diff --git a/docs/search.json b/docs/search.json
index 99a77d4..f0c91b7 100644
--- a/docs/search.json
+++ b/docs/search.json
@@ -1 +1 @@
-[{"path":[]},{"path":"/CODE_OF_CONDUCT.html","id":"our-pledge","dir":"","previous_headings":"","what":"Our Pledge","title":"Contributor Covenant Code of Conduct","text":"members, contributors, leaders pledge make participation community harassment-free experience everyone, regardless age, body size, visible invisible disability, ethnicity, sex characteristics, gender identity expression, level experience, education, socio-economic status, nationality, personal appearance, race, caste, color, religion, sexual identity orientation. pledge act interact ways contribute open, welcoming, diverse, inclusive, healthy community.","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"our-standards","dir":"","previous_headings":"","what":"Our Standards","title":"Contributor Covenant Code of Conduct","text":"Examples behavior contributes positive environment community include: Demonstrating empathy kindness toward people respectful differing opinions, viewpoints, experiences Giving gracefully accepting constructive feedback Accepting responsibility apologizing affected mistakes, learning experience Focusing best just us individuals, overall community Examples unacceptable behavior include: use sexualized language imagery, sexual attention advances kind Trolling, insulting derogatory comments, personal political attacks Public private harassment Publishing others’ private information, physical email address, without explicit permission conduct reasonably considered inappropriate professional setting","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"enforcement-responsibilities","dir":"","previous_headings":"","what":"Enforcement Responsibilities","title":"Contributor Covenant Code of Conduct","text":"Community leaders responsible clarifying enforcing standards acceptable behavior take appropriate fair corrective action response behavior deem inappropriate, threatening, offensive, harmful. Community leaders right responsibility remove, edit, reject comments, commits, code, wiki edits, issues, contributions aligned Code Conduct, communicate reasons moderation decisions appropriate.","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"scope","dir":"","previous_headings":"","what":"Scope","title":"Contributor Covenant Code of Conduct","text":"Code Conduct applies within community spaces, also applies individual officially representing community public spaces. Examples representing community include using official e-mail address, posting via official social media account, acting appointed representative online offline event.","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"enforcement","dir":"","previous_headings":"","what":"Enforcement","title":"Contributor Covenant Code of Conduct","text":"Instances abusive, harassing, otherwise unacceptable behavior may reported community leaders responsible enforcement legoupil@unhcr.org. complaints reviewed investigated promptly fairly. community leaders obligated respect privacy security reporter incident.","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"enforcement-guidelines","dir":"","previous_headings":"","what":"Enforcement Guidelines","title":"Contributor Covenant Code of Conduct","text":"Community leaders follow Community Impact Guidelines determining consequences action deem violation Code Conduct:","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"id_1-correction","dir":"","previous_headings":"Enforcement Guidelines","what":"1. Correction","title":"Contributor Covenant Code of Conduct","text":"Community Impact: Use inappropriate language behavior deemed unprofessional unwelcome community. Consequence: private, written warning community leaders, providing clarity around nature violation explanation behavior inappropriate. public apology may requested.","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"id_2-warning","dir":"","previous_headings":"Enforcement Guidelines","what":"2. Warning","title":"Contributor Covenant Code of Conduct","text":"Community Impact: violation single incident series actions. Consequence: warning consequences continued behavior. interaction people involved, including unsolicited interaction enforcing Code Conduct, specified period time. includes avoiding interactions community spaces well external channels like social media. Violating terms may lead temporary permanent ban.","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"id_3-temporary-ban","dir":"","previous_headings":"Enforcement Guidelines","what":"3. Temporary Ban","title":"Contributor Covenant Code of Conduct","text":"Community Impact: serious