forked from kwantam/bls_sigs_ref-archive
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathg2_common.sage
103 lines (90 loc) · 3.5 KB
/
g2_common.sage
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
#!/usr/bin/env sage
# vim: syntax=python
#
# (C) 2019 Riad S. Wahby <[email protected]>
#
# common routines and definitions for G2
from util import print_iv, is_debug
from __sage__g1_common import ZZR, ell_u, p, q
# BLS12-381 G2 curve
F2.<X> = GF(p^2, modulus=[1, 0, 1])
Ell2 = EllipticCurve(F2, [0, 4 * (1 + X)])
assert Ell2.order() % q == 0
h2 = Ell2.order() // q
# roots of unity for use in computing square roots
roots_of_unity = (F2(1)
, F2(X)
, F2(1028732146235106349975324479215795277384839936929757896155643118032610843298655225875571310552543014690878354869257*X
+ 1028732146235106349975324479215795277384839936929757896155643118032610843298655225875571310552543014690878354869257)
, F2(2973677408986561043442465346520108879172042883009249989176415018091420807192182638567116318576472649347015917690530*X
+ 1028732146235106349975324479215795277384839936929757896155643118032610843298655225875571310552543014690878354869257)
)
# compute square root in F2 (used in deserialization)
def sqrt_F2(val):
sqrt_cand = val ** ((p**2 + 7) // 16)
ret = None
for root in roots_of_unity:
tmp = sqrt_cand * root
ret = tmp if tmp ** 2 == val else ret
return ret
##
## clear cofactor via untwist-Frobenius-twist endomorphism
##
# this is based on
# Budroni and Pintore, "Efficient Hash Maps to G2 on BLS curves."
# ePrint 2017/419, https://eprint.iacr.org/2017/419
##
class _BP_ClearH_G2(object):
# constants for Psi, the untwist-Frobenius-twist map
iwsc = F2(0xd0088f51cbff34d258dd3db21a5d66bb23ba5c279c2895fb39869507b587b120f55ffff58a9ffffdcff7fffffffd556 \
* (1 + X) - X)
onei = F2(1 + X)
k_qi_x = 0x1a0111ea397fe699ec02408663d4de85aa0d857d89759ad4897d29650fb85f9b409427eb4f49fffd8bfd00000000aaad
k_qi_y = 0x6af0e0437ff400b6831e36d6bd17ffe48395dabc2d3435e77f76e17009241c5ee67992f72ec05f4c81084fbede3cc09
# shortcut for evaluating untwist without resorting to Fp12 arithmetic --- X coordinate
@classmethod
def qi_x(cls, x):
vec = ZZR(x)
return F2(cls.k_qi_x * (vec[0] - X * vec[1]))
# shortcut for evaluating untwist without resorting to Fp12 arithmetic --- Y coordinate
@classmethod
def qi_y(cls, y):
vec = ZZR(y)
return cls.k_qi_y * F2(vec[0] + vec[1] + X * (vec[0] - vec[1]))
# shortcut untwist-Frobenius-twist
@classmethod
def psi(cls, P):
x = cls.onei * cls.qi_x(cls.iwsc * P[0])
y = cls.onei * cls.qi_y(cls.iwsc * P[1])
return Ell2(x, y)
# construction for Barreto-Lynn-Scott curves with embedding degree 12,
# given in section 4.1 of Budroni and Pintore
def clear_h2(P):
ret = ell_u * P
pP = _BP_ClearH_G2.psi(P)
ret = (ell_u - 1) * (pP + ret) - P
ret += _BP_ClearH_G2.psi(_BP_ClearH_G2.psi(2 * P))
assert ret == P * h2 * (3 * ell_u ** 2 - 3)
return ret
# print out an element of F2
def print_F2_hex(vv, name, margin=8):
vv = ZZR(vv)
indent_str = " " * margin
print indent_str + name + "0 = 0x%x" % int(vv[0])
print indent_str + name + "1 = 0x%x" % int(vv[1])
# print out a point on g2
def print_g2_hex(P, margin=8):
print_F2_hex(P[0], 'x', margin)
print_F2_hex(P[1], 'y', margin)
# print an intermediate value comprising an element of F2
def print_iv_F2(vv, name, fn):
if not is_debug():
return
print_iv(None, name, fn)
print_F2_hex(vv, '.')
# print an intermediate value comprising a point on g2
def print_iv_g2(P, name, fn):
if not is_debug():
return
print_iv(None, name, fn)
print_g2_hex(P)