Skip to content

unisa-hpc/celerity-on-synergy

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Celerity Logo

Celerity Runtime — CI Workflow Coverage Status MIT License Semver 2.0 PRs # Welcome

The Celerity distributed runtime and API aims to bring the power and ease of use of SYCL to distributed memory clusters.

If you want a step-by-step introduction on how to set up dependencies and implement your first Celerity application, check out the tutorial!

Overview

Programming modern accelerators is already challenging in and of itself. Combine it with the distributed memory semantics of a cluster, and the complexity can become so daunting that many leave it unattempted. Celerity wants to relieve you of some of this burden, allowing you to target accelerator clusters with programs that look like they are written for a single device.

High-level API based on SYCL

Celerity makes it a priority to stay as close to the SYCL API as possible. If you have an existing SYCL application, you should be able to migrate it to Celerity without much hassle. If you know SYCL already, this will probably look very familiar to you:

celerity::buffer<float> buf{celerity::range<1>{1024}};
queue.submit([=](celerity::handler& cgh) {
    celerity::accessor acc{buf, cgh,
        celerity::access::one_to_one{},               // 1
        celerity::write_only, celerity::no_init};
    cgh.parallel_for<class MyKernel>(
        celerity::range<1>{1024},                     // 2
        [=](celerity::item<1> item) {                 // 3
            acc[item] = sycl::sin(item[0] / 1024.f);  // 4
        });
});
  1. Provide a range-mapper to tell Celerity which parts of the buffer will be accessed by the kernel.

  2. Submit a kernel to be executed by 1024 parallel work items. This kernel may be split across any number of nodes.

  3. Kernels can be expressed as C++11 lambda functions, just like in SYCL. In fact, no changes to your existing kernels are required.

  4. Access your buffers as if they reside on a single device -- even though they might be scattered throughout the cluster.

Run it like any other MPI application

The kernel shown above can be run on a single GPU, just like in SYCL, or on a whole cluster -- without having to change anything about the program itself.

For example, if we were to run it on two GPUs using mpirun -n 2 ./my_example, the first GPU might compute the range 0-512 of the kernel, while the second one computes 512-1024. However, as the user, you don't have to care how exactly your computation is being split up.

To see how you can use the result of your computation, look at some of our fully-fledged examples, or follow the tutorial!

Building Celerity

Celerity uses CMake as its build system. The build process itself is rather simple, however you have to make sure that you have a few dependencies installed first.

Dependencies

  • A supported SYCL implementation, either
  • A MPI 2 implementation (tested with OpenMPI 4.0, MPICH 3.3 should work as well)
  • CMake (3.13 or newer)
  • A C++17 compiler (C++20 when working with SimSYCL)

See the platform support guide on which library and OS versions are supported and automatically tested.

Building can be as simple as calling cmake && make, depending on your setup you might however also have to provide some library paths etc. See our installation guide for more information.

The runtime comes with several examples that can be used as a starting point for developing your own Celerity application. All examples will also be built automatically in-tree when the CELERITY_BUILD_EXAMPLES CMake option is set (true by default).

Using Celerity as a Library

Simply run make install (or equivalent, depending on build system) to copy all relevant header files and libraries to the CMAKE_INSTALL_PREFIX. This includes a CMake package configuration file which is placed inside the lib/cmake/Celerity directory. You can then use find_package(Celerity CONFIG) to include Celerity into your CMake project. Once included, you can use the add_celerity_to_target(TARGET target SOURCES source1 source2...) function to set up the required dependencies for a target (no need to link manually).

Running a Celerity Application

Celerity is built on top of MPI, which means a Celerity application can be executed like any other MPI application (i.e., using mpirun or equivalent). There are several environment variables that you can use to influence Celerity's runtime behavior:

Environment Variables

  • CELERITY_LOG_LEVEL controls the logging output level. One of trace, debug, info, warn, err, critical, or off.
  • CELERITY_DEVICES can be used to assign different compute devices to Celerity worker nodes on a single host. The syntax is as follows: CELERITY_DEVICES="<platform_id> <first device_id> <second device_id> ... <nth device_id>". Note that this should normally not be required, as Celerity will attempt to automatically assign a unique device to each worker on a host.
  • CELERITY_PROFILE_KERNEL controls whether SYCL queue profiling information should be queried (currently not supported when using hipSYCL).
  • CELERITY_PRINT_GRAPHS controls whether task and command graphs are logged at the end of execution (requires log level info or higher).
  • CELERITY_DRY_RUN_NODES takes a number and simulates a run with that many nodes without actually executing the commands.

About

High-level C++ for Accelerator Clusters

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 95.5%
  • CMake 1.6%
  • JavaScript 0.9%
  • Python 0.8%
  • Ruby 0.7%
  • Shell 0.4%
  • Other 0.1%