-
Notifications
You must be signed in to change notification settings - Fork 0
/
vision_models.py
2194 lines (1846 loc) · 96.1 KB
/
vision_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Adding a new functionality is easy. Just implement your new model as a subclass of BaseModel.
The code will make the rest: it will make it available for the processes to call by using
process(name, *args, **kwargs), where *args and **kwargs are the arguments of the models process() method.
"""
import abc
import backoff
import contextlib
import openai
import os
import re
import timeit
import torch
import torchvision
import warnings
from PIL import Image
from collections import Counter
from contextlib import redirect_stdout
from functools import partial
from itertools import chain
from joblib import Memory
from rich.console import Console
from torch import hub
from torch.nn import functional as F
from torchvision import transforms
from typing import List, Union
import requests
import io
import time
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
from configs import config
from utils import HiddenPrints, format_and_check_string
import multiprocessing as mp
from openai import OpenAI
with open("api.key") as f:
CANDIDATE_API = f.readlines()
CANDIDATE_API = [api.strip() for api in CANDIDATE_API]
count = 0
api_num = len(CANDIDATE_API)
CURRENT_API = int((count / 3) % api_num)
CURRENT_API = int(count % api_num)
openai.api_key = CANDIDATE_API[CURRENT_API]
if "gpt" in config.codex.model or "gpt" in config.gpt3.model:
client = OpenAI(api_key=CANDIDATE_API[CURRENT_API])
cache = Memory('cache/' if config.use_cache else None, verbose=0)
device = "cuda" if torch.cuda.is_available() else "cpu"
console = Console(highlight=False)
HiddenPrints = partial(HiddenPrints, console=console, use_newline=config.multiprocessing)
# --------------------------- Base abstract model --------------------------- #
class BaseModel(abc.ABC):
to_batch = False
seconds_collect_data = 1.5 # Window of seconds to group inputs, if to_batch is True
max_batch_size = 10 # Maximum batch size, if to_batch is True. Maximum allowed by OpenAI
requires_gpu = True
def __init__(self, gpu_number):
self.dev = f'cuda:{gpu_number}' if device == 'cuda' else device
@abc.abstractmethod
def forward(self, *args, **kwargs):
"""
If to_batch is True, every arg and kwarg will be a list of inputs, and the output should be a list of outputs.
The way it is implemented in the background, if inputs with defaults are not specified, they will take the
default value, but still be given as a list to the forward method.
"""
pass
@classmethod
@abc.abstractmethod
def name(cls) -> str:
"""The name of the model has to be given by the subclass"""
pass
@classmethod
def list_processes(cls):
"""
A single model can be run in multiple processes, for example if there are different tasks to be done with it.
If multiple processes are used, override this method to return a list of strings.
Remember the @classmethod decorator.
If we specify a list of processes, the self.forward() method has to have a "process_name" parameter that gets
automatically passed in.
See GPT3Model for an example.
"""
return [cls.name]
# ------------------------------ Specific models ---------------------------- #
class ObjectDetector(BaseModel):
name = 'object_detector'
def __init__(self, gpu_number=0):
super().__init__(gpu_number)
with HiddenPrints('ObjectDetector'):
detection_model = hub.load('facebookresearch/detr', 'detr_resnet50', pretrained=True).to(self.dev)
detection_model.eval()
self.detection_model = detection_model
@torch.no_grad()
def forward(self, image: torch.Tensor):
"""get_object_detection_bboxes"""
input_batch = image.to(self.dev).unsqueeze(0) # create a mini-batch as expected by the model
detections = self.detection_model(input_batch)
p = detections['pred_boxes']
p = torch.stack([p[..., 0], 1 - p[..., 3], p[..., 2], 1 - p[..., 1]], -1) # [left, lower, right, upper]
detections['pred_boxes'] = p
return detections
class DepthEstimationModel(BaseModel):
name = 'depth'
def __init__(self, gpu_number=0, model_type='DPT_Large'):
super().__init__(gpu_number)
with HiddenPrints('DepthEstimation'):
warnings.simplefilter("ignore")
