diff --git a/README.md b/README.md index 3f8946b..b13ccc5 100644 --- a/README.md +++ b/README.md @@ -298,8 +298,8 @@ Selfie is a work in progress. Here are some features that are not yet fully supp To build an executable for your platform: -1. Run `pip install pyinstaller`. *(pyinstaller is not compatible with Python >3.12 so it is not included by default)* -2. Run `pyinstaller selfie.spec --noconfirm`. +1. Run `poetry run pip install pyinstaller`. *(pyinstaller is not compatible with Python >3.12 so it is not included by default)* +2. Run `poetry run pyinstaller selfie.spec --noconfirm`. 3. Start the built service with `./dist/selfie/selfie`. ## Contributing diff --git a/poetry.lock b/poetry.lock index 8761061..76b4c91 100644 --- a/poetry.lock +++ b/poetry.lock @@ -1166,13 +1166,13 @@ typing = ["typing-extensions (>=4.8)"] [[package]] name = "flatbuffers" -version = "23.5.26" +version = "24.3.7" description = "The FlatBuffers serialization format for Python" optional = false python-versions = "*" files = [ - {file = "flatbuffers-23.5.26-py2.py3-none-any.whl", hash = "sha256:c0ff356da363087b915fde4b8b45bdda73432fc17cddb3c8157472eab1422ad1"}, - {file = "flatbuffers-23.5.26.tar.gz", hash = "sha256:9ea1144cac05ce5d86e2859f431c6cd5e66cd9c78c558317c7955fb8d4c78d89"}, + {file = "flatbuffers-24.3.7-py2.py3-none-any.whl", hash = "sha256:80c4f5dcad0ee76b7e349671a0d657f2fbba927a0244f88dd3f5ed6a3694e1fc"}, + {file = "flatbuffers-24.3.7.tar.gz", hash = "sha256:0895c22b9a6019ff2f4de2e5e2f7cd15914043e6e7033a94c0c6369422690f22"}, ] [[package]] @@ -1301,13 +1301,13 @@ tqdm = ["tqdm"] [[package]] name = "gekko" -version = "1.0.6" +version = "1.0.7" description = "Machine learning and optimization for dynamic systems" optional = true python-versions = ">=2.6" files = [ - {file = "gekko-1.0.6-py3-none-any.whl", hash = "sha256:8e6c7cdc8ad1592f382d9dc04c14accf032b4caf0fbff651aaa02caebcb78c10"}, - {file = "gekko-1.0.6.tar.gz", hash = "sha256:58dc847495c15df86b0f52f2c01049dc4864f829d44bc5586c914af26a4a576d"}, + {file = "gekko-1.0.7-py3-none-any.whl", hash = "sha256:a3cc8e01e2a38dfa68fd46af1ce129c89b344aef3e5586bba40e634a0fc3ab08"}, + {file = "gekko-1.0.7.tar.gz", hash = "sha256:317a31ade8e0f902606a316ff03819c38e0d789b931cd0412bf96c5a09b29896"}, ] [package.dependencies] @@ -1607,13 +1607,13 @@ socks = ["socksio (==1.*)"] [[package]] name = "huggingface-hub" -version = "0.21.3" +version = "0.21.4" description = "Client library to download and publish models, datasets and other repos on the huggingface.co hub" optional = false python-versions = ">=3.8.0" files = [ - {file = "huggingface_hub-0.21.3-py3-none-any.whl", hash = "sha256:b183144336fdf2810a8c109822e0bb6ef1fd61c65da6fb60e8c3f658b7144016"}, - {file = "huggingface_hub-0.21.3.tar.gz", hash = "sha256:26a15b604e4fc7bad37c467b76456543ec849386cbca9cd7e1e135f53e500423"}, + {file = "huggingface_hub-0.21.4-py3-none-any.whl", hash = "sha256:df37c2c37fc6c82163cdd8a67ede261687d80d1e262526d6c0ce73b6b3630a7b"}, + {file = "huggingface_hub-0.21.4.tar.gz", hash = "sha256:e1f4968c93726565a80edf6dc309763c7b546d0cfe79aa221206034d50155531"}, ] [package.dependencies] @@ -1698,13 +1698,13 @@ testing = ["flufl.flake8", "importlib-resources (>=1.3)", "packaging", "pyfakefs [[package]] name = "importlib-resources" -version = "6.1.2" +version = "6.1.3" description = "Read resources from Python packages" optional = false python-versions = ">=3.8" files = [ - {file = "importlib_resources-6.1.2-py3-none-any.whl", hash = "sha256:9a0a862501dc38b68adebc82970140c9e4209fc99601782925178f8386339938"}, - {file = "importlib_resources-6.1.2.tar.gz", hash = "sha256:308abf8474e2dba5f867d279237cd4076482c3de7104a40b41426370e891549b"}, + {file = "importlib_resources-6.1.3-py3-none-any.whl", hash = "sha256:4c0269e3580fe2634d364b39b38b961540a7738c02cb984e98add8b4221d793d"}, + {file = "importlib_resources-6.1.3.tar.gz", hash = "sha256:56fb4525197b78544a3354ea27793952ab93f935bb4bf746b846bb1015020f2b"}, ] [package.dependencies] @@ -1712,7 +1712,7 @@ zipp = {version = ">=3.1.0", markers = "python_version < \"3.10\""} [package.extras] docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"] -testing = ["pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-ruff (>=0.2.1)", "zipp (>=3.17)"] +testing = ["jaraco.collections", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-ruff (>=0.2.1)", "zipp (>=3.17)"] [[package]] name = "inspecta" @@ -1806,13 +1806,13 @@ adal = ["adal (>=1.0.2)"] [[package]] name = "litellm" -version = "1.28.7" +version = "1.30.2" description = "Library to easily interface with LLM API providers" optional = false python-versions = ">=3.8, !=2.7.*, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*, !=3.6.*, !=3.7.*" files = [ - {file = "litellm-1.28.7-py3-none-any.whl", hash = "sha256:50e0cd95fd8213caed88a3e5ee92bc8926a473af16c242f71d0660aed2450401"}, - {file = "litellm-1.28.7.tar.gz", hash = "sha256:bbdd0adfb6e04b746df334f91be64d6466ded030c36ef3fa420ddfe47ba09690"}, + {file = "litellm-1.30.2-py3-none-any.whl", hash = "sha256:5782f01c5c9e520070d7da033d760f11ce8a33d717a50f85c8e26b4ac02c388d"}, + {file = "litellm-1.30.2.tar.gz", hash = "sha256:34b8cca772f335a274ea7e8a6922d5695e6a5d1300f7cab0064a1f233d28b306"}, ] [package.dependencies] @@ -1832,12 +1832,12 @@ proxy = ["PyJWT (>=2.8.0,<3.0.0)", "apscheduler (>=3.10.4,<4.0.0)", "backoff", " [[package]] name = "llama-cpp-python" -version = "0.2.54" +version = "0.2.55" description = "Python bindings for the llama.cpp library" optional = false python-versions = ">=3.8" files = [ - {file = "llama_cpp_python-0.2.54.tar.gz", hash = "sha256:12917027ca25b7cde8d333056ce2d478a9bbb7135f1f026b95885d7deca972b6"}, + {file = "llama_cpp_python-0.2.55.tar.gz", hash = "sha256:68fb1bf4edb6efe9dc8a91d5d08a73cc379558571dd876acffd9cdebfbba9263"}, ] [package.dependencies] @@ -1854,19 +1854,19 @@ test = ["httpx (>=0.24.1)", "pytest (>=7.4.0)", "scipy (>=1.10)"] [[package]] name = "llama-index" -version = "0.10.15" +version = "0.10.18" description = "Interface between LLMs and your data" optional = false python-versions = ">=3.8.1,<4.0" files = [ - {file = "llama_index-0.10.15-py3-none-any.whl", hash = "sha256:b2572d407c9b1070dca2ee9a3f518ab40c7aca9e9212c008cc024c9e0bb2f60d"}, - {file = "llama_index-0.10.15.tar.gz", hash = "sha256:db1ea0da807b20b819849b1bff2aaf5d49073e1ea36801ff40242a62fb4676eb"}, + {file = "llama_index-0.10.18-py3-none-any.whl", hash = "sha256:107a534d72b7d61927c2f013ebae1e385134f2ba044fced8716e1ef55d66cb12"}, + {file = "llama_index-0.10.18.tar.gz", hash = "sha256:116c5d96d783bfcdb88be48f1da63c9d11c56edca062cd3ee85b6054859497f7"}, ] [package.dependencies] llama-index-agent-openai = ">=0.1.4,<0.2.0" llama-index-cli = ">=0.1.2,<0.2.0" -llama-index-core = ">=0.10.15,<0.11.0" +llama-index-core = ">=0.10.18,<0.11.0" llama-index-embeddings-openai = ">=0.1.5,<0.2.0" llama-index-indices-managed-llama-cloud = ">=0.1.2,<0.2.0" llama-index-legacy = ">=0.9.48,<0.10.0" @@ -1894,13 +1894,13 @@ llama-index-llms-openai = ">=0.1.5,<0.2.0" [[package]] name = "llama-index-cli" -version = "0.1.7" +version = "0.1.8" description = "llama-index cli" optional = false python-versions = ">=3.8.1,<4.0" files = [ - {file = "llama_index_cli-0.1.7-py3-none-any.whl", hash = "sha256:48a81fc33d4005dbe91b77ebe840ac69e0102e7e2a59770308f94fae1b792544"}, - {file = "llama_index_cli-0.1.7.tar.gz", hash = "sha256:55a77e3c370eb760c42cb74a0df6f650e41ec17928b72b07ff8b927cb94b15b4"}, + {file = "llama_index_cli-0.1.8-py3-none-any.whl", hash = "sha256:4e300f06206862d6d7eedde95632c6b61a5ebb5162454f1ac7a3c3c9b3ebb05f"}, + {file = "llama_index_cli-0.1.8.tar.gz", hash = "sha256:776a96917965d0df6e7e272d6278394a4f7c922e57973a75e2645609727fa4b1"}, ] [package.dependencies] @@ -1911,13 +1911,13 @@ llama-index-vector-stores-chroma = ">=0.1.1,<0.2.0" [[package]] name = "llama-index-core" -version = "0.10.15" +version = "0.10.18.post1" description = "Interface between LLMs and your data" optional = false python-versions = ">=3.8.1,<4.0" files = [ - {file = "llama_index_core-0.10.15-py3-none-any.whl", hash = "sha256:37618f227583e643aee2efd3c7e2914541184136410af2fcf618b855f75b432c"}, - {file = "llama_index_core-0.10.15.tar.gz", hash = "sha256:a1482c9af67b5b254215267c02fce08ac6bb52a19a0859797552950b023fb98d"}, + {file = "llama_index_core-0.10.18.post1-py3-none-any.whl", hash = "sha256:e2383d0e865febfd8dfc96c1d02cd3ee99927c31b2eb3fbb50211d0829e538e5"}, + {file = "llama_index_core-0.10.18.post1.tar.gz", hash = "sha256:0a197f27c13a9d88966469d2361f4f70fe1678d391602dd7a8ec65209c70a24b"}, ] [package.dependencies] @@ -2083,13 +2083,13 @@ llama-index-program-openai = ">=0.1.1,<0.2.0" [[package]] name = "llama-index-readers-file" -version = "0.1.6" +version = "0.1.8" description = "llama-index readers file integration" optional = false python-versions = ">=3.8.1,<4.0" files = [ - {file = "llama_index_readers_file-0.1.6-py3-none-any.whl", hash = "sha256:f583bd90353a0c0985213af02c97aa2f2f22e702d4311fe719de91382c9ad8dd"}, - {file = "llama_index_readers_file-0.1.6.tar.gz", hash = "sha256:d9fc0ca84926d04bd757c57fe87841cd9dbc2606aab5f2ce927deec14aaa1a74"}, + {file = "llama_index_readers_file-0.1.8-py3-none-any.whl", hash = "sha256:f58c72e2c2ed9f36b5308b4b9ee3142f3848156f0e3b85e813db0a26b8d03290"}, + {file = "llama_index_readers_file-0.1.8.tar.gz", hash = "sha256:f23417a2afc8461a32f08f057e85c8d09b1c687ba16ca6a6a08f08f319eca26a"}, ] [package.dependencies] @@ -2133,13 +2133,13 @@ tokenizers = ">=0.15.1,<0.16.0" [[package]] name = "llama-parse" -version = "0.3.5" +version = "0.3.8" description = "Parse files into RAG-Optimized formats." optional = false python-versions = ">=3.8.1,<4.0" files = [ - {file = "llama_parse-0.3.5-py3-none-any.whl", hash = "sha256:8e6e7a0986ad30cb82c5c67a29b7e2c3892620dd2a422afc909654a9d0f1c82c"}, - {file = "llama_parse-0.3.5.tar.gz", hash = "sha256:736a80e4fc5970b9cbef1048171908021ebd26be43f07b806889f0d1bb3875fe"}, + {file = "llama_parse-0.3.8-py3-none-any.whl", hash = "sha256:2f6222c4f9f8b70622a799fca8438972e3e2f19fa8273e2c8be46af314c9a367"}, + {file = "llama_parse-0.3.8.tar.gz", hash = "sha256:3d4739726687e6602e7cacbc9f17d438d39989a4a73324fc99122b3aefa384a4"}, ] [package.dependencies] @@ -2370,13 +2370,13 @@ files = [ [[package]] name = "marshmallow" -version = "3.21.0" +version = "3.21.1" description = "A lightweight library for converting complex datatypes to and from native Python datatypes." optional = false python-versions = ">=3.8" files = [ - {file = "marshmallow-3.21.0-py3-none-any.whl", hash = "sha256:e7997f83571c7fd476042c2c188e4ee8a78900ca5e74bd9c8097afa56624e9bd"}, - {file = "marshmallow-3.21.0.tar.gz", hash = "sha256:20f53be28c6e374a711a16165fb22a8dc6003e3f7cda1285e3ca777b9193885b"}, + {file = "marshmallow-3.21.1-py3-none-any.whl", hash = "sha256:f085493f79efb0644f270a9bf2892843142d80d7174bbbd2f3713f2a589dc633"}, + {file = "marshmallow-3.21.1.tar.gz", hash = "sha256:4e65e9e0d80fc9e609574b9983cf32579f305c718afb30d7233ab818571768c3"}, ] [package.dependencies] @@ -2689,21 +2689,21 @@ test = ["pytest (>=7.2)", "pytest-cov (>=4.0)"] [[package]] name = "ngrok" -version = "1.0.0" +version = "1.1.0" description = "The ngrok Agent SDK for Python" optional = false python-versions = ">=3.7" files = [ - {file = "ngrok-1.0.0-cp37-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:0c01e3ae6d37b7faa6a23968a6caf12c50b5d1d2ffda2932fa904de4a418a50f"}, - {file = "ngrok-1.0.0-cp37-abi3-macosx_10_12_x86_64.whl", hash = "sha256:5a46dc024b23da2f3a424e3d877d3e8bb44937aa4304f3ebfb681644fb785575"}, - {file = "ngrok-1.0.0-cp37-abi3-macosx_11_0_arm64.whl", hash = "sha256:c650c2c5c9adc81be824479a9dfdedefb21f3e9b2d9ca454728a0c76e47a7f63"}, - {file = "ngrok-1.0.0-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d2a2176547919d2431023b9e2abed873db2d0a7f2a116585438a2ba33778455"}, - {file = "ngrok-1.0.0-cp37-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:0a61acdbc378b82992e75abb9787437379a430c3ff44c38fb7c3dc498920ef86"}, - {file = "ngrok-1.0.0-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aed49b00dc75ec8c6ca9ff0c88bad450df33c8d8972650848e5a3fd648b091a0"}, - {file = "ngrok-1.0.0-cp37-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:b3cdcf75435c0f23695161c5892580a7b0e64d6d26ccdc9764878bfebfc93b7b"}, - {file = "ngrok-1.0.0-cp37-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:45d2652872fd33c6388dfe5fe02ca4eb70d2fef2199c25d476e90b818f725c45"}, - {file = "ngrok-1.0.0-cp37-abi3-win32.whl", hash = "sha256:92b253ec235321abc7d6d5fae08fbda3b854099ccc02c748402b517c53a4b39a"}, - {file = "ngrok-1.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:8a256b16be77bba45543e60dd1b4515a11fd1f43cde2a221ba0b360a51bfa980"}, + {file = "ngrok-1.1.0-cp37-abi3-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl", hash = "sha256:2954bf1a6bbe73126e137b8f6d8eff263843e39dde8d075f8933ebe845a29c53"}, + {file = "ngrok-1.1.0-cp37-abi3-macosx_10_12_x86_64.whl", hash = "sha256:02e0b5566a2f4736b6c6069da110258236a6e7f94f3c9ad60d2d61d0e2b64fce"}, + {file = "ngrok-1.1.0-cp37-abi3-macosx_11_0_arm64.whl", hash = "sha256:1a73a9743ba8655d6a40a77b350104856dc8e3570c91cea66d1da36ccc6e990b"}, + {file = "ngrok-1.1.0-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:778b00f0089a5b7b3c0cc9924bb7a4278a2aa27b8e4fd2bedbcbbb1baf8af70d"}, + {file = "ngrok-1.1.0-cp37-abi3-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:04a3c028322aebce424cff38e381d6f10b6460bd825dbb9b67ca454cdec82bf9"}, + {file = "ngrok-1.1.0-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:47675d6d5bba94ba3be47ac571a6acee22bad1be54b2fd5d07ee82cd8bf02365"}, + {file = "ngrok-1.1.0-cp37-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:7fffa9c48485b72d18384d29f07d0f86a62f6ed0e88a635f31d5f46f1ef7f655"}, + {file = "ngrok-1.1.0-cp37-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:c1c7056c5c4ea7cfdb4b3d12a8c6e195d523df388658408822ac57449d3523a2"}, + {file = "ngrok-1.1.0-cp37-abi3-win32.whl", hash = "sha256:dce7ef2810f2b0c3328142e434f782bd246a92881c404c48cf51ae28d45a7a63"}, + {file = "ngrok-1.1.0-cp37-abi3-win_amd64.whl", hash = "sha256:60d61c628bb6d5f245be210d1024a9f8e9dd5c427d4c1e3a1936cc836e0d246c"}, ] [[package]] @@ -2938,13 +2938,13 @@ files = [ [[package]] name = "nvidia-nvjitlink-cu12" -version = "12.3.101" +version = "12.4.99" description = "Nvidia JIT LTO Library" optional = false python-versions = ">=3" files = [ - {file = "nvidia_nvjitlink_cu12-12.3.101-py3-none-manylinux1_x86_64.whl", hash = "sha256:64335a8088e2b9d196ae8665430bc6a2b7e6ef2eb877a9c735c804bd4ff6467c"}, - {file = "nvidia_nvjitlink_cu12-12.3.101-py3-none-win_amd64.whl", hash = "sha256:1b2e317e437433753530792f13eece58f0aec21a2b05903be7bffe58a606cbd1"}, + {file = "nvidia_nvjitlink_cu12-12.4.99-py3-none-manylinux2014_x86_64.whl", hash = "sha256:c6428836d20fe7e327191c175791d38570e10762edc588fb46749217cd444c74"}, + {file = "nvidia_nvjitlink_cu12-12.4.99-py3-none-win_amd64.whl", hash = "sha256:991905ffa2144cb603d8ca7962d75c35334ae82bf92820b6ba78157277da1ad2"}, ] [[package]] @@ -3605,13 +3605,13 @@ tests = ["pytest (>=5.4.1)", "pytest-cov (>=2.8.1)", "pytest-mypy (>=0.8.0)", "p [[package]] name = "posthog" -version = "3.4.2" +version = "3.5.0" description = "Integrate PostHog into any python application." optional = false python-versions = "*" files = [ - {file = "posthog-3.4.2-py2.py3-none-any.whl", hash = "sha256:c7e79b2e585d16e93749874bcbcdad78d857037398ce0d8d6c474a04d0bd3bbe"}, - {file = "posthog-3.4.2.tar.gz", hash = "sha256:f0eafa663fbc4a942b49b6168a62a890635407044bbc7593051dcb9cc1208873"}, + {file = "posthog-3.5.0-py2.py3-none-any.whl", hash = "sha256:3c672be7ba6f95d555ea207d4486c171d06657eb34b3ce25eb043bfe7b6b5b76"}, + {file = "posthog-3.5.0.tar.gz", hash = "sha256:8f7e3b2c6e8714d0c0c542a2109b83a7549f63b7113a133ab2763a89245ef2ef"}, ] [package.dependencies] @@ -3723,47 +3723,47 @@ functions = ["apache-bookkeeper-client (>=4.16.1)", "grpcio (>=1.60.0)", "promet [[package]] name = "pyarrow" -version = "15.0.0" +version = "15.0.1" description = "Python library for Apache Arrow" optional = true python-versions = ">=3.8" files = [ - {file = "pyarrow-15.0.0-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:0a524532fd6dd482edaa563b686d754c70417c2f72742a8c990b322d4c03a15d"}, - {file = "pyarrow-15.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:60a6bdb314affa9c2e0d5dddf3d9cbb9ef4a8dddaa68669975287d47ece67642"}, - {file = "pyarrow-15.0.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:66958fd1771a4d4b754cd385835e66a3ef6b12611e001d4e5edfcef5f30391e2"}, - {file = "pyarrow-15.0.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1f500956a49aadd907eaa21d4fff75f73954605eaa41f61cb94fb008cf2e00c6"}, - {file = "pyarrow-15.0.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:6f87d9c4f09e049c2cade559643424da84c43a35068f2a1c4653dc5b1408a929"}, - {file = "pyarrow-15.0.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:85239b9f93278e130d86c0e6bb455dcb66fc3fd891398b9d45ace8799a871a1e"}, - {file = "pyarrow-15.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:5b8d43e31ca16aa6e12402fcb1e14352d0d809de70edd185c7650fe80e0769e3"}, - {file = "pyarrow-15.0.0-cp311-cp311-macosx_10_15_x86_64.whl", hash = "sha256:fa7cd198280dbd0c988df525e50e35b5d16873e2cdae2aaaa6363cdb64e3eec5"}, - {file = "pyarrow-15.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:8780b1a29d3c8b21ba6b191305a2a607de2e30dab399776ff0aa09131e266340"}, - {file = "pyarrow-15.0.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fe0ec198ccc680f6c92723fadcb97b74f07c45ff3fdec9dd765deb04955ccf19"}, - {file = "pyarrow-15.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:036a7209c235588c2f07477fe75c07e6caced9b7b61bb897c8d4e52c4b5f9555"}, - {file = "pyarrow-15.0.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:2bd8a0e5296797faf9a3294e9fa2dc67aa7f10ae2207920dbebb785c77e9dbe5"}, - {file = "pyarrow-15.0.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:e8ebed6053dbe76883a822d4e8da36860f479d55a762bd9e70d8494aed87113e"}, - {file = "pyarrow-15.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:17d53a9d1b2b5bd7d5e4cd84d018e2a45bc9baaa68f7e6e3ebed45649900ba99"}, - {file = "pyarrow-15.0.0-cp312-cp312-macosx_10_15_x86_64.whl", hash = "sha256:9950a9c9df24090d3d558b43b97753b8f5867fb8e521f29876aa021c52fda351"}, - {file = "pyarrow-15.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:003d680b5e422d0204e7287bb3fa775b332b3fce2996aa69e9adea23f5c8f970"}, - {file = "pyarrow-15.0.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f75fce89dad10c95f4bf590b765e3ae98bcc5ba9f6ce75adb828a334e26a3d40"}, - {file = "pyarrow-15.0.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ca9cb0039923bec49b4fe23803807e4ef39576a2bec59c32b11296464623dc2"}, - {file = "pyarrow-15.0.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:9ed5a78ed29d171d0acc26a305a4b7f83c122d54ff5270810ac23c75813585e4"}, - {file = "pyarrow-15.0.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:6eda9e117f0402dfcd3cd6ec9bfee89ac5071c48fc83a84f3075b60efa96747f"}, - {file = "pyarrow-15.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:9a3a6180c0e8f2727e6f1b1c87c72d3254cac909e609f35f22532e4115461177"}, - {file = "pyarrow-15.0.0-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:19a8918045993349b207de72d4576af0191beef03ea655d8bdb13762f0cd6eac"}, - {file = "pyarrow-15.0.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:d0ec076b32bacb6666e8813a22e6e5a7ef1314c8069d4ff345efa6246bc38593"}, - {file = "pyarrow-15.0.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5db1769e5d0a77eb92344c7382d6543bea1164cca3704f84aa44e26c67e320fb"}, - {file = "pyarrow-15.0.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e2617e3bf9df2a00020dd1c1c6dce5cc343d979efe10bc401c0632b0eef6ef5b"}, - {file = "pyarrow-15.0.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:d31c1d45060180131caf10f0f698e3a782db333a422038bf7fe01dace18b3a31"}, - {file = "pyarrow-15.0.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:c8c287d1d479de8269398b34282e206844abb3208224dbdd7166d580804674b7"}, - {file = "pyarrow-15.0.0-cp38-cp38-win_amd64.whl", hash = "sha256:07eb7f07dc9ecbb8dace0f58f009d3a29ee58682fcdc91337dfeb51ea618a75b"}, - {file = "pyarrow-15.0.0-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:47af7036f64fce990bb8a5948c04722e4e3ea3e13b1007ef52dfe0aa8f23cf7f"}, - {file = "pyarrow-15.0.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:93768ccfff85cf044c418bfeeafce9a8bb0cee091bd8fd19011aff91e58de540"}, - {file = "pyarrow-15.0.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f6ee87fd6892700960d90abb7b17a72a5abb3b64ee0fe8db6c782bcc2d0dc0b4"}, - {file = "pyarrow-15.0.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:001fca027738c5f6be0b7a3159cc7ba16a5c52486db18160909a0831b063c4e4"}, - {file = "pyarrow-15.0.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:d1c48648f64aec09accf44140dccb92f4f94394b8d79976c426a5b79b11d4fa7"}, - {file = "pyarrow-15.0.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:972a0141be402bb18e3201448c8ae62958c9c7923dfaa3b3d4530c835ac81aed"}, - {file = "pyarrow-15.0.0-cp39-cp39-win_amd64.whl", hash = "sha256:f01fc5cf49081426429127aa2d427d9d98e1cb94a32cb961d583a70b7c4504e6"}, - {file = "pyarrow-15.0.0.tar.gz", hash = "sha256:876858f549d540898f927eba4ef77cd549ad8d24baa3207cf1b72e5788b50e83"}, + {file = "pyarrow-15.0.1-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:c2ddb3be5ea938c329a84171694fc230b241ce1b6b0ff1a0280509af51c375fa"}, + {file = "pyarrow-15.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:7543ea88a0ff72f8e6baaf9bfdbec2c62aeabdbede9e4a571c71cc3bc43b6302"}, + {file = "pyarrow-15.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1519e218a6941fc074e4501088d891afcb2adf77c236e03c34babcf3d6a0d1c7"}, + {file = "pyarrow-15.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:28cafa86e1944761970d3b3fc0411b14ff9b5c2b73cd22aaf470d7a3976335f5"}, + {file = "pyarrow-15.0.1-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:be5c3d463e33d03eab496e1af7916b1d44001c08f0f458ad27dc16093a020638"}, + {file = "pyarrow-15.0.1-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:47b1eda15d3aa3f49a07b1808648e1397e5dc6a80a30bf87faa8e2d02dad7ac3"}, + {file = "pyarrow-15.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:e524a31be7db22deebbbcf242b189063ab9a7652c62471d296b31bc6e3cae77b"}, + {file = "pyarrow-15.0.1-cp311-cp311-macosx_10_15_x86_64.whl", hash = "sha256:a476fefe8bdd56122fb0d4881b785413e025858803cc1302d0d788d3522b374d"}, + {file = "pyarrow-15.