forked from marvinquiet/BART-WEB
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbart_plot.py
160 lines (134 loc) · 5.49 KB
/
bart_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# -*- coding: utf-8 -*-
import os, sys
# plot bart
import pandas as pd
import numpy as np
from scipy import stats
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
# TODO: should be packaged as python bart_plot.py -> and write into slurm
# stat: score
# tfs: tf_name list
# ID: target tf
# args: related to outputdir
# col: r_rank
def stat_plot(stat, tfs, ID, bart_output_dir):
# box-plot
fig=plt.figure(figsize=(4,4))
# default --nonorm=FALSE
# plt.boxplot([stat.loc[i]['tf_score'] for i in stat.index])
# plt.scatter(1,stat.loc[ID]['tf_score'],c='r',marker='o',s=60)
plt.boxplot([stat.loc[i]['r_rank'] for i in stat.index])
plt.scatter(1,stat.loc[ID]['r_rank'],c='r',marker='o',s=60)
plt.gca().invert_yaxis()
plt.gca().xaxis.set_major_locator(plt.NullLocator())
plt.title(ID,fontsize = 12)
plt.ylabel('Rank Score',fontsize = 12)
# plotdir = bart_output_dir + os.sep + '{}_plot'.format(args.ofilename)
plotdir = bart_output_dir + '/plot'
#os.makedirs(plotdir,exist_ok=True)
try:
os.makedirs(plotdir,exist_ok=True)
except:
sys.exit('Output directory: {} could not be created.'.format(plotdir))
figname1 = plotdir+os.sep+'{}_avg_z_p_boxplot'.format(ID)
plt.savefig(figname1,bbox_inches='tight')
plt.close()
#Cumulative Fraction plot
background = []
for tf in tfs:
background.extend(tfs[tf])
target = tfs[ID]
background = sorted(background)
fig=plt.figure(figsize=(4,4))
dx = 0.01
x = np.arange(0,1,dx)
by,ty = [],[]
for xi in x:
by.append(sum(i< xi for i in background )/len(background))
ty.append(sum(i< xi for i in target )/len(target))
plt.plot(x,by,'b-',label='ALL')
plt.plot(x,ty,'r-',label='{}'.format(ID))
plt.legend()
#maxval = max(background)
#minval = min(background)
#plt.ylim([0,1])
#plt.xlim([0,1])
plt.ylabel('Cumulative Fraction',fontsize=12)
plt.xlabel('AUC',fontsize=12)
figname2 = plotdir+os.sep+'{}_cumulative_distribution'.format(ID)
plt.savefig(figname2,bbox_inches='tight')
plt.close()
def plot_top_tf(bart_table_df, bart_output_dir, AUCs):
# top 20 for each column, get intersection
top_cnt = round(len(bart_table_df.index)/5)
tf_score_list = set(bart_table_df.sort_values(by=['tf_score'], ascending=False).head(top_cnt).index.values)
z_score_list = set(bart_table_df.sort_values(by=['z_score'], ascending=False).head(top_cnt).index.values)
max_auc_list = set(bart_table_df.sort_values(by=['max_auc'], ascending=False).head(top_cnt).index.values)
p_value_list = set(bart_table_df.sort_values(by=['p_value']).head(top_cnt).index.values)
r_rank_list = set(bart_table_df.sort_values(by=['r_rank']).head(top_cnt).index.values)
sets = [tf_score_list, z_score_list, max_auc_list, p_value_list, r_rank_list]
# which needs to be plot
tf_intersection = list(set.intersection(*sets))
# get tfs with all AUCs
tfs = {}
for tf_key in AUCs.keys():
tf = tf_key.split('_')[0]
auc = AUCs[tf_key]
if tf not in tfs:
tfs[tf] = [auc]
else:
tfs[tf].append(auc)
for ID in tf_intersection:
stat_plot(bart_table_df, tfs, ID, bart_output_dir)
def get_AUCs(auc_file):
AUCs = {}
with open(auc_file, 'r') as fopen:
for line in fopen:
tf_key, auc_equation = line.strip().split('\t')
auc = float(auc_equation.replace(' ', '').split('=')[1])
AUCs[tf_key] = auc
return AUCs
def main():
# example: python bart_plot.py user_key
# print (sys.argv)
# get argv
script_name = sys.argv[0]
user_key = sys.argv[1] # user_key is needed
import do_process
user_data = do_process.get_user_data(user_key)
user_path = user_data['user_path']
bart_result_file = ''
bart_auc_file = ''
auc_result_dict = {}
bart_title = ['tf_name', 'tf_score', 'p_value', 'z_score', 'max_auc', 'r_rank']
bart_output_dir = os.path.join(user_path, 'download/bart_output')
bart_auc_ext = '_auc.txt'
for root, dirs, files in os.walk(bart_output_dir):
for bart_file in files:
if bart_auc_ext in bart_file:
bart_auc_file = os.path.join(root, bart_file)
user_file_name = bart_file.strip(bart_auc_ext)
auc_result_dict[user_file_name] = {}
auc_result_dict[user_file_name]['auc'] = bart_auc_file
bart_res_ext = '_bart_results.txt'
for root, dirs, files in os.walk(bart_output_dir):
for bart_file in files:
if bart_res_ext in bart_file:
bart_result_file = os.path.join(root, bart_file)
user_file_name = bart_file.strip(bart_res_ext)
if user_file_name not in auc_result_dict:
auc_result_dict[user_file_name] = {}
# something definitely went wrong if no _auc.txt files!
# the plot can not be plotted!!
# only the statistics will be shown!
auc_result_dict[user_file_name]['res'] = bart_result_file
for user_file_name, bart_files in auc_result_dict.items():
bart_auc_file = bart_files['auc']
bart_result_file = bart_files['res']
AUCs = get_AUCs(bart_auc_file)
bart_df = pd.read_csv(bart_result_file, sep='\t', names=bart_title[1:], index_col=0, skiprows=1)
plot_top_tf(bart_df, bart_output_dir, AUCs)
if __name__ == '__main__':
main()