# Model options: MiDaS_small, DPT_Hybrid, DPT_Large
depth_estimation_model = hub.load('intel-isl/MiDaS', model_type, pretrained=True).to(self.dev)
depth_estimation_model.eval()
midas_transforms = torch.hub.load("intel-isl/MiDaS", "transforms")
if model_type == "DPT_Large" or model_type == "DPT_Hybrid":
self.transform = midas_transforms.dpt_transform
else:
self.transform = midas_transforms.small_transform
self.depth_estimation_model = depth_estimation_model
@torch.no_grad()
def forward(self, image: torch.Tensor):
"""Estimate depth map"""
image_numpy = image.cpu().permute(1, 2, 0).numpy() * 255
input_batch = self.transform(image_numpy).to(self.dev)
prediction = self.depth_estimation_model(input_batch)
# Resize to original size
prediction = torch.nn.functional.interpolate(
prediction.unsqueeze(1),
size=image_numpy.shape[:2],
mode="bicubic",
align_corners=False,
).squeeze()
# We compute the inverse because the model returns inverse depth
to_return = 1 / prediction
to_return = to_return.cpu()
return to_return # To save: plt.imsave(path_save, prediction.cpu().numpy())
class CLIPModel(BaseModel):
name = 'clip'
def __init__(self, gpu_number=0, version="ViT-L/14@336px"): # @336px
super().__init__(gpu_number)
import clip
self.clip = clip
with HiddenPrints('CLIP'):
model, preprocess = clip.load(version, device=self.dev)
model.eval()
model.requires_grad_ = False
self.model = model
self.negative_text_features = None
self.transform = self.get_clip_transforms_from_tensor(336 if "336" in version else 224)
# @staticmethod
def _convert_image_to_rgb(self, image):
return image.convert("RGB")
# @staticmethod
def get_clip_transforms_from_tensor(self, n_px=336):
return transforms.Compose([
transforms.ToPILImage(),
transforms.Resize(n_px, interpolation=transforms.InterpolationMode.BICUBIC),
transforms.CenterCrop(n_px),
self._convert_image_to_rgb,
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
])
@torch.no_grad()
def binary_score(self, image: torch.Tensor, prompt, negative_categories=None):
is_video = isinstance(image, torch.Tensor) and image.ndim == 4
if is_video: # video
image = torch.stack([self.transform(image[i]) for i in range(image.shape[0])], dim=0)
else:
image = self.transform(image).unsqueeze(0).to(self.dev)
prompt_prefix = "photo of "
prompt = prompt_prefix + prompt
if negative_categories is None:
if self.negative_text_features is None:
self.negative_text_features = self.clip_negatives(prompt_prefix)
negative_text_features = self.negative_text_features
else:
negative_text_features = self.clip_negatives(prompt_prefix, negative_categories)
text = self.clip.tokenize([prompt]).to(self.dev)
image_features = self.model.encode_image(image.to(self.dev))
image_features = F.normalize(image_features, dim=-1)
pos_text_features = self.model.encode_text(text)
pos_text_features = F.normalize(pos_text_features, dim=-1)
text_features = torch.concat([pos_text_features, negative_text_features], axis=0)
# run competition where we do a binary classification
# between the positive and all the negatives, then take the mean
sim = (100.0 * image_features @ text_features.T).squeeze(dim=0)
if is_video:
query = sim[..., 0].unsqueeze(-1).broadcast_to(sim.shape[0], sim.shape[-1] - 1)
others = sim[..., 1:]
res = F.softmax(torch.stack([query, others], dim=-1), dim=-1)[..., 0].mean(-1)
else:
res = F.softmax(torch.cat((sim[0].broadcast_to(1, sim.shape[0] - 1),
sim[1:].unsqueeze(0)), dim=0), dim=0)[0].mean()
return res
@torch.no_grad()
def clip_negatives(self, prompt_prefix, negative_categories=None):
if negative_categories is None:
with open('useful_lists/random_negatives.txt') as f:
negative_categories = [x.strip() for x in f.read().split()]
# negative_categories = negative_categories[:1000]
# negative_categories = ["a cat", "a lamp"]
negative_categories = [prompt_prefix + x for x in negative_categories]
negative_tokens = self.clip.tokenize(negative_categories).to(self.dev)
negative_text_features = self.model.encode_text(negative_tokens)
negative_text_features = F.normalize(negative_text_features, dim=-1)
return negative_text_features
@torch.no_grad()
def classify(self, image: Union[torch.Tensor, list], categories: list[str], return_index=True):
is_list = isinstance(image, list)
if is_list:
