-
Notifications
You must be signed in to change notification settings - Fork 60
/
Copy pathpredict.py
41 lines (31 loc) · 1.39 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import json
from PIL import Image
from werkzeug.wrappers import Request, Response
from utils.image import predict_image, process_image
from utils.model import load_model
model = None
def predict(environ, start_response):
# Load input image data from the HTTP request
request = Request(environ)
if not request.files:
return Response('no file uploaded', 400)(environ, start_response)
image_file = next(request.files.values())
image, inverted = process_image(Image.open(image_file))
# The predictor must be lazily instantiated;
# the TensorFlow graph can apparently not be shared
# between processes.
global model
if not model:
model = load_model('model.h5')
prediction = predict_image(model, image, inverted)
# The following line allows Valohai to track endpoint predictions
# while the model is deployed. Here we remove the full predictions
# details as we are only interested in tracking the rest of the results.
print(json.dumps({'vh_metadata': {k: v for k, v in prediction.items() if k != 'predictions'}}))
# Return a JSON response
response = Response(json.dumps(prediction), content_type='application/json')
return response(environ, start_response)
# Run a local server for testing with `python deploy.py`
if __name__ == '__main__':
from werkzeug.serving import run_simple
run_simple('0.0.0.0', 8000, predict)