0, 1, 0],
[0, -1, 1, 0, 0, -1, 1, 0, 0, -1, 1, 0],
[1, 0, 0, -1, 0, -1, 0, -1, 1, 0, 1, 0],
[1, 0, 1, 0, 0, -1, 0, -1, 0, -1, 1, 0],
[0, -1, 0, -1, 1, 0, 1, 0, 1, 0, 0, -1],
[0, -1, 1, 0, 1, 0, 1, 0, 0, -1, 0, -1],
[1, 0, 0, -1, 1, 0, 0, -1, 1, 0, 0, -1],
[1, 0, 1, 0, 1, 0, 0, -1, 0, -1, 0, -1]]
W = [np.sqrt(6) / (np.sqrt(6) + np.sqrt(3) + np.sqrt(2)),
np.sqrt(3) / (np.sqrt(6) + np.sqrt(3) + np.sqrt(2)),
np.sqrt(2) / (np.sqrt(6) + np.sqrt(3) + np.sqrt(2))]
d, r, c = vol.shape
out = np.zeros(vol.shape)
for w, idx in zip(W, IDX):
temp = vol.copy()
for i in idx:
temp[i[0]:d+i[1], i[2]:r+i[3], i[4]:c+i[5]] = np.maximum(
temp[i[0]:d+i[1], i[2]:r+i[3], i[4]:c+i[5]],
vol[i[6]:d+i[7], i[8]:r+i[9], i[10]:c+i[11]])
out += w * temp
return out
def dilate2d(vol):
''' Dilation with 1-disc approximated with small kernels.'''
IDX = [None] * 2
IDX[0] = [[0, -1, 0, 0, 1, 0, 0, 0],
[0, 0, 0, -1, 0, 0, 1, 0],
[1, 0, 0, 0, 0, -1, 0, 0],
[0, 0, 1, 0, 0, 0, 0, -1]]
IDX[1] = [[0, -1, 0, -1, 1, 0, 1, 0],
[1, 0, 0, -1, 0, -1, 1, 0],
[0, -1, 1, 0, 1, 0, 0, -1],
[1, 0, 1, 0, 0, -1, 0, -1]]
W = [np.sqrt(2) / (1+np.sqrt(2)),
1 / (1+np.sqrt(2))]
r, c = vol.shape
out = np.zeros(vol.shape)
for w, idx in zip(W, IDX):
temp = vol.copy()
for i in idx:
temp[i[0]:r+i[1], i[2]:c+i[3]] = np.maximum(
temp[i[0]:r+i[1], i[2]:c+i[3]], vol[i[4]:r+i[5], i[6]:c+i[7]])
out += w * temp
return out
def local_thickness_conventional(B, mask=None, verbose=False):
"""
Computes local thickness in 2D or 3D using the conventional approach.
VERY SLOW, NOT TESTED, USE WITH CAUTION!!!!
THIS IS JUST FOR COMPARISON!!
@author: [email protected], [email protected]
Arguments: B - binary 2D or 3D image.
Returns: Local thickness of the same size as B.
"""
import skimage.morphology # imported here since not used elsewhere
# distance field
df = edt.edt(B)
if mask is not None:
df = df * mask
# image that will be updated
out = np.copy(df)
# iteratively dilate the distance field starting with max value
for r in range(1, int(df.max()) + 1):
if verbose:
print(f'Dilating with radius {r} of {int(np.max(df))}')
if B.ndim==2:
selem = skimage.morphology.disk(r)
elif B.ndim==3:
selem = skimage.morphology.ball(r)
df[df < r] = 0
temp = skimage.morphology.dilation(df, footprint=selem)
out = np.maximum(out, temp)
out *= B
if mask is not None:
out *= mask
return out
#%% VISUALIZATION FUNCTIONS
def mixed_colors(N, bg=0.5, bg_alpha=0.5):
'''Colormap with permuted jet colors.'''
rng = np.random.default_rng(2022)
colors = plt.cm.jet(np.linspace(0, 1, N))
colors = rng.permutation(colors)
colors = np.vstack((np.array([bg] * 3 + [bg_alpha]), colors))
cmap = matplotlib.colors.ListedColormap(colors)
return cmap
def black_plasma(bg=0, bg_alpha=1):
''' Matplotlib colormap often used for local thickness.
bg: background color (default black).
bg_alpha: background alpha value (default opaque).