assert len(image) == len(categories)
image = [self.transform(x).unsqueeze(0) for x in image]
image_clip = torch.cat(image, dim=0).to(self.dev)
elif len(image.shape) == 3:
image_clip = self.transform(image).to(self.dev).unsqueeze(0)
else: # Video (process images separately)
image_clip = torch.stack([self.transform(x) for x in image], dim=0).to(self.dev)
# if len(image_clip.shape) == 3:
# image_clip = image_clip.unsqueeze(0)
prompt_prefix = "photo of "
categories = [prompt_prefix + x for x in categories]
categories = self.clip.tokenize(categories).to(self.dev)
text_features = self.model.encode_text(categories)
text_features = F.normalize(text_features, dim=-1)
image_features = self.model.encode_image(image_clip)
image_features = F.normalize(image_features, dim=-1)
if image_clip.shape[0] == 1:
# get category from image
softmax_arg = image_features @ text_features.T # 1 x n
else:
if is_list:
# get highest category-image match with n images and n corresponding categories
softmax_arg = (image_features @ text_features.T).diag().unsqueeze(0) # n x n -> 1 x n
else:
softmax_arg = (image_features @ text_features.T)
similarity = (100.0 * softmax_arg).softmax(dim=-1).squeeze(0)
if not return_index:
return similarity
else:
result = torch.argmax(similarity, dim=-1)
if result.shape == ():
result = result.item()
return result
@torch.no_grad()
def compare(self, images: list[torch.Tensor], prompt, return_scores=False):
images = [self.transform(im).unsqueeze(0).to(self.dev) for im in images]
images = torch.cat(images, dim=0)
prompt_prefix = "photo of "
prompt = prompt_prefix + prompt
text = self.clip.tokenize([prompt]).to(self.dev)
image_features = self.model.encode_image(images.to(self.dev))
image_features = F.normalize(image_features, dim=-1)
text_features = self.model.encode_text(text)
text_features = F.normalize(text_features, dim=-1)
sim = (image_features @ text_features.T).squeeze(dim=-1) # Only one text, so squeeze
if return_scores:
return sim
res = sim.argmax()
return res
def forward(self, image, prompt, task='score', return_index=True, negative_categories=None, return_scores=False):
if task == 'classify':
categories = prompt
clip_sim = self.classify(image, categories, return_index=return_index)
out = clip_sim
elif task == 'score':
clip_score = self.binary_score(image, prompt, negative_categories=negative_categories)
out = clip_score
else: # task == 'compare'
idx = self.compare(image, prompt, return_scores)
out = idx
if not isinstance(out, int):
out = out.cpu()
return out
class MaskRCNNModel(BaseModel):
name = 'maskrcnn'
def __init__(self, gpu_number=0, threshold=config.detect_thresholds.maskrcnn):
super().__init__(gpu_number)
with HiddenPrints('MaskRCNN'):
obj_detect = torchvision.models.detection.maskrcnn_resnet50_fpn_v2(weights='COCO_V1').to(self.dev)
obj_detect.eval()
obj_detect.requires_grad_(False)
self.categories = torchvision.models.detection.MaskRCNN_ResNet50_FPN_V2_Weights.COCO_V1.meta['categories']
self.obj_detect = obj_detect
self.threshold = threshold
def prepare_image(self, image):
image = image.to(self.dev)
return image
@torch.no_grad()
def detect(self, images: torch.Tensor, return_labels=True):
if type(images) != list:
images = [images]
images = [self.prepare_image(im) for im in images]
detections = self.obj_detect(images)
for i in range(len(images)):
height = detections[i]['masks'].shape[-2]
# Just return boxes (no labels no masks, no scores) with scores > threshold
if return_labels: # In the current implementation, we only return labels
d_i = detections[i]['labels'][detections[i]['scores'] > self.threshold]
detections[i] = set([self.categories[d] for d in d_i])
else:
d_i = detections[i]['boxes'][detections[i]['scores'] > self.threshold]
# Return [left, lower, right, upper] instead of [left, upper, right, lower]
detections[i] = torch.stack([d_i[:, 0], height - d_i[:, 3], d_i[:, 2], height - d_i[:, 1]], dim=1)
return detections
def forward(self, image, return_labels=False):
obj_detections = self.detect(image, return_labels)
# Move to CPU before sharing. Alternatively we can try cloning tensors in CUDA, but may not work
obj_detections = [(v.to('cpu') if isinstance(v, torch.Tensor) else list(v)) for v in obj_detections]
return obj_detections