violation community standards, including sustained inappropriate behavior. Consequence: temporary ban sort interaction public communication community specified period time. public private interaction people involved, including unsolicited interaction enforcing Code Conduct, allowed period. Violating terms may lead permanent ban.","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"id_4-permanent-ban","dir":"","previous_headings":"Enforcement Guidelines","what":"4. Permanent Ban","title":"Contributor Covenant Code of Conduct","text":"Community Impact: Demonstrating pattern violation community standards, including sustained inappropriate behavior, harassment individual, aggression toward disparagement classes individuals. Consequence: permanent ban sort public interaction within community.","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"attribution","dir":"","previous_headings":"","what":"Attribution","title":"Contributor Covenant Code of Conduct","text":"Code Conduct adapted Contributor Covenant, version 2.1, available https://www.contributor-covenant.org/version/2/1/code_of_conduct.html. Community Impact Guidelines inspired [Mozilla’s code conduct enforcement ladder][https://github.com/mozilla/inclusion]. answers common questions code conduct, see FAQ https://www.contributor-covenant.org/faq. Translations available https://www.contributor-covenant.org/translations.","code":""},{"path":"/LICENSE.html","id":null,"dir":"","previous_headings":"","what":"MIT License","title":"MIT License","text":"Copyright (c) 2023 UNHCR Permission hereby granted, free charge, person obtaining copy software associated documentation files (“Software”), deal Software without restriction, including without limitation rights use, copy, modify, merge, publish, distribute, sublicense, /sell copies Software, permit persons Software furnished , subject following conditions: copyright notice permission notice shall included copies substantial portions Software. SOFTWARE PROVIDED “”, WITHOUT WARRANTY KIND, EXPRESS IMPLIED, INCLUDING LIMITED WARRANTIES MERCHANTABILITY, FITNESS PARTICULAR PURPOSE NONINFRINGEMENT. EVENT SHALL AUTHORS COPYRIGHT HOLDERS LIABLE CLAIM, DAMAGES LIABILITY, WHETHER ACTION CONTRACT, TORT OTHERWISE, ARISING , CONNECTION SOFTWARE USE DEALINGS SOFTWARE.","code":""},{"path":"/articles/development.html","id":"data-wrangling","dir":"Articles","previous_headings":"","what":"Data Wrangling","title":"Development","text":"indicator calculation based predefined frame, variable name variable value. Therefore indicator function organised 3 steps: Check standard frame/variable/modalities already present dataset (organised list..) fct_check_map apply mapping supplied argument within function fct_re_map Apply calculation - either append new variable existing data output just final vector results.","code":""},{"path":"/articles/development.html","id":"fct_check_map","dir":"Articles","previous_headings":"Data Wrangling","what":"fct_check_map","title":"Development","text":"","code":"mapper = list( hierarchy = \"main\", variablemap = data.frame( label = c(\"Does this household use anything for lighting?\", \"What source of electricity is used most of the time in this household?\"), variable = c(\"LIGHT01\", \"LIGHT03\"), mappattern = c(\"LIGHT01\", \"LIGHT03\") ), modalitymap = data.frame( variable = c( \"LIGHT01\", \"LIGHT03\", \"LIGHT03\", \"LIGHT03\"), label = c( \"yes\", \"No electricity in household\", \"Other, specify\", \"Don't know\"), standard = c( \"1\", \"1\", \"96\", \"98\"), map = c(\"1\", \"1\", \"96\", \"98\") ) ) ## Correct format data <- list(main = data.frame( LIGHT01 = c(\"1\", \"1\", \"0\", \"1\", \"1\", \"0\", \"1\", \"1\", \"1\"), LIGHT03 = c(\"1\", \"96\", \"98\", \"1\", \"96\", \"98\", \"0\", \"96\", \"98\")) ) fct_check_map(datalist = data, mapper = mapper ) #> LIGHT01 is in the dataset and has at least one of the expected modality for calculation #> LIGHT03 is in the dataset and has at least one of the expected modality for calculation ## One variable is not correctly data <- list(main = data.frame( LIGHT01 = c(\"1\", \"1\", \"0\", \"1\", \"1\", \"0\", \"1\", \"1\", \"1\"), LIGH03 = c(\"1\", \"96\", \"98\", \"1\", \"96\", \"98\", \"0\", \"96\", \"98\")) ) fct_check_map(datalist = data, mapper = mapper ) #> LIGHT01 is in the dataset and has at least one of the expected modality for calculation #> ℹ LIGHT03 standard variable was not found in the dataset. ## The first variable does not include a single 1... data <- list(main = data.frame( LIGHT01 = c(\"0\", \"0\", \"0\", \"0\", \"0\", \"0\", \"0\", \"0\", \"0\"), LIGHT03 = c(\"1\", \"96\", \"98\", \"1\", \"96\", \"98\", \"0\", \"96\", \"98\")) ) fct_check_map(datalist = data, mapper = mapper ) #> ℹ LIGHT01 standard variable in the dataset misses at least one response among : 1 #> LIGHT03 is in the dataset and has at least one of the expected modality for calculation"},{"path":"/articles/development.html","id":"fct_get_all_variable_names","dir":"Articles","previous_headings":"Data Wrangling","what":"fct_get_all_variable_names","title":"Development","text":"","code":"data <- kobocruncher::kobo_data( system.file(\"test.xlsx\", package = \"IndicatorCalc\")) #> Warning: Expecting logical in G1286 / R1286C7: got 'no' varname <- fct_get_all_variable_names(datalist = data) head(varname, 10) #> # A tibble: 10 × 2 #> df value #> #> 1 main introchannels.testorreal #> 2 main introchannels.remoteorinperson #> 3 main introchannels.interviewstat #> 4 main incompleteinterviewnote #> 5 main ConsentInterview2 #> 6 main screen.YesDisplaced #> 7 main screen.YesAtrisk #> 8 main screen.DisplacedNo #> 9 main screen.YesOver15 #> 10 main screen.Over15No"},{"path":"/articles/development.html","id":"fct_re_map","dir":"Articles","previous_headings":"Data Wrangling","what":"fct_re_map","title":"Development","text":"","code":"mapper = list( hierarchy = \"main\", variablemap = data.frame( label = c(\"Does this household use anything for lighting?\", \"What source of electricity is used most of the time in this household?\"), variable = c(\"LIGHT01\", \"LIGHT03\"), mappattern = c(\"LIGHT01\", \"LIGHT03\") ), modalitymap = data.frame( variable = c( \"LIGHT01\", \"LIGHT03\", \"LIGHT03\", \"LIGHT03\"), label = c( \"yes\", \"No electricity in household\", \"Other, specify\", \"Don't know\"), standard = c( \"1\", \"1\", \"96\", \"98\"), map = c(\"yes\", \"Noelec\", \"Other\", \"Dontknow\") ) ) ## One variable is not correctly datalist <- list(mainhousehold = data.frame( group.LIGHT01 = c(\"yes\", \"yes\", \"no\", \"yes\", \"yes\", \"no\", \"yes\", \"yes\", \"yes\"), group.LIGHT03 = c(\"Noelec\", \"Other\", \"Dontknow\", \"Noelec\", \"Other\", \"Dontknow\", \"Nuclear\", \"Other\", \"Dontknow\")) ) datalist <- fct_re_map(datalist = datalist, mapper = mapper ) #> Mapped levels for LIGHT01 are now: 1, no #> Mapped levels for LIGHT03 are now: 1, 96, 98, Nuclear fct_check_map(datalist = datalist, mapper = mapper ) #> LIGHT01 is in the dataset and has at least one of the expected modality for calculation #> LIGHT03 is in the dataset and has at least one of the expected modality for calculation"},{"path":"/articles/development.html","id":"fct_plot_indic_donut","dir":"Articles","previous_headings":"Data Wrangling","what":"fct_plot_indic_donut","title":"Development","text":"","code":"test <- data.frame( shelter = rbinom(20, 1, 0.5)) |> dplyr::mutate( shelter = labelled::labelled( shelter, labels = c( \"Yes\" = 1, \"No\" = 0), label = \"Access to adequate shelter\")) fct_plot_indic_donut(indicator = test$shelter, subtitle_chart = NULL, caption_chart = NULL, ordered_threhold = NULL, iconunicode = \"e54f\")"},{"path":[]},{"path":"/articles/development.html","id":"inter_electricity","dir":"Articles","previous_headings":"Impact Indicators","what":"inter_electricity","title":"Development","text":"","code":"datalist <- kobocruncher::kobo_data( system.file(\"test.xlsx\", package = \"IndicatorCalc\")) #> Warning: Expecting logical in G1286 / R1286C7: got 'no' mapper <- list( hierarchy = \"main\", variablemap = data.frame( label = c(\"Does this household use anything for lighting?\", \"What source of electricity is used most of the time in this household?\"), variable = c(\"LIGHT01\", \"LIGHT03\"), mappattern = c(\"LIGHT01\", \"LIGHT03\") ), modalitymap = data.frame( variable = c( \"LIGHT01\", \"LIGHT03\", \"LIGHT03\", \"LIGHT03\"), label = c( \"yes\", \"No electricity in household\", \"Other, specify\", \"Don't know\"), standard = c( \"1\", \"1\", \"96\", \"98\"), map = c(\"yes\", \"1\", \"96\", \"98\"))) datalist <- inter_electricity( datalist =datalist, mapper = mapper ) #> ℹ LIGHT01 standard variable was not found in the dataset. #> ℹ LIGHT03 standard variable was not found in the dataset. #> Mapped levels for LIGHT01 are now: 1, no, notell #> ℹ LIGHT03 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for LIGHT03 are now: 1, 2, 3, 4, 5, 6, 7, 96, 98 table(datalist[[\"main\"]]$electricity) #> #> 0 1 #> 81 1209 fct_plot_indic_donut(indicator = datalist[[\"main\"]]$electricity, iconunicode = \"f0e7\")"},{"path":"/articles/development.html","id":"inter_healthcare","dir":"Articles","previous_headings":"Impact Indicators","what":"inter_healthcare","title":"Development","text":"","code":"datalist <- kobocruncher::kobo_data( system.file(\"test.xlsx\", package = \"IndicatorCalc\")) #> Warning: Expecting logical in G1286 / R1286C7: got 'no' mapper <- list( hierarchy = \"main\", variablemap = data.frame( label = c( \"In general, when anyone in your household is sick, where do they go to seek care?