-
Notifications
You must be signed in to change notification settings - Fork 45
/
phototour.py
327 lines (278 loc) · 12.7 KB
/
phototour.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import os
import random
import errno
import numpy as np
from PIL import Image
import torch
import torch.utils.data as data
from torchvision.datasets.utils import download_url, check_integrity
from torchvision import transforms
import cv2
def augment_patches(patches):
if random.random() > 0.5:
rot = np.random.randint(1, 4)
patches = [np.rot90(p,rot) for p in patches]
if random.random() > 0.5:
patches = [np.flipud(p) for p in patches]
return patches
def resize_patches(patches,N):
patches = [cv2.resize(p,(N,N)) for p in patches]
return patches
# def norm_patches(patches):
# patches = [(p-0.48544601108437)/0.18649942105166 for p in patches]
# return patches
class PhotoTour(data.Dataset):
"""`Learning Local Image Descriptors Data <http://phototour.cs.washington.edu/patches/default.htm>`_ Dataset.
Args:
root (string): Root directory where images are.
name (string): Name of the dataset to load.
mode (string): Mode of output (training only). `pairs` or `triplets`. Default is pairs.
Testing mode is always pairs.
nsamples (int): Number of training pairs/triplets. Default is 10e6.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version.
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
"""
urls = {
'notredame_harris': [
'http://matthewalunbrown.com/patchdata/notredame_harris.zip',
'notredame_harris.zip',
'69f8c90f78e171349abdf0307afefe4d'
],
'yosemite_harris': [
'http://matthewalunbrown.com/patchdata/yosemite_harris.zip',
'yosemite_harris.zip',
'a73253d1c6fbd3ba2613c45065c00d46'
],
'liberty_harris': [
'http://matthewalunbrown.com/patchdata/liberty_harris.zip',
'liberty_harris.zip',
'c731fcfb3abb4091110d0ae8c7ba182c'
],
'notredame': [
'http://icvl.ee.ic.ac.uk/vbalnt/notredame.zip',
'notredame.zip',
'509eda8535847b8c0a90bbb210c83484'
],
'yosemite': [
'http://icvl.ee.ic.ac.uk/vbalnt/yosemite.zip',
'yosemite.zip',
'533b2e8eb7ede31be40abc317b2fd4f0'
],
'liberty': [
'http://icvl.ee.ic.ac.uk/vbalnt/liberty.zip',
'liberty.zip',
'fdd9152f138ea5ef2091746689176414'
],
}
mean = {'notredame': 0.4854, 'yosemite': 0.4844, 'liberty': 0.4437,
'notredame_harris': 0.4854, 'yosemite_harris': 0.4844, 'liberty_harris': 0.4437}
std = {'notredame': 0.1864, 'yosemite': 0.1818, 'liberty': 0.2019,
'notredame_harris': 0.1864, 'yosemite_harris': 0.1818, 'liberty_harris': 0.2019}
lens = {'notredame': 468159, 'yosemite': 633587, 'liberty': 450092,
'liberty_harris': 379587, 'yosemite_harris': 450912, 'notredame_harris': 325295}
image_ext = 'bmp'
info_file = 'info.txt'
matches_files = 'm50_100000_100000_0.txt'
def __init__(self, root, name, mode='pairs', nsamples = 1e6, train=True, transform=None, download=False, augment=False):
self.root = os.path.expanduser(root)
self.name = name
self.data_dir = os.path.join(self.root, name)
self.data_down = os.path.join(self.root, '{}.zip'.format(name))
self.data_file = os.path.join(self.root, '{}.pt'.format(name))
self.train = train
self.mode = mode
self.nsamples = int(nsamples)
self.mean = self.mean[name]
self.std = self.std[name]
self.augment = augment
if download:
self.download()
if not self._check_datafile_exists():
raise RuntimeError('Dataset not found.' +
' You can use download=True to download it')
# load the serialized data
self.data, self.labels, self.matches = torch.load(self.data_file)
self.data_len = self.data.shape[0]
self.labels = self.labels.numpy()
self.ids = np.unique(self.labels)
self.nids = self.ids.shape[0]
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (data1, data2, matches)
"""
# fix the random seed issue with numpy and multiprocessing
#seed = random.randrange(4294967295)
#np.random.seed(seed=seed)
# testing mode: 100k pairs from Brown's original paper
# note: testing mode can only be pairs
if not self.train:
m = self.matches[index]
data1, data2 = self.data[m[0]], self.data[m[1]]
patches = [data1, data2]
patches = [p.numpy() for p in patches]
data1,data2 = resize_patches(patches,32)
# data1, data2 = norm_patches(patches)
return data1, data2, m[2]
# train mode: either random pairs or random triplets
if self.train:
if self.mode == 'pairs':
lbl = random.randint(0, 1)
if lbl==0: #negative pair
idx_L = random.randrange(self.data_len)
L_label = self.labels[idx_L]
idx_R = random.randrange(self.data_len)
R_label = self.labels[idx_R]
while R_label==L_label :
idx_R = random.randrange(self.data_len)
R_label = self.labels[
idx_R]
else: #positive pair
idx_L = random.randrange(self.data_len)
L_label = self.labels[idx_L]
label_search_range_start = max(0,idx_L-20)
label_search_range_end = min(self.data_len,idx_L+20)
sub_labels = self.labels[label_search_range_start:label_search_range_end]
mask_pos = np.where(sub_labels==L_label)[0]
idx_L,idx_R = np.random.choice(mask_pos,2, replace=False)
idx_L = idx_L + label_search_range_start
idx_R = idx_R + label_search_range_start
data1, data2 = self.data[idx_L], self.data[idx_R]
patches = [data1,data2]
patches = [p.numpy() for p in patches]