class OwlViTModel(BaseModel):
name = 'owlvit'
def __init__(self, gpu_number=0, threshold=config.detect_thresholds.owlvit):
super().__init__(gpu_number)
from transformers import OwlViTProcessor, OwlViTForObjectDetection
with HiddenPrints("OwlViT"):
processor = OwlViTProcessor.from_pretrained("google/owlvit-base-patch32")
model = OwlViTForObjectDetection.from_pretrained("google/owlvit-base-patch32")
model.eval()
model.requires_grad_(False)
self.model = model.to(self.dev)
self.processor = processor
self.threshold = threshold
@torch.no_grad()
def forward(self, image: torch.Tensor, text: List[str], return_labels: bool = False):
if isinstance(image, list):
raise TypeError("image has to be a torch tensor, not a list")
if isinstance(text, str):
text = [text]
text_original = text
text = ['a photo of a ' + t for t in text]
inputs = self.processor(text=text, images=image, return_tensors="pt") # padding="longest",
inputs = {k: v.to(self.dev) for k, v in inputs.items()}
outputs = self.model(**inputs)
# Target image sizes (height, width) to rescale box predictions [batch_size, 2]
target_sizes = torch.tensor([image.shape[1:]]).to(self.dev)
# Convert outputs (bounding boxes and class logits) to COCO API
results = self.processor.post_process(outputs=outputs, target_sizes=target_sizes)
boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"]
indices_good = scores > self.threshold
boxes = boxes[indices_good]
# Change to format where large "upper"/"lower" means more up
left, upper, right, lower = boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3]
height = image.shape[-2]
boxes = torch.stack([left, height - lower, right, height - upper], -1)
if return_labels:
labels = labels[indices_good]
labels = [text_original[lab].re('a photo of a ') for lab in labels]
return boxes, labels
return boxes.cpu() # [x_min, y_min, x_max, y_max]
class GLIPModel(BaseModel):
name = 'glip'
def __init__(self, model_size='large', gpu_number=0, *args):
BaseModel.__init__(self, gpu_number)
with contextlib.redirect_stderr(open(os.devnull, "w")): # Do not print nltk_data messages when importing
from maskrcnn_benchmark.engine.predictor_glip import GLIPDemo, to_image_list, create_positive_map, \
create_positive_map_label_to_token_from_positive_map
working_dir = f'{config.path_pretrained_models}/GLIP/'
if model_size == 'tiny':
config_file = working_dir + "configs/glip_Swin_T_O365_GoldG.yaml"
weight_file = working_dir + "checkpoints/glip_tiny_model_o365_goldg_cc_sbu.pth"
else: # large
config_file = working_dir + "configs/glip_Swin_L.yaml"
weight_file = working_dir + "checkpoints/glip_large_model.pth"
class OurGLIPDemo(GLIPDemo):
def __init__(self, dev, *args_demo):
kwargs = {
'min_image_size': 800,
'confidence_threshold': config.detect_thresholds.glip,
'show_mask_heatmaps': False
}
self.dev = dev
from maskrcnn_benchmark.config import cfg
# manual override some options
cfg.local_rank = 0
cfg.num_gpus = 1
cfg.merge_from_file(config_file)
cfg.merge_from_list(["MODEL.WEIGHT", weight_file])
cfg.merge_from_list(["MODEL.DEVICE", self.dev])
with HiddenPrints("GLIP"), torch.cuda.device(self.dev):
from transformers.utils import logging
logging.set_verbosity_error()
GLIPDemo.__init__(self, cfg, *args_demo, **kwargs)
if self.cfg.MODEL.RPN_ARCHITECTURE == "VLDYHEAD":
plus = 1
else:
plus = 0
self.plus = plus
self.color = 255
@torch.no_grad()
def compute_prediction(self, original_image, original_caption, custom_entity=None):
image = self.transforms(original_image)
# image = [image, image.permute(0, 2, 1)]
image_list = to_image_list(image, self.cfg.DATALOADER.SIZE_DIVISIBILITY)
image_list = image_list.to(self.dev)
# caption
if isinstance(original_caption, list):
if len(original_caption) > 40:
all_predictions = None
for loop_num, i in enumerate(range(0, len(original_caption), 40)):
list_step = original_caption[i:i + 40]
prediction_step = self.compute_prediction(original_image, list_step, custom_entity=None)
if all_predictions is None:
all_predictions = prediction_step
else:
# Aggregate predictions
all_predictions.bbox = torch.cat((all_predictions.bbox, prediction_step.bbox), dim=0)
for k in all_predictions.extra_fields:
all_predictions.extra_fields[k] = \
torch.cat((all_predictions.extra_fields[k],