'''
colors = plt.cm.plasma(np.linspace(0, 1, 256))
colors[:1, :] = np.array([bg] * 3 + [bg_alpha])
cmap = matplotlib.colors.ListedColormap(colors)
return cmap
def white_viridis():
'''Another colormap useful for showing both thickness and separation.'''
colors = np.flip(plt.cm.viridis(np.linspace(0, 1, 256)), axis=0)
colors[:1, :] = np.array([1, 1, 1, 1])
cmap = matplotlib.colors.ListedColormap(colors)
return cmap
def pl_black_plasma():
'''Colormap in plotly format'''
c = black_plasma()(np.linspace(0, 1, 256))[:, 0:3]
pl_colorscale = []
for i in range(256):
pl_colorscale.append([i/255, f'rgb({c[i,0]},{c[i,1]},{c[i,2]})'])
return pl_colorscale
def view_thickness_slice(z, T, vmax):
plt.imshow(T[z], cmap=black_plasma(), vmin=0, vmax=vmax, interpolation='nearest')
plt.title(f'slice z={z}')
plt.show()
def arrow_navigation(event, z, Z):
if event.key == "up" or event.key.lower()=='w':
z = min(z+1, Z-1)
elif event.key == 'down' or event.key.lower()=='z':
z = max(z-1, 0)
elif event.key == 'right' or event.key.lower()=='d':
z = min(z+10, Z-1)
elif event.key == 'left' or event.key.lower()=='a':
z = max(z-10, 0)
elif event.key == 'pagedown' or event.key.lower()=='x':
z = min(z+50, Z-1)
elif event.key == 'pageup' or event.key.lower()=='e':
z = max(z-50, 0)
return z
def show_vol(V, cmap=plt.cm.gray, vmin=None, vmax=None):
"""
Shows volumetric data for interactive inspection.
Whether it works depends on matplotlib backend.
@author: vand at dtu dot dk
"""
def update_drawing():
ax.images[0].set_array(V[z])
ax.set_title(f'slice z={z}')
fig.canvas.draw()
def key_press(event):
nonlocal z
z = arrow_navigation(event,z,Z)
update_drawing()
Z = V.shape[0]
z = (Z-1)//2
fig, ax = plt.subplots()
if vmin is None:
vmin = np.min(V)
if vmax is None:
vmax = np.max(V)
ax.imshow(V[z], cmap=cmap, vmin=vmin, vmax=vmax)
ax.set_title(f'slice z={z}')
fig.canvas.mpl_connect('key_press_event', key_press)
plt.show()
#%% HELPING FUNCTIONS
def create_test_volume(dim, sigma=7, threshold=0, boundary=0, frame=True, seed=None):
""" Creates test volume for local thickness and porosity analysis.
Arguments:
dim: tuple giving the size of the volume
sigma: smoothing scale, higher value - smoother objects
threshold: a value close to 0, larger value - less material (smaller objects)
boundary: strength of imposing object boundary pulled inwards
frame: one-voxel frame of False
Returns:
a test volume
Example use:
V = create_test_volume((150,100,50), boundary=0.1)
For images (2D) use:
a = create_test_volume((50,50,1), frame=False)[:,:,0]
Author: [email protected], 2019
"""
if len(dim)==3:
r = np.fromfunction(lambda x, y, z:
((x / (dim[0] - 1) - 0.5)**2 + (y / (dim[1] - 1) - 0.5)**2+
(z / (dim[2] - 1) - 0.5)**2)**0.5, dim, dtype=int)
elif len(dim)==2:
r = np.fromfunction(lambda x, y:
((x / (dim[0] - 1) - 0.5)**2 + (y / (dim[1] - 1) - 0.5)**2)**0.5,
dim, dtype=int)
prng = np.random.RandomState(seed) # pseudo random number generator
V = prng.standard_normal(dim)
V[r>0.5] -= boundary;
V = scipy.ndimage.gaussian_filter(V, sigma, mode='constant', cval=-boundary)
V = V>threshold
if frame:
V[[0,-1]] = False
V[:, [0,-1]] = False
if len(dim)==3:
V[:, :, [0,-1]] = False
return V
#%%
def prepare_for_saving(thickness, options):
factor = options.get('factor', 1)
pad = options.get('pad', True)
blend = options.get('blend', True)
dilate = options.get('dilate', True)
maxval = options.get('maxval', thickness.max())
if factor>1:
Z, Y, X = thickness.shape
thickness = thickness[Z%factor//2::factor, Y%factor//2::factor,
X%factor//2::factor]
if pad:
thickness = np.pad(thickness, ((1, 1), ) * 3, constant_values=0)
# Grayscale volume which will be saved for shape
gray = ~(thickness>0)
if blend:
gray = edt.edt(gray) - edt.edt(~gray) - gray + 0.5
gray = np.clip(gray, -25, 25)
gray = np.exp(0.1 * gray)
gray = gray / (gray + 1) # values between 0 and 1 with 0.5 at interface
for i in range(dilate): # if dilate is True, only once
thickness = dilate3d(thickness)
return thickness, gray, maxval
def save_thickness_volumes(thickness, filename_root, **options):
'''Saves results of local thickness analysis in two volumes suitable for
visualization in paraview.
Inputs:
thickness: local thickness volume, a 3D numpy array, where 0 is
bacground and positive values are thickness.
filename_root: root of the filename, sufixes will be added
factor: int, downscaling factor. Default 1 does not downscale.
pad: bool, whether to pad with background to ensure closed surfaces.
dilate: bool, whether to dilate colored object 1px to ensure color on
surface.
blend: whether to blend binary values of object representation for a
smoother surface.
maxval: thickness which will be shown with last color in cmap.
paraview_alpha: whether to invert alpha values as paraview expects.
