forked from jcjohnson/densecap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_opts.lua
105 lines (91 loc) · 4.17 KB
/
train_opts.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
local M = { }
function M.parse(arg)
cmd = torch.CmdLine()
cmd:text()
cmd:text('Train a DenseCap model.')
cmd:text()
cmd:text('Options')
-- Core ConvNet settings
cmd:option('-backend', 'cudnn', 'nn|cudnn')
-- Model settings
cmd:option('-rpn_hidden_dim', 512,
'Hidden size for the extra convolution in the RPN')
cmd:option('-sampler_batch_size', 256,
'Batch size to use in the box sampler')
cmd:option('-rnn_size', 512,
'Number of units to use at each layer of the RNN')
cmd:option('-input_encoding_size', 512,
'Dimension of the word vectors to use in the RNN')
cmd:option('-sampler_high_thresh', 0.7,
'Boxes with IoU greater than this with a GT box are considered positives')
cmd:option('-sampler_low_thresh', 0.3,
'Boxes with IoU less than this with all GT boxes are considered negatives')
cmd:option('-train_remove_outbounds_boxes', 1,
'Whether to ignore out-of-bounds boxes for sampling at training time')
-- Loss function weights
cmd:option('-mid_box_reg_weight', 0.05,
'Weight for box regression in the RPN')
cmd:option('-mid_objectness_weight', 0.1,
'Weight for box classification in the RPN')
cmd:option('-end_box_reg_weight', 0.1,
'Weight for box regression in the recognition network')
cmd:option('-end_objectness_weight', 0.1,
'Weight for box classification in the recognition network')
cmd:option('-captioning_weight',1.0, 'Weight for captioning loss')
cmd:option('-weight_decay', 1e-6, 'L2 weight decay penalty strength')
cmd:option('-box_reg_decay', 5e-5,
'Strength of pull that boxes experience towards their anchor')
-- Data input settings
cmd:option('-data_h5', 'data/VG-regions.h5',
'HDF5 file containing the preprocessed dataset (from proprocess.py)')
cmd:option('-data_json', 'data/VG-regions-dicts.json',
'JSON file containing additional dataset info (from preprocess.py)')
cmd:option('-proposal_regions_h5', '',
'override RPN boxes with boxes from this h5 file (empty = don\'t override)')
cmd:option('-debug_max_train_images', -1,
'Use this many training images (for debugging); -1 to use all images')
-- Optimization
cmd:option('-learning_rate', 1e-5, 'learning rate to use')
cmd:option('-optim_beta1', 0.9, 'beta1 for adam')
cmd:option('-optim_beta2', 0.999, 'beta2 for adam')
cmd:option('-optim_epsilon', 1e-8, 'epsilon for smoothing')
cmd:option('-drop_prob', 0.5, 'Dropout strength throughout the model.')
cmd:option('-max_iters', -1, 'Number of iterations to run; -1 to run forever')
cmd:option('-checkpoint_start_from', '',
'Load model from a checkpoint instead of random initialization.')
cmd:option('-finetune_cnn_after', -1,
'Start finetuning CNN after this many iterations (-1 = never finetune)')
cmd:option('-val_images_use', 1000,
'Number of validation images to use for evaluation; -1 to use all')
-- Model checkpointing
cmd:option('-save_checkpoint_every', 10000,
'How often to save model checkpoints')
cmd:option('-checkpoint_path', 'checkpoint.t7',
'Name of the checkpoint file to use')
-- Test-time model options (for evaluation)
cmd:option('-test_rpn_nms_thresh', 0.7,
'Test-time NMS threshold to use in the RPN')
cmd:option('-test_final_nms_thresh', 0.3,
'Test-time NMS threshold to use for final outputs')
cmd:option('-test_num_proposals', 1000,
'Number of region proposal to use at test-time')
-- Visualization
cmd:option('-progress_dump_every', 100,
'Every how many iterations do we write a progress report to vis/out ?. 0 = disable.')
cmd:option('-losses_log_every', 10,
'How often do we save losses, for inclusion in the progress dump? (0 = disable)')
-- Misc
cmd:option('-id', '',
'an id identifying this run/job; useful for cross-validation')
cmd:option('-seed', 123, 'random number generator seed to use')
cmd:option('-gpu', 0, 'which gpu to use. -1 = use CPU')
cmd:option('-timing', false, 'whether to time parts of the net')
cmd:option('-clip_final_boxes', 1,
'Whether to clip final boxes to image boundar')
cmd:option('-eval_first_iteration',0,
'evaluate on first iteration? 1 = do, 0 = dont.')
cmd:text()
local opt = cmd:parse(arg or {})
return opt
end
return M