prediction_step.extra_fields[k] + loop_num), dim=0)
return all_predictions
# we directly provided a list of category names
caption_string = ""
tokens_positive = []
seperation_tokens = " . "
for word in original_caption:
tokens_positive.append([len(caption_string), len(caption_string) + len(word)])
caption_string += word
caption_string += seperation_tokens
tokenized = self.tokenizer([caption_string], return_tensors="pt")
# tokens_positive = [tokens_positive] # This was wrong
tokens_positive = [[v] for v in tokens_positive]
original_caption = caption_string
# print(tokens_positive)
else:
tokenized = self.tokenizer([original_caption], return_tensors="pt")
if custom_entity is None:
tokens_positive = self.run_ner(original_caption)
# print(tokens_positive)
# process positive map
positive_map = create_positive_map(tokenized, tokens_positive)
positive_map_label_to_token = create_positive_map_label_to_token_from_positive_map(positive_map,
plus=self.plus)
self.positive_map_label_to_token = positive_map_label_to_token
tic = timeit.time.perf_counter()
# compute predictions
with HiddenPrints(): # Hide some deprecated notices
predictions = self.model(image_list, captions=[original_caption],
positive_map=positive_map_label_to_token)
predictions = [o.to(self.cpu_device) for o in predictions]
# print("inference time per image: {}".format(timeit.time.perf_counter() - tic))
# always single image is passed at a time
prediction = predictions[0]
# reshape prediction (a BoxList) into the original image size
height, width = original_image.shape[-2:]
# if self.tensor_inputs:
# else:
# height, width = original_image.shape[:-1]
prediction = prediction.resize((width, height))
if prediction.has_field("mask"):
# if we have masks, paste the masks in the right position
# in the image, as defined by the bounding boxes
masks = prediction.get_field("mask")
# always single image is passed at a time
masks = self.masker([masks], [prediction])[0]
prediction.add_field("mask", masks)
return prediction
@staticmethod
def to_left_right_upper_lower(bboxes):
return [(bbox[1], bbox[3], bbox[0], bbox[2]) for bbox in bboxes]
@staticmethod
def to_xmin_ymin_xmax_ymax(bboxes):
# invert the previous method
return [(bbox[2], bbox[0], bbox[3], bbox[1]) for bbox in bboxes]
@staticmethod
def prepare_image(image):
image = image[[2, 1, 0]] # convert to bgr for opencv-format for glip
return image
@torch.no_grad()
def forward(self, image: torch.Tensor, obj: Union[str, list], return_labels: bool = False,
confidence_threshold=None):
if confidence_threshold is not None:
original_confidence_threshold = self.confidence_threshold
self.confidence_threshold = confidence_threshold
# if isinstance(object, list):
# object = ' . '.join(object) + ' .' # add separation tokens
image = self.prepare_image(image)
# Avoid the resizing creating a huge image in a pathological case
ratio = image.shape[1] / image.shape[2]
ratio = max(ratio, 1 / ratio)
original_min_image_size = self.min_image_size
if ratio > 10:
self.min_image_size = int(original_min_image_size * 10 / ratio)
self.transforms = self.build_transform()
with torch.cuda.device(self.dev):
inference_output = self.inference(image, obj)
bboxes = inference_output.bbox.cpu().numpy().astype(int)
# bboxes = self.to_left_right_upper_lower(bboxes)
if ratio > 10:
self.min_image_size = original_min_image_size
self.transforms = self.build_transform()
bboxes = torch.tensor(bboxes)
# Convert to [left, lower, right, upper] instead of [left, upper, right, lower]
height = image.shape[-2]
bboxes = torch.stack([bboxes[:, 0], height - bboxes[:, 3], bboxes[:, 2], height - bboxes[:, 1]], dim=1)
if confidence_threshold is not None:
self.confidence_threshold = original_confidence_threshold
if return_labels:
# subtract 1 because it's 1-indexed for some reason
return bboxes, inference_output.get_field("labels").cpu().numpy() - 1
return bboxes
self.glip_demo = OurGLIPDemo(*args, dev=self.dev)
def forward(self, *args, **kwargs):
return self.glip_demo.forward(*args, **kwargs)
class TCLModel(BaseModel):
name = 'tcl'
def __init__(self, gpu_number=0):
from base_models.tcl.tcl_model_pretrain import ALBEF
from base_models.tcl.tcl_vit import interpolate_pos_embed
