-
Notifications
You must be signed in to change notification settings - Fork 5
/
distance.c
178 lines (135 loc) · 4.25 KB
/
distance.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
/* -*- c++ -*-
Copyright (C) 2004-2013 Christian Wieninger
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Or, point your browser to http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
The author can be reached at [email protected]
The project's page is at http://winni.vdr-developer.org/epgsearch
*/
//---------------------------------------------------
// Levenshtein Distance
// by Michael Gilleland, Merriam Park Software
//
// source:
// http://www.merriampark.com/ld.htm#CPLUSPLUS
//
//---------------------------------------------------
#include "distance.h"
#include <string.h>
#ifdef __FreeBSD__
#include <stdlib.h>
#else
#include <malloc.h>
#endif
#include <vdr/tools.h>
//****************************
// Get minimum of three values
//****************************
int Distance::Minimum(int a, int b, int c)
{
int mi;
mi = a;
if (b < mi) {
mi = b;
}
if (c < mi) {
mi = c;
}
return mi;
}
//**************************************************
// Get a pointer to the specified cell of the matrix
//**************************************************
int *Distance::GetCellPointer(int *pOrigin, int col, int row, int nCols)
{
return pOrigin + col + (row * (nCols + 1));
}
//*****************************************************
// Get the contents of the specified cell in the matrix
//*****************************************************
int Distance::GetAt(int *pOrigin, int col, int row, int nCols)
{
int *pCell;
pCell = GetCellPointer(pOrigin, col, row, nCols);
return *pCell;
}
//*******************************************************
// Fill the specified cell in the matrix with the value x
//*******************************************************
void Distance::PutAt(int *pOrigin, int col, int row, int nCols, int x)
{
int *pCell;
pCell = GetCellPointer(pOrigin, col, row, nCols);
*pCell = x;
}
//*****************************
// Compute Levenshtein distance
//*****************************
int Distance::LD(char const *s, char const *t, int maxLength)
{
int *d; // pointer to matrix
int n; // length of s
int m; // length of t
int i; // iterates through s
int j; // iterates through t
char s_i; // ith character of s
char t_j; // jth character of t
int cost; // cost
int result; // result
int cell; // contents of target cell
int above; // contents of cell immediately above
int left; // contents of cell immediately to left
int diag; // contents of cell immediately above and to left
int sz; // number of cells in matrix
// Step 1
n = std::min((int)strlen(s), maxLength);
m = std::min((int)strlen(t), maxLength);
if (n == 0) {
return m;
}
if (m == 0) {
return n;
}
sz = (n + 1) * (m + 1) * sizeof(int);
d = (int *) malloc(sz);
// Step 2
for (i = 0; i <= n; i++) {
PutAt(d, i, 0, n, i);
}
for (j = 0; j <= m; j++) {
PutAt(d, 0, j, n, j);
}
// Step 3
for (i = 1; i <= n; i++) {
s_i = s[i - 1];
// Step 4
for (j = 1; j <= m; j++) {
t_j = t[j - 1];
// Step 5
if (s_i == t_j) {
cost = 0;
} else {
cost = 1;
}
// Step 6
above = GetAt(d, i - 1, j, n);
left = GetAt(d, i, j - 1, n);
diag = GetAt(d, i - 1, j - 1, n);
cell = Minimum(above + 1, left + 1, diag + cost);
PutAt(d, i, j, n, cell);
}
}
// Step 7
result = GetAt(d, n, m, n);
free(d);
return result;
}