[data1,data2] = resize_patches(patches,32)
return data1,data2,lbl
elif self.mode == 'triplets':
idx_a = random.randrange(self.data_len)
a_label = self.labels[idx_a]
idx_n = random.randrange(self.data_len)
n_label = self.labels[idx_n]
while n_label==a_label :
idx_n = random.randrange(self.data_len)
n_label = self.labels[idx_n]
#find the next idx_p
label_search_range_start = max(0,idx_a-20)
label_search_range_end = min(self.data_len,idx_a+20)
sub_labels = self.labels[label_search_range_start:label_search_range_end]
mask_pos = np.where(sub_labels==a_label)[0]
idx_a,idx_p = np.random.choice(mask_pos,2, replace=False)
idx_a = idx_a + label_search_range_start
idx_p = idx_p + label_search_range_start
data_a, data_p, data_n = self.data[idx_a], self.data[idx_p], self.data[idx_n]
patches = [data_a, data_p, data_n]
patches = [p.numpy() for p in patches]
if self.augment:
patches = augment_patches(patches)
patches = resize_patches(patches,32)
# patches = norm_patches(patches)
return patches
else:
raise ValueError('Uknown training output mode. Valid ones are pairs,triplets')
def __len__(self):
if not self.train:
return self.matches.size(0)
return self.nsamples
def _check_datafile_exists(self):
return os.path.exists(self.data_file)
def _check_downloaded(self):
return os.path.exists(self.data_dir)
def download(self):
if self._check_datafile_exists():
print('# Found cached data {}'.format(self.data_file))
return
if not self._check_downloaded():
# download files
url = self.urls[self.name][0]
filename = self.urls[self.name][1]
md5 = self.urls[self.name][2]
fpath = os.path.join(self.root, filename)
download_url(url, self.root, filename, md5)
print('# Extracting data {}\n'.format(self.data_down))
import zipfile
with zipfile.ZipFile(fpath, 'r') as z:
z.extractall(self.data_dir)
os.unlink(fpath)
# process and save as torch files
print('# Caching data {}'.format(self.data_file))
dataset = (
read_image_file(self.data_dir, self.image_ext, self.lens[self.name]),
read_info_file(self.data_dir, self.info_file),
read_matches_files(self.data_dir, self.matches_files)
)
with open(self.data_file, 'wb') as f:
torch.save(dataset, f)
def __repr__(self):
fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
fmt_str += ' Number of datapoints: {}\n'.format(self.__len__())
tmp = 'train' if self.train is True else 'test'
fmt_str += ' Split: {}\n'.format(tmp)
fmt_str += ' Root Location: {}\n'.format(self.root)
tmp = ' Transforms (if any): '
fmt_str += '{0}{1}'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
return fmt_str
def read_image_file(data_dir, image_ext, n):
"""Return a Tensor containing the patches
"""
def PIL2array(_img):
"""Convert PIL image type to numpy 2D array
"""
return np.array(_img.getdata(), dtype=np.uint8).reshape(64, 64)
def find_files(_data_dir, _image_ext):
"""Return a list with the file names of the images containing the patches
"""
files = []
# find those files with the specified extension
for file_dir in os.listdir(_data_dir):
if file_dir.endswith(_image_ext):
files.append(os.path.join(_data_dir, file_dir))
return sorted(files) # sort files in ascend order to keep relations
patches = []
list_files = find_files(data_dir, image_ext)
for fpath in list_files:
img = Image.open(fpath)
for y in range(0, 1024, 64):
for x in range(0, 1024, 64):
patch = img.crop((x, y, x + 64, y + 64))
patches.append(PIL2array(patch))
return torch.ByteTensor(np.array(patches[:n]))
def read_info_file(data_dir, info_file):
"""Return a Tensor containing the list of labels
Read the file and keep only the ID of the 3D point.
"""
labels = []
with open(os.path.join(data_dir, info_file), 'r') as f:
labels = [int(line.split()[0]) for line in f]
return torch.LongTensor(labels)
def read_matches_files(data_dir, matches_file):
"""Return a Tensor containing the ground truth matches
Read the file and keep only 3D point ID.
Matches are represented with a 1, non matches with a 0.
"""
matches = []
with open(os.path.join(data_dir, matches_file), 'r') as f:
for line in f:
l = line.split()
matches.append([int(l[0]), int(l[3]), int(l[1] == l[4])])
return torch.LongTensor(matches)
from tqdm import tqdm
import argparse
if __name__=='__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir',help='this is root directory where training/evaluation data are stored/downloaded',required=True)
parser.add_argument('--mode',help='training mode of tfeat descriptor, can be pair or triplet,it is enum type, could be pair|triplet',required=False,default='triplets')
parser.add_argument('--name',help='The name of dataset to test,it is enum type, could be liberty|yosemite|notredame ',required=False,default='liberty')
args = vars(parser.parse_args())
data_path = args['data_dir']
dataset_name = args['name']
train_db = PhotoTour(data_path,dataset_name, download=True, train=True, mode = args['mode'], augment = True, nsamples=1000000)
train_loader = torch.utils.data.DataLoader(train_db,
batch_size=300, shuffle=False,
num_workers=2)
for batch_idx, (data_a, data_p, data_n) in tqdm(enumerate(train_loader)):
if batch_idx==100000:
break