\", \"How long it takes to go there when you use the mode of transport mentioned above?\"), variable = c(\"HEA01\", \"HEA03\"), mappattern = c(\"HEA01\", \"HEA03\") ), modalitymap = data.frame( variable = c( \"HEA01\", \"HEA01\" ), label = c( \"Other, specify\", \"Don't know\"), standard = c(\"96\", \"98\" ), map = c(\"96\", \"98\" ))) datalist <- inter_healthcare(datalist, mapper ) #> ℹ HEA01 standard variable was not found in the dataset. #> ℹ HEA03 standard variable was not found in the dataset. #> ℹ HEA01 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for HEA01 are now: 1, 2, 3, 4, 5, 96, 98 #> Mapped levels for HEA03 are now: 0, 1, 10, 100, 12, 120, 13, 15, 18, 2, 20, 22, 25, 3, 30, 300, 35, 4, 40, 45, 5, 50, 55, 6, 60, 7, 70, 75, 8, 90, 900 table(datalist[[\"main\"]]$healthcare) #> #> 0 1 #> 93 1197 fct_plot_indic_donut(indicator = datalist[[\"main\"]]$healthcare, iconunicode = \"f479\")"},{"path":"/articles/development.html","id":"inter_drinkingwater","dir":"Articles","previous_headings":"Impact Indicators","what":"inter_drinkingwater","title":"Development","text":"","code":"datalist <- kobocruncher::kobo_data( system.file(\"test.xlsx\", package = \"IndicatorCalc\")) #> Warning: Expecting logical in G1286 / R1286C7: got 'no' ## in the contextualised form - DWA03a has been skipped and all results are in min... ## only manual transformation can adjust this before we use the mapper.. datalist[[\"main\"]]$DWA03a <- \"1\" datalist[[\"main\"]]$DWA03b <- datalist[[\"main\"]]$VulnerabilityScoring.BasicNeeds.DWA03 # now the mapper mapper <- list( hierarchy = \"main\", variablemap = data.frame( label = c( \"What is the main source of drinking water for this household?\", \"Where is this source located?\", \"Unit used to measure time to access\", \"How long does it take to go there, wait get water, and come back?\"), variable = c(\"DWA01\", \"DWA02\", \"DWA03a\", \"DWA03b\" ), mappattern = c(\"DWA01\", \"DWA02\", \"DWA03a\", \"DWA03b\" ) ), modalitymap = data.frame( variable = c(\"DWA01\", \"DWA01\", \"DWA01\",\"DWA01\", \"DWA01\", \"DWA02\",\"DWA02\", \"DWA02\", \"DWA03a\",\"DWA03a\"), label = c( ##DWA01 \"Unprotected Dug Well\", \"Unprotected Spring\", \"Surface Water (River, Stream, Pond, Dam, Canal)\", \"Other, specify\", \"Don't know\", ##DWA02 \"In Own Dwelling\", \"In Own Yard/Plot\", \"Elsewhere\", ## DWA03a \"Minutes\", \"Hours\" ), standard = c( \"7\", \"9\", \"13\", \"96\", \"98\", \"1\", \"2\", \"3\", \"1\", \"2\"), map = c( \"7\", \"9\", \"13\", \"96\", \"98\", \"1\", \"2\", \"3\", \"1\", \"2\") ) ) datalist <- inter_drinkingwater(datalist, mapper ) #> ℹ DWA01 standard variable was not found in the dataset. #> ℹ DWA02 standard variable was not found in the dataset. #> DWA03a is in the dataset and has at least one of the expected modality for calculation #> ℹ DWA03b standard variable in the dataset misses at least one response among : #> ℹ DWA01 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> The following `from` values were not present in `x`: 9 #> Mapped levels for DWA01 are now: 1, 11, 12, 13, 14, 15, 2, 3, 4, 5, 7, 96, 98 #> ℹ DWA02 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWA02 are now: 1, 2, 3 #> The following `from` values were not present in `x`: 2 #> Mapped levels for DWA03a are now: 1 #> Mapped levels for DWA03b are now: 0, 10, 15, 2, 3, 30, 5, 90 ## Indicator summary table(datalist[[\"main\"]]$drinkingwater, useNA = \"ifany\") #> #> 0 1 #> 1204 86 fct_plot_indic_donut(indicator = datalist[[\"main\"]]$drinkingwater, iconunicode = \"e006\") ## Check auxilliary table(datalist[[\"main\"]]$dwa_cond1, useNA = \"ifany\") #> #> 0 1 #> 69 1221 table(datalist[[\"main\"]]$reachableU30, useNA = \"ifany\") #> #> 0 1 #> 1 1289 table(datalist[[\"main\"]]$DWA02, useNA = \"ifany\") #> #> 1 2 3 #> 42 34 11 1203 table(datalist[[\"main\"]]$dwa_cond2, useNA = \"ifany\") #> #> 0 1 #> 1 86 1203"},{"path":"/articles/development.html","id":"inter_shelter","dir":"Articles","previous_headings":"Impact Indicators","what":"inter_shelter","title":"Development","text":"","code":"datalist <- kobocruncher::kobo_data( system.file(\"test.xlsx\", package = \"IndicatorCalc\")) #> Warning: Expecting logical in G1286 / R1286C7: got 'no' mapper <- list( hierarchy = \"main\", variablemap = data.frame( label = c( \"What type of dwelling does the household live in?\", \"Main material of the dwelling floor\", \"Main material of the roof\", \"Main material of the exterior walls\", \"How many separate rooms do the members of your household occupy?\", \"What is the total number of persons in this household?