diff --git a/src/sage/schemes/elliptic_curves/period_lattice.py b/src/sage/schemes/elliptic_curves/period_lattice.py index 9db15a6eba7..e6008a09279 100755 --- a/src/sage/schemes/elliptic_curves/period_lattice.py +++ b/src/sage/schemes/elliptic_curves/period_lattice.py @@ -413,7 +413,7 @@ def basis(self, prec=None, algorithm='sage'): (tuple of Complex) `(\omega_1,\omega_2)` where the lattice is `\ZZ\omega_1 + \ZZ\omega_2`. If the lattice is real then `\omega_1` is real and positive, `\Im(\omega_2)>0` and - `\Re(\omega_1/\omega_2)` is either `0` (for rectangular + `\Re(\omega_2/\omega_1)` is either `0` (for rectangular lattices) or `\frac{1}{2}` (for non-rectangular lattices). Otherwise, `\omega_1/\omega_2` is in the fundamental region of the upper half-plane. If the latter normalisation is required @@ -498,7 +498,7 @@ def gens(self, prec=None, algorithm='sage'): (tuple of Complex) `(\omega_1,\omega_2)` where the lattice is `\ZZ\omega_1 + \ZZ\omega_2`. If the lattice is real then `\omega_1` is real and positive, `\Im(\omega_2)>0` and - `\Re(\omega_1/\omega_2)` is either `0` (for rectangular + `\Re(\omega_2/\omega_1)` is either `0` (for rectangular lattices) or `\frac{1}{2}` (for non-rectangular lattices). Otherwise, `\omega_1/\omega_2` is in the fundamental region of the upper half-plane. If the latter normalisation is required @@ -650,7 +650,7 @@ def _compute_periods_real(self, prec=None, algorithm='sage'): (tuple of Complex) `(\omega_1,\omega_2)` where the lattice has the form `\ZZ\omega_1 + \ZZ\omega_2`, `\omega_1` is real and - `\omega_1/\omega_2` has real part either `0` or `frac{1}{2}`. + `\omega_2/\omega_1` has real part either `0` or `frac{1}{2}`. EXAMPLES::