'''
import tifffile
paraview_alpha = options.get('paraview_alpha', True)
thickness, gray, maxval = prepare_for_saving(thickness, options)
cmap = black_plasma(bg=0, bg_alpha=1) # set bg=1 for white which might blend nicer
with (tifffile.TiffWriter(filename_root + '_gray.tif') as gr,
tifffile.TiffWriter(filename_root + '_rgba.tif') as rgba):
for g, t in zip(gray, thickness):
gr.write((255 * g).astype(np.uint8))
t_rgba = cmap(t/maxval)
if paraview_alpha:
t_rgba[:, :, 3] = 1 - t_rgba[:, :, 3] # flipping opacity to work with paraview
rgba.write((255*t_rgba).astype(np.uint8), photometric='rgb', extrasamples = 'ASSOCALPHA')
# rgb.write((255*t_rgba[:, :, :3]).astype(np.uint8), photometric='rgb')
#%% VTK WRITE FUNCTIONS
def save_gray2vtk(volume, filename, filetype='ASCII', origin=(0,0,0),
spacing=(1,1,1), dataname='gray'):
''' Writes a vtk file with grayscace volume data.
Arguments:
volume: a grayscale volume, values will be saved as floats
filename: filename with .vtk extension
filetype: file type 'ASCII' or 'BINARY'. Writing a binary file might not
work for all OS due to big/little endian issues.
origin: volume origin, defaluls to (0,0,0)
spacing: volume spacing, defaults to 1
dataname: name associated with data (will be visible in Paraview)
Author:[email protected], 2019
'''
with open(filename, 'w') as f:
# writing header
f.write('# vtk DataFile Version 3.0\n')
f.write('saved from python using save_gray2vtk\n')
f.write('{}\n'.format(filetype))
f.write('DATASET STRUCTURED_POINTS\n')
f.write('DIMENSIONS {} {} {}\n'.format(\
volume.shape[2],volume.shape[1],volume.shape[0]))
f.write('ORIGIN {} {} {}\n'.format(origin[0],origin[1],origin[2]))
f.write('SPACING {} {} {}\n'.format(spacing[0],spacing[1],spacing[2]))
f.write('POINT_DATA {}\n'.format(volume.size))
f.write('SCALARS {} float 1\n'.format(dataname))
f.write('LOOKUP_TABLE default\n')
# writing volume data
if filetype.upper()=='BINARY':
with open(filename, 'ab') as f:
volume = volume.astype('float32') # Pareview expects 4-bytes float
volume.byteswap(True) # Paraview expects big-endian
volume.tofile(f)
else: # ASCII
with open(filename, 'a') as f:
np.savetxt(f,volume.ravel(),fmt='%.5g', newline= ' ')
def save_rgba2vtk(rgba, dim, filename, filetype='ASCII'):
''' Writes a vtk file with RGBA volume data.
Arguments:
rgba: an array of shape (N,4) containing RGBA values
dim: volume shape, such that prod(dim) = N
filename: filename with .vtk extension
filetype: file type 'ASCII' or 'BINARY'. Writing a binary file might not
work for all OS due to big/little endian issues.
Author:[email protected], 2019
'''
with open(filename, 'w') as f:
# writing header
f.write('# vtk DataFile Version 3.0\n')
f.write('saved from python using save_rgba2vtk\n')
f.write('{}\n'.format(filetype))
f.write('DATASET STRUCTURED_POINTS\n')
f.write('DIMENSIONS {} {} {}\n'.format(dim[2],dim[1],dim[0]))
f.write('ORIGIN 0 0 0\n')
f.write('SPACING 1 1 1\n')
f.write('POINT_DATA {}\n'.format(np.prod(dim)))
f.write('COLOR_SCALARS rgba 4\n')
# writing color data
if filetype.upper()=='BINARY':
with open(filename, 'ab') as f:
rgba = (255*rgba).astype('ubyte') # Pareview expects unsigned char
rgba.byteswap(True) # Paraview expects big-endian
rgba.tofile(f)
else: # ASCII
with open(filename, 'a') as f:
np.savetxt(f,rgba.ravel(),fmt='%.5g', newline= ' ')
def save_thickness2vtk(thickness, filename, **options):
''' Writes a vtk file with results of local thickness analysis.
Author:[email protected], 2019
'''
filetype = options.get('filetype', 'ASCII')
origin = options.get('origin', (0, 0, 0))
spacing = options.get('spacing', (1, 1, 1))
thickness, gray, maxval = prepare_for_saving(thickness, options)
cmap = black_plasma(bg=0, bg_alpha=0.1)
rgba = cmap(thickness.ravel()/maxval)
# Now saving
save_gray2vtk(gray, filename, filetype=filetype, origin=origin, spacing=spacing)
with open(filename, 'a') as f:
f.write('COLOR_SCALARS rgba 4\n')
# writing color data
if filetype.upper()=='BINARY':
with open(filename, 'ab') as f:
rgba = (255*rgba).astype('ubyte') # Pareview expects unsigned char
rgba.byteswap(True) # Paraview expects big-endian
rgba.tofile(f)
else: # ASCII
with open(filename, 'a') as f:
np.savetxt(f,rgba.ravel(),fmt='%.5g', newline= ' ')