\"), variable = c(\"DWE01\",\"DWE02\",\"DWE03\",\"DWE04\",\"DWE05\", \"HH01\"), mappattern = c(\"DWE01\",\"DWE02\",\"DWE03\",\"DWE04\",\"DWE05\", \"progres_groupsize\") ), modalitymap = data.frame( variable = c( \"DWE01\",\"DWE01\", \"DWE02\",\"DWE02\",\"DWE02\", \"DWE03\",\"DWE03\",\"DWE03\",\"DWE03\",\"DWE03\",\"DWE03\", \"DWE04\",\"DWE04\",\"DWE04\",\"DWE04\",\"DWE04\",\"DWE04\"), label = c( \"Apartment\", \"House\", # DWE01 \"Earth/sand\", \"Dung\", \"Other (Specify)\", #DWE02 \"Metal/tin\", \"Wood\", \"Calamine/Cement fibre\", \"Ceramic tiles\", \"Cement\", \"Roofing shingles\",#DWE03 \"Cement\", \"Stone with lime/ cement\", \"Bricks\", \"Cement blocks\", \"Covered adobe\", \"Wood planks/shingles\" # DWE04 ), standard = c( \"1\",\"2\", \"1\", \"2\",\"96\", \"8\",\"9\",\"10\",\"11\",\"12\",\"13\", \"10\",\"11\",\"12\",\"13\",\"14\",\"15\"), map = c(\"1\",\"2\", \"1\", \"2\",\"96\", \"8\",\"9\",\"10\",\"11\",\"12\",\"13\", \"10\",\"11\",\"12\",\"13\",\"14\",\"15\"))) ## Calculate datalist <- inter_shelter(datalist, mapper) #> ℹ DWE01 standard variable was not found in the dataset. #> ℹ DWE02 standard variable was not found in the dataset. #> ℹ DWE03 standard variable was not found in the dataset. #> ℹ DWE04 standard variable was not found in the dataset. #> ℹ DWE05 standard variable was not found in the dataset. #> ℹ HH01 standard variable was not found in the dataset. #> ℹ DWE01 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE01 are now: 1, 2, 3, 5, 6, 7, 8, 9, 96 #> ℹ DWE02 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE02 are now: 1, 2, 3, 5, 6, 7, 8, 96 #> ℹ DWE03 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE03 are now: 1, 10, 11, 12, 13, 2, 4, 6, 7, 8, 9, 96 #> ℹ DWE04 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE04 are now: 1, 10, 11, 12, 13, 14, 15, 2, 3, 4, 5, 6, 7, 8, 9, 96 #> Mapped levels for DWE05 are now: 1, 2, 3, 4, 5, 6 #> Mapped levels for HH01 are now: 1, 10, 11, 12, 2, 3, 4, 5, 6, 7, 8, 9 # Tabulate table(datalist[[\"main\"]]$dwe01_cat) #> #> 0 1 #> 639 651 table(datalist[[\"main\"]]$dwe02_cat) #> #> 0 1 #> 55 1235 table(datalist[[\"main\"]]$dwe03_cat) #> #> 0 1 #> 154 1136 table(datalist[[\"main\"]]$dwe04_cat) #> #> 0 1 #> 189 1101 table(datalist[[\"main\"]]$dwe05_cat) #> #> 0 1 #> 409 881 table(datalist[[\"main\"]]$shelter) #> #> 0 1 #> 860 430 #plot fct_plot_indic_donut(datalist[[\"main\"]]$shelter, iconunicode = \"e54f\")"},{"path":"/articles/development.html","id":"impact_2_2","dir":"Articles","previous_headings":"Impact Indicators","what":"impact_2_2","title":"Development","text":"","code":"datalist <- kobocruncher::kobo_data( system.file(\"test.xlsx\", package = \"IndicatorCalc\")) #> Warning: Expecting logical in G1286 / R1286C7: got 'no' #Healthcare mapper <- list( hierarchy = \"main\", variablemap = data.frame( label = c( \"In general, when anyone in your household is sick, where do they go to seek care?\", \"How long does it take to go there when you use the mode of transport that you mentioned above?\"), variable = c(\"HEA01\", \"HEA03\"), mappattern = c(\"HEA01\", \"HEA03\") ), modalitymap = data.frame( variable = c( \"HEA01\", \"HEA01\" ), label = c( \"Other, specify\", \"Don't know\"), standard = c(\"96\", \"98\" ), map = c(\"96\", \"98\" ))) datalist <- inter_healthcare(datalist, mapper ) #> ℹ HEA01 standard variable was not found in the dataset. #> ℹ HEA03 standard variable was not found in the dataset. #> ℹ HEA01 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for HEA01 are now: 1, 2, 3, 4, 5, 96, 98 #> Mapped levels for HEA03 are now: 0, 1, 10, 100, 12, 120, 13, 15, 18, 2, 20, 22, 25, 3, 30, 300, 35, 4, 40, 45, 5, 50, 55, 6, 60, 7, 70, 75, 8, 90, 900 ## Electricity mapper <- list( hierarchy = \"main\", variablemap = data.frame( label = c(\"Does this household use anything for lighting?\", \"What source of electricity is used most of the time in this household?\"), variable = c(\"LIGHT01\", \"LIGHT03\"), mappattern = c(\"LIGHT01\", \"LIGHT03\") ), modalitymap = data.frame( variable = c( \"LIGHT01\", \"LIGHT03\", \"LIGHT03\", \"LIGHT03\"), label = c( \"yes\", \"No electricity in household\", \"Other, specify\", \"Don't know\"), standard = c( \"1\", \"1\", \"96\", \"98\"), map = c(\"yes\", \"1\", \"96\", \"98\"))) datalist <- inter_electricity( datalist =datalist, mapper = mapper ) #> ℹ LIGHT01 standard variable was not found in the dataset. #> ℹ LIGHT03 standard variable was not found in the dataset. #> Mapped levels for LIGHT01 are now: 1, no, notell #> ℹ LIGHT03 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for LIGHT03 are now: 1, 2, 3, 4, 5, 6, 7, 96, 98 ## Drinking Water ## in the contextualised form - DWA03a has been skipped and all results are in min... ## only manual transformation can adjust this before we use the mapper.. datalist[[\"main\"]]$DWA03a <- \"1\" datalist[[\"main\"]]$DWA03b <- datalist[[\"main\"]]$VulnerabilityScoring.BasicNeeds.DWA03 # now the mapper mapper <- list( hierarchy = \"main\", variablemap = data.frame( label = c( \"What is the main source of drinking water for this household?