forked from jashapiro/fastStructure
-
Notifications
You must be signed in to change notification settings - Fork 1
/
distruct.py
170 lines (132 loc) · 5.71 KB
/
distruct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import numpy as np
import matplotlib.pyplot as plot
import colorsys
import getopt
import sys, pdb
def plot_admixture(admixture, population_indices, population_labels, title):
N,K = admixture.shape
colors = [colorsys.hsv_to_rgb(h,0.9,0.7) for h in np.linspace(0,1,K+1)[:-1]]
text_color = 'k'
bg_color = 'w'
fontsize = 12
figure = plot.figure(figsize=(5,3))
xmin = 0.13
ymin = 0.2
height = 0.6
width = 0.74
indiv_width = width/N
subplot = figure.add_axes([xmin,ymin,width,height])
[spine.set_linewidth(0.001) for spine in list(subplot.spines.values())]
for k in range(K):
if k:
bottoms = admixture[:,:k].sum(1)
else:
bottoms = np.zeros((N,),dtype=float)
lefts = np.arange(N)*indiv_width
subplot.bar(lefts, admixture[:,k], width=indiv_width, bottom=bottoms, facecolor=colors[k], edgecolor=colors[k], linewidth=0.4)
subplot.axis([0, N*indiv_width, 0, 1])
subplot.tick_params(axis='both', top=False, right=False, left=False, bottom=False)
xtick_labels = tuple(map(str,['']*N))
subplot.set_xticklabels(xtick_labels)
ytick_labels = tuple(map(str,['']*K))
subplot.set_yticklabels(ytick_labels)
position = subplot.get_position()
title_position = (0.5, 0.9)
figure.text(title_position[0], title_position[1], title, fontsize=fontsize, \
color='k', horizontalalignment='center', verticalalignment='center')
for p,popname in enumerate(population_labels):
indices = np.where(population_indices==p)[0]
if indices.size>0:
vline_pos = (indices.max()+1)*indiv_width
subplot.axvline(vline_pos, linestyle='-', linewidth=0.2, c='#888888')
label_position = (xmin+(2*indices.min()+indices.size)*0.5*indiv_width, ymin-0.01)
figure.text(label_position[0], label_position[1], popname, fontsize=6, color='k', \
horizontalalignment='right', verticalalignment='top', rotation=70)
return figure
def get_admixture_proportions(params):
# load admixture proportions
handle = open('%s.%d.meanQ'%(params['inputfile'],params['K']),'r')
admixture = np.array([line.strip().split() for line in handle]).astype('float')
handle.close()
N,K = admixture.shape
admixture = admixture/admixture.sum(1).reshape(N,1)
# get population labels
if 'popfile' in params:
handle = open(params['popfile'],'r')
populations = [line.strip() for line in handle]
handle.close()
population_labels = list(set(populations))
# group populations by cluster similarity
population_cluster = [np.mean(admixture[[i for i,p in enumerate(populations) if p==label],:],0).argmax() \
for label in population_labels]
population_labels = [population_labels[j] for j in np.argsort(population_cluster)]
population_indices = np.array([population_labels.index(pop) for pop in populations])
# re-order samples in admixture matrix
order = np.argsort(population_indices)
population_indices = population_indices[order]
admixture = admixture[order,:]
else:
print("file with population labels is not provided or does not exist .... \ncreating population labels based on inferred admixture proportions")
population_labels = ['population %d'%i for i in range(1,K+1)]
population_indices = np.argmax(admixture,1)
# re-order samples in admixture matrix
order = np.argsort(population_indices)
population_indices = population_indices[order]
admixture = admixture[order,:]
order = np.arange(N)
for k in range(K):
order[population_indices==k] = order[population_indices==k][np.argsort(admixture[population_indices==k,:][:,k])[::-1]]
admixture = admixture[order,:]
return admixture, population_indices, population_labels
def parseopts(opts):
"""
parses the command-line flags and options passed to the script
"""
params = {}
for opt, arg in opts:
if opt in ["-K"]:
params['K'] = int(arg)
elif opt in ["--input"]:
params['inputfile'] = arg
elif opt in ["--output"]:
params['outputfile'] = arg
elif opt in ["--popfile"]:
params['popfile'] = arg
elif opt in ["--title"]:
params['title'] = arg
return params
def usage():
"""
brief description of various flags and options for this script
"""
print("\nHere is how you can use this script\n")
print("Usage: python %s"%sys.argv[0])
print("\t -K <int> (number of populations)")
print("\t --input=<file> (/path/to/input/file; same as output flag passed to structure.py)")
print("\t --output=<file> (/path/to/output/file)")
print("\t --popfile=<file> (file with known categorical labels; optional)")
print("\t --title=<figure title> (a title for the figure; optional)")
if __name__=="__main__":
# parse command-line options
argv = sys.argv[1:]
smallflags = "K:"
bigflags = ["input=", "output=", "popfile=", "title="]
try:
opts, args = getopt.getopt(argv, smallflags, bigflags)
if not opts:
usage()
sys.exit(2)
except getopt.GetoptError:
print("Incorrect options passed")
usage()
sys.exit(2)
params = parseopts(opts)
# get the data to be plotted
admixture, population_indices, population_labels = get_admixture_proportions(params)
if 'title' in params:
title = params['title']
else:
title = params['inputfile']
# plot the data
figure = plot_admixture(admixture, population_indices, population_labels, title)
figure.savefig(params['outputfile'], dpi=300)