from base_models.tcl.tcl_tokenization_bert import BertTokenizer
super().__init__(gpu_number)
config = {
'image_res': 384,
'mlm_probability': 0.15,
'embed_dim': 256,
'vision_width': 768,
'bert_config': 'base_models/tcl_config_bert.json',
'temp': 0.07,
'queue_size': 65536,
'momentum': 0.995,
}
text_encoder = 'bert-base-uncased'
checkpoint_path = f'{config.path_pretrained_models}/TCL_4M.pth'
self.tokenizer = BertTokenizer.from_pretrained(text_encoder)
with warnings.catch_warnings(), HiddenPrints("TCL"):
model = ALBEF(config=config, text_encoder=text_encoder, tokenizer=self.tokenizer)
checkpoint = torch.load(checkpoint_path, map_location='cpu')
state_dict = checkpoint['model']
# reshape positional embedding to accomodate for image resolution change
pos_embed_reshaped = interpolate_pos_embed(state_dict['visual_encoder.pos_embed'], model.visual_encoder)
state_dict['visual_encoder.pos_embed'] = pos_embed_reshaped
m_pos_embed_reshaped = interpolate_pos_embed(state_dict['visual_encoder_m.pos_embed'],
model.visual_encoder_m)
state_dict['visual_encoder_m.pos_embed'] = m_pos_embed_reshaped
model.load_state_dict(state_dict, strict=False)
self.model = model.to(self.dev)
self.model.eval()
normalize = transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
self.test_transform = transforms.Compose([
transforms.Resize((config['image_res'], config['image_res']), interpolation=Image.BICUBIC),
transforms.ToTensor(),
normalize,
])
self.negative_text_features = None
def transform(self, image):
image = transforms.ToPILImage()(image)
image = self.test_transform(image)
return image
def prepare_image(self, image):
image = self.transform(image)
image = image.unsqueeze(0)
image = image.to(self.dev)
return image
@torch.no_grad()
def binary_score(self, images: Union[list[torch.Tensor], torch.Tensor], prompt):
single_image = False
if isinstance(images, torch.Tensor):
single_image = True
images = [images]
images = [self.prepare_image(im) for im in images]
images = torch.cat(images, dim=0)
first_words = ['description', 'caption', 'alt text']
second_words = ['photo', 'image', 'picture']
options = [f'{fw}: {sw} of a' for fw in first_words for sw in second_words]
prompts = [f'{option} {prompt}' for option in options]
text_input = self.tokenizer(prompts, padding='max_length', truncation=True, max_length=30, return_tensors="pt") \
.to(self.dev)
text_output = self.model.text_encoder(text_input.input_ids, attention_mask=text_input.attention_mask,
mode='text')
text_feats = text_output # .last_hidden_state
text_atts = text_input.attention_mask
image_feats = self.model.visual_encoder(images)
img_len = image_feats.shape[0]
text_len = text_feats.shape[0]
image_feats = image_feats.unsqueeze(1).repeat(1, text_len, 1, 1).view(-1, *image_feats.shape[-2:])
text_feats = text_feats.unsqueeze(0).repeat(img_len, 1, 1, 1).view(-1, *text_feats.shape[-2:])
text_atts = text_atts.unsqueeze(0).repeat(img_len, 1, 1).view(-1, *text_atts.shape[-1:])
image_feats_att = torch.ones(image_feats.size()[:-1], dtype=torch.long).to(self.dev)
output = self.model.text_encoder(encoder_embeds=text_feats, attention_mask=text_atts,
encoder_hidden_states=image_feats, encoder_attention_mask=image_feats_att,
return_dict=True, mode='fusion')
scores = self.model.itm_head(output[:, 0, :])[:, 1]
scores = scores.view(img_len, text_len)
score = scores.sigmoid().max(-1)[0]
if single_image:
score = score.item()
return score
@torch.no_grad()
def classify(self, image, texts, return_index=True):
if isinstance(image, list):
assert len(image) == len(texts)
image = [self.transform(x).unsqueeze(0) for x in image]
image_tcl = torch.cat(image, dim=0).to(self.dev)
else:
image_tcl = self.prepare_image(image)
text_input = self.tokenizer(texts, padding='max_length', truncation=True, max_length=30, return_tensors="pt") \
.to(self.dev)
text_output = self.model.text_encoder(text_input.input_ids, attention_mask=text_input.attention_mask,
mode='text')
text_feats = text_output # .last_hidden_state
text_embeds = F.normalize(self.model.text_proj(text_feats[:, 0, :]))
text_atts = text_input.attention_mask
image_feats = self.model.visual_encoder(image_tcl)
image_embeds = self.model.vision_proj(image_feats[:, 0, :])
image_embeds = F.normalize(image_embeds, dim=-1)