\", \"Where is this source located?\", \"Unit used to measure time to access\", \"How long does it take to go there, get water, and come back, including waiting time?\"), variable = c(\"DWA01\", \"DWA02\", \"DWA03a\", \"DWA03b\" ), mappattern = c(\"DWA01\", \"DWA02\", \"DWA03a\", \"DWA03b\" ) ), modalitymap = data.frame( variable = c(\"DWA01\", \"DWA01\", \"DWA01\",\"DWA01\", \"DWA01\", \"DWA02\",\"DWA02\", \"DWA02\", \"DWA03a\",\"DWA03a\"), label = c( ##DWA01 \"Unprotected Dug Well\", \"Unprotected Spring\", \"Surface Water (River, Stream, Pond, Dam, Canal)\", \"Other, specify\", \"Don't know\", ##DWA02 \"In Own Dwelling\", \"In Own Yard/Plot\", \"Elsewhere\", ## DWA03a \"Minutes\", \"Hours\" ), standard = c( \"7\", \"9\", \"13\", \"96\", \"98\", \"1\", \"2\", \"3\", \"1\", \"2\"), map = c( \"7\", \"9\", \"13\", \"96\", \"98\", \"1\", \"2\", \"3\", \"1\", \"2\") ) ) datalist <- inter_drinkingwater(datalist, mapper ) #> ℹ DWA01 standard variable was not found in the dataset. #> ℹ DWA02 standard variable was not found in the dataset. #> DWA03a is in the dataset and has at least one of the expected modality for calculation #> ℹ DWA03b standard variable in the dataset misses at least one response among : #> ℹ DWA01 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> The following `from` values were not present in `x`: 9 #> Mapped levels for DWA01 are now: 1, 11, 12, 13, 14, 15, 2, 3, 4, 5, 7, 96, 98 #> ℹ DWA02 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWA02 are now: 1, 2, 3 #> The following `from` values were not present in `x`: 2 #> Mapped levels for DWA03a are now: 1 #> Mapped levels for DWA03b are now: 0, 10, 15, 2, 3, 30, 5, 90 ##Shelter mapper <- list( hierarchy = \"main\", variablemap = data.frame( label = c( \"What type of dwelling does the household live in?\", \"Main material of the dwelling floor\", \"Main material of the roof\", \"Main material of the exterior walls\", \"How many separate rooms do the members of your household occupy?\", \"What is the total number of persons in this household?\"), variable = c(\"DWE01\",\"DWE02\",\"DWE03\",\"DWE04\",\"DWE05\", \"HH01\"), mappattern = c(\"DWE01\",\"DWE02\",\"DWE03\",\"DWE04\",\"DWE05\", \"progres_groupsize\") ), modalitymap = data.frame( variable = c( \"DWE01\",\"DWE01\", \"DWE02\",\"DWE02\",\"DWE02\", \"DWE03\",\"DWE03\",\"DWE03\",\"DWE03\",\"DWE03\",\"DWE03\", \"DWE04\",\"DWE04\",\"DWE04\",\"DWE04\",\"DWE04\",\"DWE04\"), label = c( \"Apartment\", \"House\", # DWE01 \"Earth/sand\", \"Dung\", \"Other (Specify)\", #DWE02 \"Metal/tin\", \"Wood\", \"Calamine/Cement fibre\", \"Ceramic tiles\", \"Cement\", \"Roofing shingles\",#DWE03 \"Cement\", \"Stone with lime/ cement\", \"Bricks\", \"Cement blocks\", \"Covered adobe\", \"Wood planks/shingles\" # DWE04 ), standard = c( \"1\",\"2\", \"1\", \"2\",\"96\", \"8\",\"9\",\"10\",\"11\",\"12\",\"13\", \"10\",\"11\",\"12\",\"13\",\"14\",\"15\"), map = c(\"1\",\"2\", \"1\", \"2\",\"96\", \"8\",\"9\",\"10\",\"11\",\"12\",\"13\", \"10\",\"11\",\"12\",\"13\",\"14\",\"15\"))) ## Calculate datalist <- inter_shelter(datalist, mapper) #> ℹ DWE01 standard variable was not found in the dataset. #> ℹ DWE02 standard variable was not found in the dataset. #> ℹ DWE03 standard variable was not found in the dataset. #> ℹ DWE04 standard variable was not found in the dataset. #> ℹ DWE05 standard variable was not found in the dataset. #> ℹ HH01 standard variable was not found in the dataset. #> ℹ DWE01 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE01 are now: 1, 2, 3, 5, 6, 7, 8, 9, 96 #> ℹ DWE02 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE02 are now: 1, 2, 3, 5, 6, 7, 8, 96 #> ℹ DWE03 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE03 are now: 1, 10, 11, 12, 13, 2, 4, 6, 7, 8, 9, 96 #> ℹ DWE04 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE04 are now: 1, 10, 11, 12, 13, 14, 15, 2, 3, 4, 5, 6, 7, 8, 9, 96 #> Mapped levels for DWE05 are now: 1, 2, 3, 4, 5, 6 #> Mapped levels for HH01 are now: 1, 10, 11, 12, 2, 3, 4, 5, 6, 7, 8, 9 ## and now impact mapper <- list( hierarchy = \"main\", variablemap = data.frame( label = c(\"Access to shelter\", \"Access to electricity\", \"Access to drinking water\", \"Access to healthcare\"), variable = c(\"shelter\", \"electricity\", \"drinkingwater\", \"healthcare\"), mappattern = c(\"shelter\", \"electricity\", \"drinkingwater\", \"healthcare\") ), modalitymap = data.frame( variable = c( \"shelter\", \"shelter\", \"electricity\", \"electricity\", \"drinkingwater\", \"drinkingwater\", \"healthcare\",\"healthcare\"), label = c( \"Yes\",\"No\", \"Yes\",\"No\", \"Yes\",\"No\", \"Yes\",\"No\"), standard = c( \"1\",\"0\", \"1\",\"0\", \"1\",\"0\", \"1\",\"0\"), map = c(\"1\",\"0\", \"1\",\"0\", \"1\",\"0\", \"1\",\"0\"))) datalist <- impact_2_2(datalist, mapper) #> shelter is in the dataset and has at least one of the expected modality for calculation #> electricity is in the dataset and has at least one of the expected modality for calculation #> drinkingwater is in the dataset and has at least one of the expected modality for calculation #> healthcare is in the dataset and has at least one of the expected modality for calculation fct_plot_indic_donut(indicator = datalist[[\"main\"]]$impact2_2, iconunicode = \"f140\")"},{"path":"/articles/utilities.html","id":"data-wrangling","dir":"Articles","previous_headings":"","what":"Data Wrangling","title":"Utilities","text":"indicator calculation based predefined frame, variable name variable value. Therefore indicator function organised 3 steps: Check standard frame/variable/modalities already present dataset (organised list..) fct_check_map apply mapping supplied argument within function fct_re_map Apply calculation - either append new variable existing data output just final vector results.","code":""},{"path":"/articles/utilities.html","id":"fct_var_mapping","dir":"Articles","previous_headings":"Data Wrangling","what":"fct_var_mapping","title":"Utilities","text":"","code":"form <- system.file(\"RMSCAPI.xlsx\", package = \"IndicatorCalc\") #fct_var_mapping(xlsformpath = form)"},{"path":"/articles/utilities.html","id":"fct_check_map","dir":"Articles","previous_headings":"Data Wrangling","what":"fct_check_map","title":"Utilities","text":"","code":"mapper = list( hierarchy = \"main\", variablemap = data.frame( label = c(\"Does this household use anything for lighting?\", \"What source of electricity is used most of the time in this household?\"), variable = c(\"LIGHT01\", \"LIGHT03\"), mappattern = c(\"LIGHT01\", \"LIGHT03\") ), modalitymap = data.frame( variable = c( \"LIGHT01\", \"LIGHT03\", \"LIGHT03\", \"LIGHT03\"), label = c( \"yes\", \"No electricity in household\", \"Other, specify\", \"Don't know\"), standard = c( \"1\", \"1\", \"96\", \"98\"), map = c(\"1\", \"1\", \"96\", \"98\") ) ) ## Correct format data <- list(main = data.frame( LIGHT01 = c(\"1\", \"1\", \"0\", \"1\", \"1\", \"0\", \"1\", \"1\", \"1\"), LIGHT03 = c(\"1\", \"96\", \"98\", \"1\", \"96\", \"98\", \"0\", \"96\", \"98\")) ) fct_check_map(datalist = data, mapper = mapper ) #> LIGHT01 is in the dataset and has at least one of the expected modality for calculation #> LIGHT03 is in the dataset and has at least one of the expected modality for calculation ## One variable is not correctly data <- list(main = data.frame( LIGHT01 = c(\"1\", \"1\", \"0\", \"1\", \"1\", \"0\", \"1\", \"1\", \"1\"), LIGH03 = c(\"1\", \"96\", \"98\", \"1\", \"96\", \"98\", \"0\", \"96\", \"98\")) ) fct_check_map(datalist = data, mapper = mapper ) #> LIGHT01 is in the dataset and has at least one of the expected modality for calculation #> ℹ LIGHT03 standard variable was not found in the dataset. ## The first variable does not include a single 1... data <- list(main = data.frame( LIGHT01 = c(\"0\", \"0\", \"0\", \"0\", \"0\", \"0\", \"0\", \"0\", \"0\"), LIGHT03 = c(\"1\", \"96\", \"98\", \"1\", \"96\", \"98\", \"0\", \"96\", \"98\")) ) fct_check_map(datalist = data, mapper = mapper ) #> ℹ LIGHT01 standard variable in the dataset misses at least one response among : 1 #> LIGHT03 is in the dataset and has at least one of the expected modality for calculation"},{"path":"/articles/utilities.html","id":"fct_get_all_variable_names","dir":"Articles","previous_headings":"Data Wrangling","what":"fct_get_all_variable_names","title":"Utilities","text":"","code":"datalist <- kobocruncher::kobo_data( system.file(\"demo_data.xlsx\", #\"test.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_index`. #> Warning: Unknown or uninitialised column: `_parent_index`. #> Unknown or uninitialised column: `_parent_index`. #> Unknown or uninitialised column: `_parent_index`. varname <- fct_get_all_variable_names(datalist = datalist) head(varname, 10) #> # A tibble: 10 × 2 #> df value #> #> 1 main index #> 2 main start #> 3 main end #> 4 main start_time_1 #> 5 main intro.intro #> 6 main intro.interviewdate #> 7 main intro.Bureau #> 8 main intro.Country #> 9 main intro.countryname #> 10 main intro.geopoint"},{"path":"/articles/utilities.html","id":"fct_re_map","dir":"Articles","previous_headings":"Data Wrangling","what":"fct_re_map","title":"Utilities","text":"","code":"mapper = list( hierarchy = \"main\", variablemap = data.frame( label = c(\"Does this household use anything for lighting?