-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
80 lines (68 loc) · 4 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
<!doctype html>
<html xml:lang="de" lang="de">
<title>Perceptron</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<script src="jslib/jquery-1.11.3.min.js"></script>
<script src="jslib/jquery-ui.js"></script>
<script src="jslib/jcanvas.min.js"></script>
<script src="main.js"></script>
<link rel="stylesheet" href="main.css">
<link rel="stylesheet" href="jquery-ui.css">
</head>
<body>
<!--neuronbox //-->
<div id="neuronbox" class="box">
<canvas id="can1" width="500" height="380" style="margin:-10px;"></canvas>
<input type="text" class="value" id="v" disabled="disabled" value="0" style="position:absolute;left:228px;top:190px;"></input>
<input type="text" class="value" id="inp1" disabled="disabled" value="0" style="position:absolute;left:77px;top:330px;"></input>
<input type="text" class="value" id="inp2" disabled="disabled" value="0" style="position:absolute;left:377px;top:330px;"></input>
<input type="text" class="value" id="w1" disabled="disabled" value="0.5" style="position:absolute;left:140px;top:265px;"></input>
<input type="text" class="value" id="w2" disabled="disabled" value="0.5" style="position:absolute;left:315px;top:265px;"></input>
<div style="position:absolute;left:230px;top:0px;">Output</div>
<input type="text" class="value" id="out" disabled="disabled" value="0" style="position:absolute;left:230px;top:17px;"></input>
<div style="position:absolute;left:315px;top:0px;">Goal</div>
<input type="text" class="value" id="goal" disabled="disabled" value="0" style="position:absolute;left:310px;top:17px;"></input>
<div style="position:absolute;left:405px;top:0px;">Error</div>
<input type="text" class="value" id="error" disabled="disabled" value="0" style="position:absolute;left:400px;top:17px;"></input>
<div id="afimage" style="position:absolute;left:202px;top:80px;"><img src="clip.png" width="100" height="60" /></div>
</div>
<!--coordinatesystembox //-->
<div id="coordinatesystembox" class="box">
<canvas id="can2" width="250" height="250"></canvas>
</div>
<!--taskbox //-->
<div id="taskbox" class="box">
<b>Truth table</b>
<table id="task">
<tr><th>x<sub>1</sub></th><th>x<sub>2</sub></th><th>d</th></tr>
<tr><td class="x1">0</td><td class="x2">0</td><td class="y" id="point00">0</td></tr>
<tr><td class="x1">0</td><td class="x2">1</td><td class="y" id="point01">0</td></tr>
<tr><td class="x1">1</td><td class="x2">0</td><td class="y" id="point10">0</td></tr>
<tr><td class="x1">1</td><td class="x2">1</td><td class="y" id="point11">0</td></tr>
</table>
<span class="settingtext">iteration steps</span> <input type="number" id="iterationsteps" min="1" value="5"></input><br />
<span class="settingtext">learning rate</span> <input type="text" id="learningrate" value="0.05"></input><br />
<span class="settingtext">activation function</span> <select id="activationfunction"><option>clip</option><option>sigmoid</option><option value="step">step function</option></select><br />
<span class="settingtext">simulation speed</span><div id="slider"></div><br />
<input type="submit" value="train" id="learn"> <input type="submit" value="stop" id="stop"><br />
<div id="progress"></div>
</div>
<!--testbox //-->
<div id="testbox" class="box">
<input type="submit" value="test" id="test"><br />
<div id="testresult"></div>
</div
<!--questionbox //-->
<div id="questionbox" class="box">
<b>Exercices</b><br />
<ol>
<li>Select the boolean function OR in the truth table and <i>train</i> the network. After training finished, click <i>test</i>.</li>
<li>Check which out the 16 possible patterns can be learned with the simple perceptron.</li>
<li>Compare the number of iterations needed to learn a boolean function with the clip, step activation function and sigmoid activation function.</li>
<li>Is there an optimal value for the learning rate?</li>
<li>Not all patterns can be classified correctly. Why?</li>
</ol>
</div>
</body>
</html>