forked from drewwells/stat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvariance.go
85 lines (70 loc) · 2.25 KB
/
variance.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
package stat
/* variance.go
*
* Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 Jim Davies, Brian Gough
* Copyright (C) 2012, 2013 G.vd.Schoot
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
import (
"math"
)
func _variance(data Interface, mean float64) (variance float64) {
Len := data.Len()
// calculate the sum of the squares
for i := 0; i < Len; i++ {
delta := data.Get(i) - mean
// TODO: long double for variance... How to implement in Go?
variance += ((delta * delta) - variance) / float64(i+1)
}
return
}
func VarianceWithFixedMean(data Interface, mean float64) float64 {
return _variance(data, mean)
}
func SdWithFixedMean(data Interface, mean float64) float64 {
variance := _variance(data, mean)
return math.Sqrt(variance)
}
func VarianceMean(data Interface, mean float64) float64 {
variance := _variance(data, mean)
return variance * float64(data.Len()) / float64(data.Len()-1)
}
func SdMean(data Interface, mean float64) float64 {
variance := _variance(data, mean)
return math.Sqrt(variance * float64(data.Len()) / float64(data.Len()-1))
}
func Variance(data Interface) float64 {
mean := Mean(data)
return VarianceMean(data, mean)
}
func Sd(data Interface) float64 {
mean := Mean(data)
return SdMean(data, mean)
}
// TssMean takes a dataset and finds the sum of squares about the mean
func TssMean(data Interface, mean float64) (res float64) {
// find the sum of the squares
n := data.Len()
for i := 0; i < n; i++ {
delta := data.Get(i) - mean
res += delta * delta
}
return
}
func Tss(data Interface) float64 {
mean := Mean(data)
return TssMean(data, mean)
}