# In the original code, this is only used to select the topk pairs, to not compute ITM head on all pairs.
# But other than that, not used
sims_matrix = image_embeds @ text_embeds.t()
sims_matrix_t = sims_matrix.t()
# Image-Text Matching (ITM): Binary classifier for every image-text pair
# Only one direction, because we do not filter bet t2i, i2t, and do all pairs
image_feats_att = torch.ones(image_feats.size()[:-1], dtype=torch.long).to(self.dev)
output = self.model.text_encoder(encoder_embeds=text_feats, attention_mask=text_atts,
encoder_hidden_states=image_feats, encoder_attention_mask=image_feats_att,
return_dict=True, mode='fusion')
score_matrix = self.model.itm_head(output[:, 0, :])[:, 1]
if not return_index:
return score_matrix
else:
return torch.argmax(score_matrix).item()
def forward(self, image, texts, task='classify', return_index=True):
if task == 'classify':
best_text = self.classify(image, texts, return_index=return_index)
out = best_text
else: # task == 'score': # binary_score
score = self.binary_score(image, texts)
out = score
if isinstance(out, torch.Tensor):
out = out.cpu()
return out
@cache.cache(ignore=['result'])
def gpt3_cache_aux(fn_name, prompts, temperature, n_votes, result):
"""
This is a trick to manually cache results from GPT-3. We want to do it manually because the queries to GPT-3 are
batched, and caching doesn't make sense for batches. With this we can separate individual samples in the batch
"""
return result
class GPTModel(BaseModel):
name = 'gpt'
to_batch = False
requires_gpu = False
def __init__(self, gpu_number=0):
super().__init__(gpu_number=gpu_number)
with open(config.gpt3.qa_prompt) as f:
self.qa_prompt = f.read().strip()
with open(config.gpt3.guess_prompt) as f:
self.guess_prompt = f.read().strip()
self.temperature = config.gpt3.temperature
self.n_votes = config.gpt3.n_votes
self.model = config.gpt3.model
# initial cleaning for reference QA results
@staticmethod
def process_answer(answer):
answer = answer.lstrip() # remove leading spaces (our addition)
answer = answer.replace('.', '').replace(',', '').lower()
to_be_removed = {'a', 'an', 'the', 'to', ''}
answer_list = answer.split(' ')
answer_list = [item for item in answer_list if item not in to_be_removed]
return ' '.join(answer_list)
@staticmethod
def get_union(lists):
return list(set(chain.from_iterable(lists)))
@staticmethod
def most_frequent(answers):
answer_counts = Counter(answers)
return answer_counts.most_common(1)[0][0]
def process_guesses(self, prompts):
prompt_base = self.guess_prompt
prompts_total = []
for p in prompts:
question, guess1, _ = p
if len(guess1) == 1:
# In case only one option is given as a guess
guess1 = [guess1[0], guess1[0]]
prompts_total.append(prompt_base.format(question, guess1[0], guess1[1]))
response = self.process_guesses_fn(prompts_total)
if self.n_votes > 1:
response_ = []
for i in range(len(prompts)):
if self.model == 'chatgpt':
resp_i = [r['message']['content'] for r in
response['choices'][i * self.n_votes:(i + 1) * self.n_votes]]
else:
resp_i = [r['text'] for r in response['choices'][i * self.n_votes:(i + 1) * self.n_votes]]
response_.append(self.most_frequent(resp_i).lstrip())
response = response_
else:
if self.model == 'chatgpt':
response = [r['message']['content'].lstrip() for r in response['choices']]
else:
response = response
return response
def process_guesses_fn(self, prompt):
# The code is the same as get_qa_fn, but we separate in case we want to modify it later
response = self.query_gpt3(prompt, model=self.model, max_tokens=5, logprobs=1, stream=False,
stop=["\n", "<|endoftext|>"])
return response
def get_qa(self, prompts, prompt_base: str=None) -> list[str]:
if prompt_base is None:
prompt_base = self.qa_prompt
prompts_total = []
for p in prompts:
question = p
prompts_total.append(prompt_base.replace("INSERT_QUERY_HERE", question))
response = self.get_qa_fn(prompts_total)
if self.n_votes > 1:
response_ = []
for i in range(len(prompts)):
if self.model == 'chatgpt':
