-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_kFold.py
174 lines (149 loc) · 5.62 KB
/
train_kFold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
use_wandb = True
import os
import cv2
import collections
import random
import time
import tqdm
import gc
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import argparse
from sklearn.model_selection import KFold, train_test_split
import torchvision
import torchvision.transforms as transforms
import torch
from torch.utils.data import TensorDataset, DataLoader,Dataset
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.optim.lr_scheduler import StepLR, ReduceLROnPlateau, CosineAnnealingLR
import albumentations as albu
import configparser
import argparse
import pickle
if use_wandb:
import wandb
# Catalyst is amazing.
from catalyst.data import Augmentor
from catalyst.dl import utils
from catalyst.data.reader import ImageReader, ScalarReader, ReaderCompose, LambdaReader
if use_wandb:
from catalyst.dl.runner import SupervisedWandbRunner as SupervisedRunner
else:
from catalyst.dl.runner import SupervisedRunner
from catalyst.contrib.models.segmentation import Unet
from catalyst.dl.callbacks import DiceCallback, EarlyStoppingCallback, InferCallback, CheckpointCallback
# PyTorch made my work much much easier.
import segmentation_models_pytorch as smp
from dataloader import SegmentationDataset, SegmentationDatasetTest
from augmentations import get_training_augmentation, get_validation_augmentation, get_preprocessing
from metric import BCEDiceLoss, DiceLoss, dice
from utils import *
device=torch.device('cuda')
# device=torch.device('cpu')
def seed_everything(seed=42):
"""
42 is the answer to everything.
"""
random.seed(seed)
os.environ["PYTHONHASHSEED"] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
seed_everything(42)
def get_loaders(train_ids, valid_ids, bs=32, num_workers=4, preprocessing_fn=None,
img_db="input/train_images_480/", mask_db="input/train_masks_480/",
npy=True):
train_dataset = SegmentationDataset(ids=train_ids,
transforms=get_training_augmentation(),
preprocessing=get_preprocessing(preprocessing_fn),
img_db=img_db,
mask_db=mask_db, npy=npy)
valid_dataset = SegmentationDataset(ids=valid_ids,
transforms=get_validation_augmentation(),
preprocessing=get_preprocessing(preprocessing_fn),
img_db=img_db,
mask_db=mask_db, npy=npy)
train_loader = DataLoader(train_dataset, batch_size=bs,
shuffle=True, num_workers=num_workers)
valid_loader = DataLoader(valid_dataset, batch_size=bs,
shuffle=False, num_workers=num_workers)
loaders = {
"train": train_loader,
"valid": valid_loader
}
return loaders
if __name__ == "__main__":
start = time.time()
parser = argparse.ArgumentParser()
parser.add_argument("--config", "-c", default="configs/config.ini",
help="config file for training hyperparameters")
parser.add_argument("--wandb", "-w", default="segmentation-phase3",
help="wandb project name")
args = parser.parse_args()
project = args.wandb
config_file = args.config
if use_wandb:
wandb.init(project=project)
config = configparser.ConfigParser()
config.read(config_file)
conf = config['DEFAULT']
lrd = conf.getfloat('lrd') #decoder lr
lre = conf.getfloat('lre') #encoder lr
epochs = conf.getint('epochs')
num_workers = conf.getint('num_workers')
bs = conf.getint('bs')
s_patience = conf.getint('s_patience')
train_patience = conf.getint('train_patience')
arch = conf.get('arch')
encoder = conf.get('encoder')
logdir_base = f"./logs/{arch}_{encoder}"
train_ids, valid_ids = get_ids()
all_ids = list(train_ids) + list(valid_ids)
N_FOLDS = 5
splits = np.array_split(all_ids, N_FOLDS)
for i in range(N_FOLDS):
torch.cuda.empty_cache()
gc.collect()
print(f"Fold: {i}")
logdir = logdir_base+f"_{i}"
test_ids = splits[i]
train_ids = np.array(list(set(all_ids) - set(test_ids)))
model, preprocessing_fn = get_model(encoder, type=arch)
if use_wandb:
wandb.watch(model)
loaders = get_loaders(train_ids, valid_ids, bs, num_workers, preprocessing_fn)
optimizer = torch.optim.Adam([
{'params': model.decoder.parameters(), 'lr': lrd},
{'params': model.encoder.parameters(), 'lr': lre},
])
model.to(device)
scheduler = ReduceLROnPlateau(optimizer, factor=0.6, patience=s_patience)
# criterion = smp.utils.losses.BCEDiceLoss(eps=1.)
# scheduler = StepLR(optimizer, step_size=10, gamma=0.5)
criterion = BCEDiceLoss(eps=1.)
# criterion = DiceLoss(eps=1.) #Try this too
runner = SupervisedRunner()
# Train
runner.train(
model=model,
criterion=criterion,
optimizer=optimizer,
scheduler=scheduler,
loaders=loaders,
callbacks=[DiceCallback(),
EarlyStoppingCallback(patience=train_patience,
min_delta=0.001)
],
logdir=logdir,
num_epochs=epochs,
verbose=True
)
secs = time.time() - start
print(f"Done in {secs:.2f} seconds ({secs/3600:.2f} hours)")
# git fetch --all && git reset --hard origin/master