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:309e6191be385f2e220586bfdb643f9bb21d7e1bc6dd0a6963dc538e347b2431"}, + {file = "pyarrow-15.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:83bc586903dbeb4365cbc72b602f99f70b96c5882e5dfac5278813c7d624ca3c"}, + {file = "pyarrow-15.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:07e652daac6d8b05280cd2af31c0fb61a4490ec6a53dc01588014d9fa3fdbee9"}, + {file = "pyarrow-15.0.1-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:abad2e08652df153a72177ce20c897d083b0c4ebeec051239e2654ddf4d3c996"}, + {file = "pyarrow-15.0.1-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:cde663352bc83ad75ba7b3206e049ca1a69809223942362a8649e37bd22f9e3b"}, + {file = "pyarrow-15.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:1b6e237dd7a08482a8b8f3f6512d258d2460f182931832a8c6ef3953203d31e1"}, + {file = "pyarrow-15.0.1-cp312-cp312-macosx_10_15_x86_64.whl", hash = "sha256:7bd167536ee23192760b8c731d39b7cfd37914c27fd4582335ffd08450ff799d"}, + {file = "pyarrow-15.0.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:7c08bb31eb2984ba5c3747d375bb522e7e536b8b25b149c9cb5e1c49b0ccb736"}, + {file = "pyarrow-15.0.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c0f9c1d630ed2524bd1ddf28ec92780a7b599fd54704cd653519f7ff5aec177a"}, + {file = "pyarrow-15.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5186048493395220550bca7b524420471aac2d77af831f584ce132680f55c3df"}, + {file = "pyarrow-15.0.1-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:31dc30c7ec8958da3a3d9f31d6c3630429b2091ede0ecd0d989fd6bec129f0e4"}, + {file = "pyarrow-15.0.1-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:3f111a014fb8ac2297b43a74bf4495cc479a332908f7ee49cb7cbd50714cb0c1"}, + {file = "pyarrow-15.0.1-cp312-cp312-win_amd64.whl", hash = "sha256:a6d1f7c15d7f68f08490d0cb34611497c74285b8a6bbeab4ef3fc20117310983"}, + {file = "pyarrow-15.0.1-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:9ad931b996f51c2f978ed517b55cb3c6078272fb4ec579e3da5a8c14873b698d"}, + {file = "pyarrow-15.0.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:738f6b53ab1c2f66b2bde8a1d77e186aeaab702d849e0dfa1158c9e2c030add3"}, + {file = "pyarrow-15.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c1c3fc16bc74e33bf8f1e5a212938ed8d88e902f372c4dac6b5bad328567d2f"}, + {file = "pyarrow-15.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e1fa92512128f6c1b8dde0468c1454dd70f3bff623970e370d52efd4d24fd0be"}, + {file = "pyarrow-15.0.1-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:b4157f307c202cbbdac147d9b07447a281fa8e63494f7fc85081da351ec6ace9"}, + {file = "pyarrow-15.0.1-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:b75e7da26f383787f80ad76143b44844ffa28648fcc7099a83df1538c078d2f2"}, + {file = "pyarrow-15.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:3a99eac76ae14096c209850935057b9e8ce97a78397c5cde8724674774f34e5d"}, + {file = "pyarrow-15.0.1-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:dd532d3177e031e9b2d2df19fd003d0cc0520d1747659fcabbd4d9bb87de508c"}, + {file = "pyarrow-15.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:ce8c89848fd37e5313fc2ce601483038ee5566db96ba0808d5883b2e2e55dc53"}, + {file = "pyarrow-15.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:862eac5e5f3b6477f7a92b2f27e560e1f4e5e9edfca9ea9da8a7478bb4abd5ce"}, + {file = "pyarrow-15.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f0ea3a29cd5cb99bf14c1c4533eceaa00ea8fb580950fb5a89a5c771a994a4e"}, + {file = "pyarrow-15.0.1-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:bb902f780cfd624b2e8fd8501fadab17618fdb548532620ef3d91312aaf0888a"}, + {file = "pyarrow-15.0.1-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:4f87757f02735a6bb4ad2e1b98279ac45d53b748d5baf52401516413007c6999"}, + {file = "pyarrow-15.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:efd3816c7fbfcbd406ac0f69873cebb052effd7cdc153ae5836d1b00845845d7"}, + {file = "pyarrow-15.0.1.tar.gz", hash = "sha256:21d812548d39d490e0c6928a7c663f37b96bf764034123d4b4ab4530ecc757a9"}, ] [package.dependencies] @@ -4014,13 +4014,13 @@ files = [ [[package]] name = "pypdf" -version = "4.0.2" +version = "4.1.0" description = "A pure-python PDF library capable of splitting, merging, cropping, and transforming PDF files" optional = false python-versions = ">=3.6" files = [ - {file = "pypdf-4.0.2-py3-none-any.whl", hash = "sha256:a62daa2a24d5a608ba1b6284dde185317ce3644f89b9ebe5314d0c5d1c9f257d"}, - {file = "pypdf-4.0.2.tar.gz", hash = "sha256:3316d9ddfcff5df67ae3cdfe8b945c432aa43e7f970bae7c2a4ab4fe129cd937"}, + {file = "pypdf-4.1.0-py3-none-any.whl", hash = "sha256:16cac912a05200099cef3f347c4c7e0aaf0a6d027603b8f9a973c0ea500dff89"}, + {file = "pypdf-4.1.0.tar.gz", hash = "sha256:01c3257ec908676efd60a4537e525b89d48e0852bc92b4e0aa4cc646feda17cc"}, ] [package.dependencies] @@ -4836,60 +4836,60 @@ files = [ [[package]] name = "sqlalchemy" -version = "2.0.27" +version = "2.0.28" description = "Database Abstraction Library" optional = false python-versions = ">=3.7" files = [ - {file = "SQLAlchemy-2.0.27-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d04e579e911562f1055d26dab1868d3e0bb905db3bccf664ee8ad109f035618a"}, - {file = "SQLAlchemy-2.0.27-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fa67d821c1fd268a5a87922ef4940442513b4e6c377553506b9db3b83beebbd8"}, - {file = "SQLAlchemy-2.0.27-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6c7a596d0be71b7baa037f4ac10d5e057d276f65a9a611c46970f012752ebf2d"}, - {file = "SQLAlchemy-2.0.27-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:954d9735ee9c3fa74874c830d089a815b7b48df6f6b6e357a74130e478dbd951"}, - {file = "SQLAlchemy-2.0.27-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:5cd20f58c29bbf2680039ff9f569fa6d21453fbd2fa84dbdb4092f006424c2e6"}, - {file = "SQLAlchemy-2.0.27-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:03f448ffb731b48323bda68bcc93152f751436ad6037f18a42b7e16af9e91c07"}, - {file = "SQLAlchemy-2.0.27-cp310-cp310-win32.whl", hash = "sha256:d997c5938a08b5e172c30583ba6b8aad657ed9901fc24caf3a7152eeccb2f1b4"}, - {file = "SQLAlchemy-2.0.27-cp310-cp310-win_amd64.whl", hash = "sha256:eb15ef40b833f5b2f19eeae65d65e191f039e71790dd565c2af2a3783f72262f"}, - {file = "SQLAlchemy-2.0.27-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6c5bad7c60a392850d2f0fee8f355953abaec878c483dd7c3836e0089f046bf6"}, - {file = "SQLAlchemy-2.0.27-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a3012ab65ea42de1be81fff5fb28d6db893ef978950afc8130ba707179b4284a"}, - {file = "SQLAlchemy-2.0.27-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dbcd77c4d94b23e0753c5ed8deba8c69f331d4fd83f68bfc9db58bc8983f49cd"}, - {file = "SQLAlchemy-2.0.27-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d177b7e82f6dd5e1aebd24d9c3297c70ce09cd1d5d37b43e53f39514379c029c"}, - {file = "SQLAlchemy-2.0.27-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:680b9a36029b30cf063698755d277885d4a0eab70a2c7c6e71aab601323cba45"}, - {file = "SQLAlchemy-2.0.27-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:1306102f6d9e625cebaca3d4c9c8f10588735ef877f0360b5cdb4fdfd3fd7131"}, - {file = "SQLAlchemy-2.0.27-cp311-cp311-win32.whl", hash = "sha256:5b78aa9f4f68212248aaf8943d84c0ff0f74efc65a661c2fc68b82d498311fd5"}, - {file = "SQLAlchemy-2.0.27-cp311-cp311-win_amd64.whl", hash = "sha256:15e19a84b84528f52a68143439d0c7a3a69befcd4f50b8ef9b7b69d2628ae7c4"}, - {file = "SQLAlchemy-2.0.27-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:0de1263aac858f288a80b2071990f02082c51d88335a1db0d589237a3435fe71"}, - {file = "SQLAlchemy-2.0.27-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce850db091bf7d2a1f2fdb615220b968aeff3849007b1204bf6e3e50a57b3d32"}, - {file = "SQLAlchemy-2.0.27-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8dfc936870507da96aebb43e664ae3a71a7b96278382bcfe84d277b88e379b18"}, - {file = "SQLAlchemy-2.0.27-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c4fbe6a766301f2e8a4519f4500fe74ef0a8509a59e07a4085458f26228cd7cc"}, - {file = "SQLAlchemy-2.0.27-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:4535c49d961fe9a77392e3a630a626af5baa967172d42732b7a43496c8b28876"}, - {file = "SQLAlchemy-2.0.27-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:0fb3bffc0ced37e5aa4ac2416f56d6d858f46d4da70c09bb731a246e70bff4d5"}, - {file = "SQLAlchemy-2.0.27-cp312-cp312-win32.whl", hash = "sha256:7f470327d06400a0aa7926b375b8e8c3c31d335e0884f509fe272b3c700a7254"}, - {file = "SQLAlchemy-2.0.27-cp312-cp312-win_amd64.whl", hash = "sha256:f9374e270e2553653d710ece397df67db9d19c60d2647bcd35bfc616f1622dcd"}, - {file = "SQLAlchemy-2.0.27-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:e97cf143d74a7a5a0f143aa34039b4fecf11343eed66538610debc438685db4a"}, - {file = "SQLAlchemy-2.0.27-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d7b5a3e2120982b8b6bd1d5d99e3025339f7fb8b8267551c679afb39e9c7c7f1"}, - {file = "SQLAlchemy-2.0.27-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e36aa62b765cf9f43a003233a8c2d7ffdeb55bc62eaa0a0380475b228663a38f"}, - {file = "SQLAlchemy-2.0.27-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:5ada0438f5b74c3952d916c199367c29ee4d6858edff18eab783b3978d0db16d"}, - {file = "SQLAlchemy-2.0.27-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:b1d9d1bfd96eef3c3faedb73f486c89e44e64e40e5bfec304ee163de01cf996f"}, - {file = "SQLAlchemy-2.0.27-cp37-cp37m-win32.whl", hash = "sha256:ca891af9f3289d24a490a5fde664ea04fe2f4984cd97e26de7442a4251bd4b7c"}, - {file = "SQLAlchemy-2.0.27-cp37-cp37m-win_amd64.whl", hash = "sha256:fd8aafda7cdff03b905d4426b714601c0978725a19efc39f5f207b86d188ba01"}, - {file = "SQLAlchemy-2.0.27-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ec1f5a328464daf7a1e4e385e4f5652dd9b1d12405075ccba1df842f7774b4fc"}, - {file = "SQLAlchemy-2.0.27-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:ad862295ad3f644e3c2c0d8b10a988e1600d3123ecb48702d2c0f26771f1c396"}, - {file = "SQLAlchemy-2.0.27-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:48217be1de7d29a5600b5c513f3f7664b21d32e596d69582be0a94e36b8309cb"}, - {file = "SQLAlchemy-2.0.27-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e56afce6431450442f3ab5973156289bd5ec33dd618941283847c9fd5ff06bf"}, - {file = "SQLAlchemy-2.0.27-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:611068511b5531304137bcd7fe8117c985d1b828eb86043bd944cebb7fae3910"}, - {file = "SQLAlchemy-2.0.27-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:b86abba762ecfeea359112b2bb4490802b340850bbee1948f785141a5e020de8"}, - {file = "SQLAlchemy-2.0.27-cp38-cp38-win32.whl", hash = "sha256:30d81cc1192dc693d49d5671cd40cdec596b885b0ce3b72f323888ab1c3863d5"}, - {file = "SQLAlchemy-2.0.27-cp38-cp38-win_amd64.whl", hash = "sha256:120af1e49d614d2525ac247f6123841589b029c318b9afbfc9e2b70e22e1827d"}, - {file = "SQLAlchemy-2.0.27-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d07ee7793f2aeb9b80ec8ceb96bc8cc08a2aec8a1b152da1955d64e4825fcbac"}, - {file = "SQLAlchemy-2.0.27-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:cb0845e934647232b6ff5150df37ceffd0b67b754b9fdbb095233deebcddbd4a"}, - {file = "SQLAlchemy-2.0.27-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fc19ae2e07a067663dd24fca55f8ed06a288384f0e6e3910420bf4b1270cc51"}, - {file = "SQLAlchemy-2.0.27-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b90053be91973a6fb6020a6e44382c97739736a5a9d74e08cc29b196639eb979"}, - {file = "SQLAlchemy-2.0.27-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:2f5c9dfb0b9ab5e3a8a00249534bdd838d943ec4cfb9abe176a6c33408430230"}, - {file = "SQLAlchemy-2.0.27-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:33e8bde8fff203de50399b9039c4e14e42d4d227759155c21f8da4a47fc8053c"}, - {file = "SQLAlchemy-2.0.27-cp39-cp39-win32.whl", hash = "sha256:d873c21b356bfaf1589b89090a4011e6532582b3a8ea568a00e0c3aab09399dd"}, - {file = "SQLAlchemy-2.0.27-cp39-cp39-win_amd64.whl", hash = "sha256:ff2f1b7c963961d41403b650842dc2039175b906ab2093635d8319bef0b7d620"}, - {file = "SQLAlchemy-2.0.27-py3-none-any.whl", hash = "sha256:1ab4e0448018d01b142c916cc7119ca573803a4745cfe341b8f95657812700ac"}, - {file = "SQLAlchemy-2.0.27.tar.gz", hash = "sha256:86a6ed69a71fe6b88bf9331594fa390a2adda4a49b5c06f98e47bf0d392534f8"}, + {file = "SQLAlchemy-2.0.28-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e0b148ab0438f72ad21cb004ce3bdaafd28465c4276af66df3b9ecd2037bf252"}, + {file = "SQLAlchemy-2.0.28-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:bbda76961eb8f27e6ad3c84d1dc56d5bc61ba8f02bd20fcf3450bd421c2fcc9c"}, + {file = "SQLAlchemy-2.0.28-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:feea693c452d85ea0015ebe3bb9cd15b6f49acc1a31c28b3c50f4db0f8fb1e71"}, + {file = "SQLAlchemy-2.0.28-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5da98815f82dce0cb31fd1e873a0cb30934971d15b74e0d78cf21f9e1b05953f"}, + {file = "SQLAlchemy-2.0.28-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:4a5adf383c73f2d49ad15ff363a8748319ff84c371eed59ffd0127355d6ea1da"}, + {file = "SQLAlchemy-2.0.28-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:56856b871146bfead25fbcaed098269d90b744eea5cb32a952df00d542cdd368"}, + {file = "SQLAlchemy-2.0.28-cp310-cp310-win32.whl", hash = "sha256:943aa74a11f5806ab68278284a4ddd282d3fb348a0e96db9b42cb81bf731acdc"}, + {file = "SQLAlchemy-2.0.28-cp310-cp310-win_amd64.whl", hash = "sha256:c6c4da4843e0dabde41b8f2e8147438330924114f541949e6318358a56d1875a"}, + {file = "SQLAlchemy-2.0.28-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:46a3d4e7a472bfff2d28db838669fc437964e8af8df8ee1e4548e92710929adc"}, + {file = "SQLAlchemy-2.0.28-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:0d3dd67b5d69794cfe82862c002512683b3db038b99002171f624712fa71aeaa"}, + {file = "SQLAlchemy-2.0.28-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c61e2e41656a673b777e2f0cbbe545323dbe0d32312f590b1bc09da1de6c2a02"}, + {file = "SQLAlchemy-2.0.28-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0315d9125a38026227f559488fe7f7cee1bd2fbc19f9fd637739dc50bb6380b2"}, + {file = "SQLAlchemy-2.0.28-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:af8ce2d31679006e7b747d30a89cd3ac1ec304c3d4c20973f0f4ad58e2d1c4c9"}, + {file = "SQLAlchemy-2.0.28-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:81ba314a08c7ab701e621b7ad079c0c933c58cdef88593c59b90b996e8b58fa5"}, + {file = "SQLAlchemy-2.0.28-cp311-cp311-win32.whl", hash = "sha256:1ee8bd6d68578e517943f5ebff3afbd93fc65f7ef8f23becab9fa8fb315afb1d"}, + {file = "SQLAlchemy-2.0.28-cp311-cp311-win_amd64.whl", hash = "sha256:ad7acbe95bac70e4e687a4dc9ae3f7a2f467aa6597049eeb6d4a662ecd990bb6"}, + {file = "SQLAlchemy-2.0.28-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:d3499008ddec83127ab286c6f6ec82a34f39c9817f020f75eca96155f9765097"}, + {file = "SQLAlchemy-2.0.28-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9b66fcd38659cab5d29e8de5409cdf91e9986817703e1078b2fdaad731ea66f5"}, + {file = "SQLAlchemy-2.0.28-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bea30da1e76cb1acc5b72e204a920a3a7678d9d52f688f087dc08e54e2754c67"}, + {file = "SQLAlchemy-2.0.28-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:124202b4e0edea7f08a4db8c81cc7859012f90a0d14ba2bf07c099aff6e96462"}, + {file = "SQLAlchemy-2.0.28-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:e23b88c69497a6322b5796c0781400692eca1ae5532821b39ce81a48c395aae9"}, + {file = "SQLAlchemy-2.0.28-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:4b6303bfd78fb3221847723104d152e5972c22367ff66edf09120fcde5ddc2e2"}, + {file = "SQLAlchemy-2.0.28-cp312-cp312-win32.whl", hash = "sha256:a921002be69ac3ab2cf0c3017c4e6a3377f800f1fca7f254c13b5f1a2f10022c"}, + {file = "SQLAlchemy-2.0.28-cp312-cp312-win_amd64.whl", hash = "sha256:b4a2cf92995635b64876dc141af0ef089c6eea7e05898d8d8865e71a326c0385"}, + {file = "SQLAlchemy-2.0.28-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:8e91b5e341f8c7f1e5020db8e5602f3ed045a29f8e27f7f565e0bdee3338f2c7"}, + {file = "SQLAlchemy-2.0.28-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:45c7b78dfc7278329f27be02c44abc0d69fe235495bb8e16ec7ef1b1a17952db"}, + {file = "SQLAlchemy-2.0.28-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3eba73ef2c30695cb7eabcdb33bb3d0b878595737479e152468f3ba97a9c22a4"}, + {file = "SQLAlchemy-2.0.28-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:5df5d1dafb8eee89384fb7a1f79128118bc0ba50ce0db27a40750f6f91aa99d5"}, + {file = "SQLAlchemy-2.0.28-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:2858bbab1681ee5406650202950dc8f00e83b06a198741b7c656e63818633526"}, + {file = "SQLAlchemy-2.0.28-cp37-cp37m-win32.whl", hash = "sha256:9461802f2e965de5cff80c5a13bc945abea7edaa1d29360b485c3d2b56cdb075"}, + {file = "SQLAlchemy-2.0.28-cp37-cp37m-win_amd64.whl", hash = "sha256:a6bec1c010a6d65b3ed88c863d56b9ea5eeefdf62b5e39cafd08c65f5ce5198b"}, + {file = "SQLAlchemy-2.0.28-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:843a882cadebecc655a68bd9a5b8aa39b3c52f4a9a5572a3036fb1bb2ccdc197"}, + {file = "SQLAlchemy-2.0.28-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:dbb990612c36163c6072723523d2be7c3eb1517bbdd63fe50449f56afafd1133"}, + {file = "SQLAlchemy-2.0.28-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd7e4baf9161d076b9a7e432fce06217b9bd90cfb8f1d543d6e8c4595627edb9"}, + {file = "SQLAlchemy-2.0.28-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e0a5354cb4de9b64bccb6ea33162cb83e03dbefa0d892db88a672f5aad638a75"}, + {file = "SQLAlchemy-2.0.28-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:fffcc8edc508801ed2e6a4e7b0d150a62196fd28b4e16ab9f65192e8186102b6"}, + {file = "SQLAlchemy-2.0.28-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:aca7b6d99a4541b2ebab4494f6c8c2f947e0df4ac859ced575238e1d6ca5716b"}, + {file = "SQLAlchemy-2.0.28-cp38-cp38-win32.whl", hash = "sha256:8c7f10720fc34d14abad5b647bc8202202f4948498927d9f1b4df0fb1cf391b7"}, + {file = "SQLAlchemy-2.0.28-cp38-cp38-win_amd64.whl", hash = "sha256:243feb6882b06a2af68ecf4bec8813d99452a1b62ba2be917ce6283852cf701b"}, + {file = "SQLAlchemy-2.0.28-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:fc4974d3684f28b61b9a90fcb4c41fb340fd4b6a50c04365704a4da5a9603b05"}, + {file = "SQLAlchemy-2.0.28-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:87724e7ed2a936fdda2c05dbd99d395c91ea3c96f029a033a4a20e008dd876bf"}, + {file = "SQLAlchemy-2.0.28-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:68722e6a550f5de2e3cfe9da6afb9a7dd15ef7032afa5651b0f0c6b3adb8815d"}, + {file = "SQLAlchemy-2.0.28-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:328529f7c7f90adcd65aed06a161851f83f475c2f664a898af574893f55d9e53"}, + {file = "SQLAlchemy-2.0.28-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:df40c16a7e8be7413b885c9bf900d402918cc848be08a59b022478804ea076b8"}, + {file = "SQLAlchemy-2.0.28-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:426f2fa71331a64f5132369ede5171c52fd1df1bd9727ce621f38b5b24f48750"}, + {file = "SQLAlchemy-2.0.28-cp39-cp39-win32.whl", hash = "sha256:33157920b233bc542ce497a81a2e1452e685a11834c5763933b440fedd1d8e2d"}, + {file = "SQLAlchemy-2.0.28-cp39-cp39-win_amd64.whl", hash = "sha256:2f60843068e432311c886c5f03c4664acaef507cf716f6c60d5fde7265be9d7b"}, + {file = "SQLAlchemy-2.0.28-py3-none-any.whl", hash = "sha256:78bb7e8da0183a8301352d569900d9d3594c48ac21dc1c2ec6b3121ed8b6c986"}, + {file = "SQLAlchemy-2.0.28.tar.gz", hash = "sha256:dd53b6c4e6d960600fd6532b79ee28e2da489322fcf6648738134587faf767b6"}, ] [package.dependencies] @@ -5407,13 +5407,13 @@ scipy = ["scipy"] [[package]] name = "tox" -version = "4.13.0" +version = "4.14.1" description = "tox is a generic virtualenv management and test command line tool" optional = true python-versions = ">=3.8" files = [ - {file = "tox-4.13.0-py3-none-any.whl", hash = "sha256:1143c7e2489c68026a55d3d4ae84c02c449f073b28e62f80e3e440a3b72a4afa"}, - {file = "tox-4.13.0.tar.gz", hash = "sha256:dd789a554c16c4b532924ba393c92fc8991323c4b3d466712bfecc8c9b9f24f7"}, + {file = "tox-4.14.1-py3-none-any.whl", hash = "sha256:b03754b6ee6dadc70f2611da82b4ed8f625fcafd247e15d1d0cb056f90a06d3b"}, + {file = "tox-4.14.1.tar.gz", hash = "sha256:f0ad758c3bbf7e237059c929d3595479363c3cdd5a06ac3e49d1dd020ffbee45"}, ] [package.dependencies] @@ -5565,13 +5565,13 @@ tutorials = ["matplotlib", "pandas", "tabulate", "torch"] [[package]] name = "txtai" -version = "6.3.0" +version = "7.0.0" description = "All-in-one open-source embeddings database for semantic search, LLM orchestration and language model workflows" optional = false python-versions = ">=3.8" files = [ - {file = "txtai-6.3.0-py3-none-any.whl", hash = "sha256:3fefaf0aec2ae79efcb3e843df5a85a897a543cbcccd6fca717a5c699a7809b9"}, - {file = "txtai-6.3.0.tar.gz", hash = "sha256:89835840f4c634e95d754533f39d0737532259540c02abfdd0340e23e4ef4149"}, + {file = "txtai-7.0.0-py3-none-any.whl", hash = "sha256:bbfec60f266af6bb13dd76570de501361ea119cfedd3a1ffad467e10e8505d7c"}, + {file = "txtai-7.0.0.tar.gz", hash = "sha256:56cff538bea92675160c5ef9e34eefa7ba2add56359afc8150e5aebe9355ecd8"}, ] [package.dependencies] @@ -5583,24 +5583,24 @@ numpy = ">=1.18.4" pyyaml = ">=5.3" regex = ">=2022.8.17" torch = ">=1.12.1" -transformers = ">=4.22.0" +transformers = ">=4.27.0" [package.extras] -all = ["accelerate (>=0.19.0)", "aiohttp (>=3.8.1)", "annoy (>=1.16.3)", "apache-libcloud (>=3.3.1)", "beautifulsoup4 (>=4.9.3)", "croniter (>=1.2.0)", "duckdb (>=0.7.1)", "fastapi (>=0.94.0)", "fasttext (>=0.9.2)", "hnswlib (>=0.5.0)", "imagehash (>=4.2.1)", "litellm (>=1.15.8)", "llama-cpp-python (>=0.2.20)", "networkx (>=2.6.3)", "nltk (>=3.5)", "onnx (>=1.11.0)", "onnxmltools (>=1.9.1)", "onnxruntime (>=1.11.0)", "openpyxl (>=3.0.9)", "pandas (>=1.1.0)", "pillow (>=7.1.2)", "pymagnitude-lite (>=0.1.43)", "python-louvain (>=0.16)", "requests (>=2.26.0)", "rich (>=12.0.1)", "scikit-learn (>=0.23.1)", "scipy (>=1.4.1)", "sentence-transformers (>=2.2.0)", "sentencepiece (>=0.1.91)", "skl2onnx (>=1.9.1)", "soundfile (>=0.10.3.post1)", "sqlalchemy (>=2.0.20)", "tika (>=1.24)", "timm (>=0.4.12)", "ttstokenizer (>=1.0.0)", "uvicorn (>=0.12.1)", "xmltodict (>=0.12.0)"] -api = ["aiohttp (>=3.8.1)", "fastapi (>=0.94.0)", "uvicorn (>=0.12.1)"] +all = ["accelerate (>=0.19.0)", "aiohttp (>=3.8.1)", "annoy (>=1.16.3)", "apache-libcloud (>=3.3.1)", "beautifulsoup4 (>=4.9.3)", "bitsandbytes (>=0.42.0)", "croniter (>=1.2.0)", "duckdb (>=0.7.1)", "fastapi (>=0.94.0)", "fasttext (>=0.9.2)", "grand-cypher (>=0.6.0)", "hnswlib (>=0.5.0)", "imagehash (>=4.2.1)", "litellm (>=1.15.8)", "llama-cpp-python (>=0.2.20)", "msgpack (>=1.0.7)", "networkx (>=2.6.3)", "nltk (>=3.5)", "onnx (>=1.11.0)", "onnxmltools (>=1.9.1)", "onnxruntime (>=1.11.0)", "openpyxl (>=3.0.9)", "pandas (>=1.1.0)", "peft (>=0.8.1)", "pillow (>=7.1.2)", "pymagnitude-lite (>=0.1.43)", "python-louvain (>=0.16)", "python-multipart (>=0.0.7)", "requests (>=2.26.0)", "rich (>=12.0.1)", "scikit-learn (>=0.23.1)", "scipy (>=1.4.1)", "sentence-transformers (>=2.2.0)", "sentencepiece (>=0.1.91)", "skl2onnx (>=1.9.1)", "soundfile (>=0.10.3.post1)", "sqlalchemy (>=2.0.20)", "tika (>=1.24)", "timm (>=0.4.12)", "ttstokenizer (>=1.0.0)", "uvicorn (>=0.12.1)", "xmltodict (>=0.12.0)"] +api = ["aiohttp (>=3.8.1)", "fastapi (>=0.94.0)", "msgpack (>=1.0.7)", "python-multipart (>=0.0.7)", "uvicorn (>=0.12.1)"] cloud = ["apache-libcloud (>=3.3.1)"] console = ["rich (>=12.0.1)"] database = ["duckdb (>=0.7.1)", "pillow (>=7.1.2)", "sqlalchemy (>=2.0.20)"] -dev = ["black", "coverage", "coveralls", "httpx", "mkdocs-material", "mkdocs-redirects", "mkdocstrings[python-legacy]", "pre-commit", "pylint"] -graph = ["networkx (>=2.6.3)", "python-louvain (>=0.16)"] +dev = ["black", "coverage", "coveralls", "httpx", "mkdocs-material", "mkdocs-redirects", "mkdocstrings[python]", "pre-commit", "pylint"] +graph = ["grand-cypher (>=0.6.0)", "networkx (>=2.6.3)", "python-louvain (>=0.16)"] model = ["onnx (>=1.11.0)", "onnxruntime (>=1.11.0)"] -pipeline = ["accelerate (>=0.19.0)", "beautifulsoup4 (>=4.9.3)", "fasttext (>=0.9.2)", "imagehash (>=4.2.1)", "litellm (>=1.15.8)", "llama-cpp-python (>=0.2.20)", "nltk (>=3.5)", "onnx (>=1.11.0)", "onnxmltools (>=1.9.1)", "onnxruntime (>=1.11.0)", "pandas (>=1.1.0)", "pillow (>=7.1.2)", "scipy (>=1.4.1)", "sentencepiece (>=0.1.91)", "skl2onnx (>=1.9.1)", "soundfile (>=0.10.3.post1)", "tika (>=1.24)", "timm (>=0.4.12)", "ttstokenizer (>=1.0.0)"] +pipeline = ["accelerate (>=0.19.0)", "beautifulsoup4 (>=4.9.3)", "bitsandbytes (>=0.42.0)", "fasttext (>=0.9.2)", "imagehash (>=4.2.1)", "litellm (>=1.15.8)", "llama-cpp-python (>=0.2.20)", "nltk (>=3.5)", "onnx (>=1.11.0)", "onnxmltools (>=1.9.1)", "onnxruntime (>=1.11.0)", "pandas (>=1.1.0)", "peft (>=0.8.1)", "pillow (>=7.1.2)", "scipy (>=1.4.1)", "sentencepiece (>=0.1.91)", "skl2onnx (>=1.9.1)", "soundfile (>=0.10.3.post1)", "tika (>=1.24)", "timm (>=0.4.12)", "ttstokenizer (>=1.0.0)"] pipeline-audio = ["onnx (>=1.11.0)", "onnxruntime (>=1.11.0)", "scipy (>=1.4.1)", "soundfile (>=0.10.3.post1)", "ttstokenizer (>=1.0.0)"] pipeline-data = ["beautifulsoup4 (>=4.9.3)", "nltk (>=3.5)", "pandas (>=1.1.0)", "tika (>=1.24)"] pipeline-image = ["imagehash (>=4.2.1)", "pillow (>=7.1.2)", "timm (>=0.4.12)"] pipeline-llm = ["litellm (>=1.15.8)", "llama-cpp-python (>=0.2.20)"] pipeline-text = ["fasttext (>=0.9.2)", "sentencepiece (>=0.1.91)"] -pipeline-train = ["accelerate (>=0.19.0)", "onnx (>=1.11.0)", "onnxmltools (>=1.9.1)", "onnxruntime (>=1.11.0)", "skl2onnx (>=1.9.1)"] +pipeline-train = ["accelerate (>=0.19.0)", "bitsandbytes (>=0.42.0)", "onnx (>=1.11.0)", "onnxmltools (>=1.9.1)", "onnxruntime (>=1.11.0)", "peft (>=0.8.1)", "skl2onnx (>=1.9.1)"] similarity = ["annoy (>=1.16.3)", "fasttext (>=0.9.2)", "hnswlib (>=0.5.0)", "pymagnitude-lite (>=0.1.43)", "scikit-learn (>=0.23.1)", "sentence-transformers (>=2.2.0)"] workflow = ["apache-libcloud (>=3.3.1)", "croniter (>=1.2.0)", "openpyxl (>=3.0.9)", "pandas (>=1.1.0)", "pillow (>=7.1.2)", "requests (>=2.26.0)", "xmltodict (>=0.12.0)"] @@ -6355,4 +6355,4 @@ gpu = ["auto-gptq", "autoawq", "optimum"] [metadata] lock-version = "2.0" python-versions = ">=3.9,<4.0" -content-hash = "87efd6a152d76edf260b1a56d9efe5b14613bec8629bf549acc0a01f70e28eea" +content-hash = "6ed61c05e5c4298fb983654bf4abcde89167c15f25dbf0f232eaf70e149b48a4" diff --git a/pyproject.toml b/pyproject.toml index c356c5b..e9b3cbe 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -1,19 +1,20 @@ [tool.poetry] name = "selfie" version = "0.1.0" -description = "Data awareness mixin for LLMs" +description = "Data mixin for LLMs" authors = ["Vana "] readme = "README.md" [tool.poetry.dependencies] python = ">=3.9,<4.0" # >=3.9 for numpy, <4 for llama-index beautifulsoup4 = "^4.12.3" +colorlog = "^6.8.2" fastapi = "^0.109.0" uvicorn = "^0.27.0" humanize = "^4.9.0" -llama-cpp-python = "^0.2.42" +llama-cpp-python = "^0.2.26" litellm = "^1.23.12" -txtai = {version = "^6.3.0", extras = ["pipeline-llm"]} +txtai = {version = "^7.0.0", extras = ["pipeline-llm"]} sse-starlette = "^2.0.0" llama-index = "^0.10.4" numpy = "^1.26.4" @@ -34,9 +35,6 @@ autoawq = { version = "^0.1.8", optional = true } [tool.poetry.extras] gpu = ["auto-gptq", "optimum", "autoawq"] -[tool.poetry.group.dev.dependencies] -colorlog = "^6.8.2" - [build-system] requires = ["poetry-core"] build-backend = "poetry.core.masonry.api" diff --git a/selfie/api/documents.py b/selfie/api/documents.py index 474de6a..8ebaf08 100644 --- a/selfie/api/documents.py +++ b/selfie/api/documents.py @@ -11,16 +11,16 @@ class UnindexDocumentsRequest(BaseModel): - document_ids: List[str] = [] + document_ids: List[int] = [] class IndexDocumentsRequest(BaseModel): is_chat: bool = False - document_ids: List[str] = [] + document_ids: List[int] = [] class DeleteDocumentsRequest(BaseModel): - document_ids: List[str] = [] + document_ids: List[int] = [] @router.get("/documents") diff --git a/selfie/api/index_documents.py b/selfie/api/index_documents.py index c21f3bf..31b9f7e 100644 --- a/selfie/api/index_documents.py +++ b/selfie/api/index_documents.py @@ -14,6 +14,9 @@ router = APIRouter() +from selfie.config import get_app_config + +config = get_app_config() @router.get("/index_documents") async def get_documents(offset: int = 0, limit: int = 10): @@ -78,7 +81,8 @@ async def load_data(request: DataLoaderRequest): print(documents) text_parser = SentenceSplitter( - chunk_size=1024, + chunk_size=config.embedding_chunk_size, + chunk_overlap=config.embedding_chunk_overlap, # separator=" ", ) diff --git a/selfie/config.py b/selfie/config.py index be76377..fd04855 100644 --- a/selfie/config.py +++ b/selfie/config.py @@ -23,6 +23,8 @@ class AppConfig(BaseModel): local_gpu_model: str = Field(default='TheBloke/Mistral-7B-OpenOrca-GPTQ', description="Local GPU model") local_functionary_model: str = Field(default="meetkai/functionary-7b-v2-GGUF/functionary-7b-v2.q4_0.gguf", description="Local functionary model") hosted_model: str = Field(default="openai/gpt-3.5-turbo", description="Hosted model") + embedding_chunk_size: int = Field(default=512, description="Embedding chunk size") + embedding_chunk_overlap: int = Field(default=50, description="Embedding chunk overlap") @property def base_url(self): diff --git a/selfie/connectors/text_files/connector.py b/selfie/connectors/text_files/connector.py index b8fdbb5..5ffc604 100644 --- a/selfie/connectors/text_files/connector.py +++ b/selfie/connectors/text_files/connector.py @@ -1,6 +1,9 @@ from abc import ABC from typing import Any, List +from selfie.config import get_app_config + + from llama_index.core.node_parser import SentenceSplitter from selfie.connectors.base_connector import BaseConnector @@ -9,6 +12,8 @@ from selfie.types.documents import DocumentDTO from selfie.utils import data_uri_to_dict +config = get_app_config() + class TextFilesConfiguration(BaseModel): files: List[str] @@ -46,5 +51,8 @@ def transform_for_embedding(self, configuration: dict[str, Any], documents: List source_document_id=document.id, ) for document in documents - for text_chunk in SentenceSplitter(chunk_size=1024).split_text(document.content) + for text_chunk in SentenceSplitter( + chunk_size=config.embedding_chunk_size, + chunk_overlap=config.embedding_chunk_overlap, + ).split_text(document.content) ] diff --git a/selfie/data_generators/chat_training_data.py b/selfie/data_generators/chat_training_data.py index dbf54fa..9d2a656 100644 --- a/selfie/data_generators/chat_training_data.py +++ b/selfie/data_generators/chat_training_data.py @@ -1,18 +1,19 @@ #!