resp_i = [r['message']['content']
for r in response['choices'][i * self.n_votes:(i + 1) * self.n_votes]]
else:
resp_i = [r['text'] for r in response['choices'][i * self.n_votes:(i + 1) * self.n_votes]]
response_.append(self.most_frequent(resp_i))
response = response_
else:
if self.model == 'chatgpt':
response = [r['message']['content'] for r in response['choices']]
else:
response = self.process_answer(response)
return response
def get_qa_fn(self, prompt):
response = self.query_gpt3(prompt, model=self.model, max_tokens=5, logprobs=1, stream=False,
stop=["\n", "<|endoftext|>"], test_case=True)
return response
def get_general(self, prompts) -> list[str]:
if self.model == "chatgpt":
raise NotImplementedError
response = self.query_gpt3(prompts, model=self.model, max_tokens=256, top_p=1, frequency_penalty=0,
presence_penalty=0)
return response
def query_gpt3(self, prompt, model="text-davinci-003", max_tokens=16, logprobs=None, stream=False,
stop=None, top_p=1, frequency_penalty=0, presence_penalty=0, test_case=False):
if model == "chatgpt":
messages = [{"role": "user", "content": p} for p in prompt]
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=max_tokens,
temperature=self.temperature,
)
elif model == "gpt-3.5-turbo-1106" or model =="gpt-3.5-turbo":
if test_case:
messages = [{"role": "system", "content": "Please only provide the answer in yes or no."},
{"role": "user", "content": prompt[0]}]
else:
messages = [{"role": "user", "content": p} for p in prompt]
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=self.temperature,
max_tokens=max_tokens,
top_p=1.,
frequency_penalty=0,
presence_penalty=0,
stop=["\n\n"],
)
print(f"Original Response: {response['choices'][0]['message']['content']}")
elif model == "gpt-4o":
if test_case:
responses = client.chat.completions.create(
model=model,
messages=[
{"role": "system",
"content": "Please only provide the answer in yes or no."},
{"role": "user", "content": prompt[0]}],
temperature=self.temperature,
max_tokens=max_tokens,
top_p=1.,
frequency_penalty=0,
presence_penalty=0,
stop=["\n\n"],
)
print(f"Original Response: {responses.choices[0].message.content}")
return responses.choices[0].message.content
else:
responses = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": p} for p in prompt],
temperature=self.temperature,
max_tokens=max_tokens,
top_p=1.,
frequency_penalty=0,
presence_penalty=0,
stop=["\n\n"],
)
print(f"Original Response: {responses.choices[0].message.content}")
return responses.choices[0].message.content
else:
response = openai.Completion.create(
model=model,
prompt=prompt,
max_tokens=max_tokens,
logprobs=logprobs,
temperature=self.temperature,
stream=stream,
stop=stop,
top_p=top_p,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
n=self.n_votes,
)
return response['choices'][0]['message']['content']
def forward(self, prompt, process_name):
if not self.to_batch:
prompt = [prompt]
if process_name == 'gpt_qa':
# if items in prompt are tuples, then we assume it is a question and context
if isinstance(prompt[0], tuple) or isinstance(prompt[0], list):
prompt = [question.format(context) for question, context in prompt]
to_compute = None
results = []
# Check if in cache
if config.use_cache:
for p in prompt:
# This is not ideal, because if not found, later it will have to re-hash the arguments.
# But I could not find a better way to do it.
result = gpt3_cache_aux(process_name, p, self.temperature, self.n_votes, None)
results.append(result) # If in cache, will be actual result, otherwise None
to_compute = [i for i, r in enumerate(results) if r is None]
prompt = [prompt[i] for i in to_compute]
if len(prompt) > 0:
if process_name == 'gpt_qa':
response = self.get_qa(prompt)
elif process_name == 'gpt_guess':
response = self.process_guesses(prompt)
else: # 'gpt3_general', general prompt, has to be given all of it
response = self.get_general(prompt)
else:
response = [] # All previously cached
if config.use_cache:
for p, r in zip(prompt, response):