Skip to content

Latest commit

 

History

History
169 lines (142 loc) · 5.51 KB

README.md

File metadata and controls

169 lines (142 loc) · 5.51 KB

Lightweight Kubernetes (k3d/k3s) in Docker tutorial with Github Actions

CI Kubernetes Kubernetes

Overview

  • This repository contains a cheat sheet on how to get started with k3d (Lightweight Kubernetes in Docker) by Ranhcer.
  • k3d is a great utility to do CI testing for Kubernetes deployments.
  • Repository also contains few example Github actions workflows for Kubernetes CI testing.
  • BONUS: Github actions workflow on Super Linter.

Notes

  • If a cluster name is not specified, k3d will automatically set the cluster name to k3d-k3s-default.
  • Run the get_latest_release.sh shell script to determine the latest k3s/k3d version and set the image parameter to the latest image version.
  • Pre-requisites:
    • Docker

Github Actions

  • Cluster specifications of sample workflows,
    • Single node
    • Single master multiple workers
    • Multi-master multiple workers
  • The test case invloves Deploying a simple nginx webapp exposed as a ClusterIP service and exectue some commands to validate the deployment.
  • The Github actions workflow definition is available in .github/workflows/k8s.yml used for Kubernetes CI testing.

Install and Configure environment

  • Install latest k3d utility
    $ curl -s https://raw.githubusercontent.com/rancher/k3d/main/install.sh | bash
    OR
    $ wget -q -O- https://raw.githubusercontent.com/rancher/k3d/main/install.sh | bash
  • Get command line options
    $ k3d --help
    $ k3d <command> --help

Creating clusters

After creating clusters, run the kubectl cluster-info and kubectl get nodes command to verify the status.

  • [Quickstart] Create default cluster (Single node cluster)

    $ k3d cluster create
  • Create cluster with custom name (Single node cluster)

    $ k3d cluster create <cluster_name>
  • Create cluster with Single master and multiple Worker nodes

    $ k3d cluster create <cluster_name> --agents 2
  • Create Highly available cluster with Multiple master nodes and multiple Worker nodes

    $ k3d cluster create <cluster_name> --servers 3 --agents 3
  • Create cluster from a specific Kubernetes/k3s version

    $ k3d cluster create <cluster_name> --image rancher/k3s:<K3S_VERSION>
    e.g.
    $ k3d cluster create mycluster --image rancher/k3s:v1.20.4-k3s1
  • Create cluster and expose API server on a custom port

    $ k3d cluster create <cluster_name> --api-port [PORT]
    e.g.
    $ k3d cluster create mycluster --api-port 6443
  • Create cluster with no Load balancer

    $ k3d cluster create <cluster_name> --no-lb
  • Verify the status after creating the cluster by running,

    $ k3d node list
    $ kubectl cluster-info
    $ kubectl get nodes
  • Delete cluster

    $ k3d cluster delete
    $ k3d cluster delete <cluster_name>

Scaling clusters

  • Add new Worker nodes to cluster

    $ k3d node create <new_node_name> --role=agent --replicas N --cluster <cluster_name>
    $ k3d node create <new_node_name> --replicas N
    $ k3d node create <new_node_name> --role=agent --replicas 2
    $ k3d node create <new_node_name> --role=agent --replicas 2 --cluster mycluster
  • Add new Master nodes to cluster

    $ k3d node create <node_name> --role=server  --replicas N
    $ k3d node create <node_name> --role=server  --replicas 2
    $ k3d node create <node_name> --role=server  --replicas 2
  • Delete node

    $ k3d node delete <node_name>

General commands

  • List all k3d clusters

    $ k3d cluster list
  • List all nodes in clusters

    $ k3d node list
  • Get k3d/k3s version

    $ k3d version

Clusters lifecycle

  • Stop cluster

    $ k3d cluster stop
    $ k3d cluster stop <cluster_name>
  • Start existing cluster

    $ k3d cluster start
    $ k3d cluster start <cluster_name>

Advanced commands

  • Exposing on Ingress (via Load Balancer)
    $ k3d cluster create <cluster_name> -p "8081:80@loadbalancer" --agents 2
  • Expoing on a port from NodePort port from a specific node to a port in localhost
    $ k3d cluster create <cluster_name> -p "8082:30080@agent[0]" --agents 2
  • Set custom API server port
    $ k3d cluster create <cluster_name> --api-port 6550 --agents 2

References