/usr/bin/env python3 -from typing import List, Dict +from typing import List, Dict, Callable +from enum import Enum import os import time import json import random import argparse +import logging from itertools import groupby - -from enum import Enum - from selfie.parsers.chat import ChatFileParser, Parser from selfie.types.share_gpt import ShareGPTMessage +logger = logging.getLogger(__name__) + class Strategy(Enum): BUNDLE = 'bundle' @@ -78,26 +79,26 @@ def extract_message_bundles(conversations: List[ShareGPTMessage]): return message_bundles @staticmethod - def group_messages_into_chunks(conversations: List[ShareGPTMessage], overlap: int = 0, max_messages: int = 3, max_characters: int = 0) -> List[List[ShareGPTMessage]]: + def group_messages_into_chunks(conversations: List[ShareGPTMessage], tokenizer: Callable, overlap: int = 0, max_messages: int = 3, max_tokens: int = 0) -> List[List[ShareGPTMessage]]: chunks = [] index = 0 while index < len(conversations): end_index = index + max_messages chunk = conversations[index:end_index] - # If there's a max characters limit, adjust the chunk to not exceed it - if max_characters > 0: - characters_count = sum(len(msg.value.split()) for msg in chunk) - while characters_count > max_characters and len(chunk) > 0: - chunk.pop() # Remove the last message - characters_count = sum(len(msg.value.split()) for msg in chunk) + if max_tokens > 0: + tokens_count = sum(len(tokenizer(msg.value)) for msg in chunk) + while tokens_count > max_tokens and len(chunk) > 0: + if len(chunk) == 1: + logger.warning(f"Warning: A single message exceeds the max tokens limit ({max_tokens}).") + chunk.pop() + tokens_count = sum(len(tokenizer(msg.value)) for msg in chunk) chunks.append(chunk) index += max_messages - overlap return chunks - @staticmethod def generate_sharegpt_jsonl_line(messages: List[ShareGPTMessage]) -> str: """ diff --git a/selfie/database/__init__.py b/selfie/database/__init__.py index 433b4aa..feab650 100644 --- a/selfie/database/__init__.py +++ b/selfie/database/__init__.py @@ -240,7 +240,10 @@ def _map_selfie_documents_to_index_documents(selfie_document: DocumentDTO): timestamp=DataManager._extract_timestamp(selfie_document), source_document_id=selfie_document.id, ) - for text_chunk in SentenceSplitter(chunk_size=1024).split_text(selfie_document.content) + for text_chunk in SentenceSplitter( + chunk_size=config.embedding_chunks_size, + chunk_overlap=config.embedding_chunk_overlap + ).split_text(selfie_document.content) ] @staticmethod diff --git a/selfie/embeddings/__init__.py b/selfie/embeddings/__init__.py index 5c9870a..493a28a 100644 --- a/selfie/embeddings/__init__.py +++ b/selfie/embeddings/__init__.py @@ -7,6 +7,9 @@ from typing import Optional, List, Dict, Any, Coroutine, Callable import humanize +import logging +import tiktoken +from llama_index.core.node_parser import SentenceSplitter from selfie.config import get_app_config from selfie.data_generators.chat_training_data import ( @@ -18,7 +21,6 @@ from selfie.embeddings.recency_scorer import RecencyScorer from selfie.embeddings.relevance_scorer import RelevanceScorer from txtai.embeddings import Embeddings -import logging from txtai.pipeline import LLM @@ -28,12 +30,30 @@ config = get_app_config() -llm = LLM( - verbose=config.verbose, - path=config.local_model, - method="llama.cpp", - n_ctx=8192, - n_gpu_layers=-1 if config.gpu else 0, + +def get_default_completion(): + llm = LLM( + verbose=config.verbose, + path=config.local_model, + method="llama.cpp", + n_ctx=8192, + n_gpu_layers=-1 if config.gpu else 0, + ) + + async def completion(prompt): + return llm(prompt) + + return completion + + +# TODO: Probably a minor issue, so hard-coding the tokenizer for now: +# 1. The default tokenizer should probably be based on the user's default/configured model +# 2. If the user changes their default model, already-indexed documents could be larger than max_embedding_size_tokens +tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo").encode +splitter = SentenceSplitter( + tokenizer=tokenizer, + chunk_size=config.embedding_chunk_size, + chunk_overlap=config.embedding_chunk_overlap ) @@ -51,11 +71,7 @@ def __init__(self, character_name, storage_path: str = config.embeddings_storage self.storage_path = os.path.join(storage_path, "index") os.makedirs(storage_path, exist_ok=True) - async def completion_async(prompt): - return llm(prompt) - - self.completion = completion or completion_async - + self.completion = completion or get_default_completion() self.character_name = character_name self.embeddings = Embeddings( sqlite={"wal": True}, @@ -149,11 +165,30 @@ async def enqueue_delete(self, ids: List[int]): def map_share_gpt_data( conversation: List[ShareGPTMessage], source: str = "Unknown", source_document_id: int = None ) -> List[EmbeddingDocumentModel]: - chunks = ChatTrainingDataGenerator.group_messages_into_chunks( - conversation, overlap=1, max_messages=8, max_characters=0 + conversation_with_chunked_messages = [ + ShareGPTMessage(**{ + "from": msg.from_user, + "value": chunk, + "timestamp": msg.timestamp, + }) + for msg in conversation + for chunk in ( + splitter.split_text(msg.value) + if len(tokenizer(msg.value)) > config.embedding_chunk_size + else [msg.value] + ) + ] + + message_chunks = ChatTrainingDataGenerator.group_messages_into_chunks( + conversation_with_chunked_messages, + overlap=2, + max_messages=32, + max_tokens=config.embedding_chunk_size, + tokenizer=tokenizer ) + documents = [] - for i, conv in enumerate(chunks): + for i, conv in enumerate(message_chunks): if any("REDACTED" in msg.value for msg in conv): continue last_user = "" diff --git a/selfie/parsers/chat/__init__.py b/selfie/parsers/chat/__init__.py index b0b1884..1666808 100644 --- a/selfie/parsers/chat/__init__.py +++ b/selfie/parsers/chat/__init__.py @@ -60,7 +60,8 @@ def __init__(self, blacklist_patterns=None, rewrite_placeholder: str = "REDACTED self.parser_cache = {} self.blacklist_patterns = [ re.compile(pattern, re.IGNORECASE) - for pattern in default_blacklist_patterns + (blacklist_patterns or []) + # TODO: Disabling blacklisting until it is more configurable + for pattern in [] #default_blacklist_patterns + (blacklist_patterns or []) ] self.rewrite_placeholder = rewrite_placeholder diff --git a/selfie/text_generation/generation.py b/selfie/text_generation/generation.py index a514273..66412bf 100644 --- a/selfie/text_generation/generation.py +++ b/selfie/text_generation/generation.py @@ -14,6 +14,7 @@ config = get_app_config() + async def completion(request: CompletionRequest | ChatCompletionRequest) -> SelfieCompletionResponse: logger.debug(f"Handling a completion request: {request}")