\", \"What source of electricity is used most of the time in this household?\"), variable = c(\"LIGHT01\", \"LIGHT03\"), mappattern = c(\"LIGHT01\", \"LIGHT03\") ), modalitymap = data.frame( variable = c( \"LIGHT01\", \"LIGHT03\", \"LIGHT03\", \"LIGHT03\"), label = c( \"yes\", \"No electricity in household\", \"Other, specify\", \"Don't know\"), standard = c( \"1\", \"1\", \"96\", \"98\"), map = c(\"yes\", \"Noelec\", \"Other\", \"Dontknow\") ) ) ## One variable is not correctly datalist <- list(mainhousehold = data.frame( group.LIGHT01 = c(\"yes\", \"yes\", \"no\", \"yes\", \"yes\", \"no\", \"yes\", \"yes\", \"yes\"), group.LIGHT03 = c(\"Noelec\", \"Other\", \"Dontknow\", \"Noelec\", \"Other\", \"Dontknow\", \"Nuclear\", \"Other\", \"Dontknow\")) ) datalist <- fct_re_map(datalist = datalist, mapper = mapper ) #> Mapped levels for LIGHT01 are now: 1, no #> Mapped levels for LIGHT03 are now: 1, 96, 98, Nuclear fct_check_map(datalist = datalist, mapper = mapper ) #> LIGHT01 is in the dataset and has at least one of the expected modality for calculation #> LIGHT03 is in the dataset and has at least one of the expected modality for calculation"},{"path":"/articles/utilities.html","id":"fct_plot_indic_donut","dir":"Articles","previous_headings":"Data Wrangling","what":"fct_plot_indic_donut","title":"Utilities","text":"","code":"test <- data.frame( shelter = rbinom(20, 1, 0.5)) |> dplyr::mutate( shelter = labelled::labelled( shelter, labels = c( \"Yes\" = 1, \"No\" = 0), label = \"Access to adequate shelter\")) fct_plot_indic_donut(indicator = test$shelter, subtitle_chart = NULL, caption_chart = NULL, ordered_threhold = NULL, iconunicode = \"e54f\")"},{"path":"/articles/utilities.html","id":"generating-data-from-a-specific-form-definition","dir":"Articles","previous_headings":"","what":"Generating data from a specific form definition","title":"Utilities","text":"One key function generate dummy dataset based specific form structure demonstrate package use standard questionnaire apply indicator function demonstrate . can also re-use function create dummy data based form apply indicator function actually verify indicators can created based form content.","code":""},{"path":"/articles/utilities.html","id":"fct_var_dummy","dir":"Articles","previous_headings":"Generating data from a specific form definition","what":"fct_var_dummy","title":"Utilities","text":"","code":"## let's initiate a dataframe with an index of n r records n <- 384 frame <- dplyr::tibble( index = paste0( \"ID-\", purrr::as_vector( purrr::map(n, sample(LETTERS, 4)) |> purrr::map(paste0, collapse = \"\")), \"-\", formatC(1:n, width = nchar(n) + 1, flag = \"0\") )) ## test inject select_one frame <- fct_var_dummy( frame = frame, name = \"testselect_one\", type = \"select_one\", list_opt = c(\"alpha\", \"beta\", \"delta\"), constraint = NULL ) ## test inject select_multiple in main frame <- fct_var_dummy( frame = frame, name = \"testselect_multiple\", type = \"select_multiple\", list_opt = c(\"alpha\", \"beta\", \"delta\"), constraint = NULL ) ## test inject text frame <- fct_var_dummy( frame = frame, name = \"testtext\", type = \"text\", list_opt = NULL, constraint = NULL ) ## test inject numeric frame <- fct_var_dummy( frame = frame, name = \"testnumeric\", type = \"numeric\", list_opt = NULL, constraint = NULL ) ## test inject date frame <- fct_var_dummy( frame = frame, name = \"testdate\", type = \"date\", list_opt = NULL, constraint = NULL ) ## Preview out out knitr::kable(head(frame, 5))"},{"path":"/articles/utilities.html","id":"fct_kobo_dummy","dir":"Articles","previous_headings":"Generating data from a specific form definition","what":"fct_kobo_dummy","title":"Utilities","text":"","code":"form <- system.file(\"RMSCAPI.xlsx\", package = \"IndicatorCalc\") datalist <- fct_kobo_dummy(form, n = 384, file = NULL) #> Warning: Expected 2 pieces. Additional pieces discarded in 1 rows [374]. #> 1-start-start #> 2-end-end #> 3-calculate-start_time_1 #> 4-begin_group-intro.intro #> 5-date-intro.interviewdate #> 6-select_one-intro.Bureau #> 7-select_one-intro.Country #> 8-calculate-intro.countryname #> 9-geopoint-intro.geopoint #> 10-select_one-intro.pop_groups #> 11-end_group-intro #> 12-begin_group-intro2.intro2 #> 13-text-intro2.name_enumerator #> 14-text-intro2.Intro01 #> 15-text-intro2.Intro02 #> 16-select_one-intro2.Intro03 #> 17-acknowledge-intro2.consent_form #> 18-select_one-intro2.Intro04 #> 19-select_one-intro2.Intro05 #> 20-text-intro2.Intro05_other #> 21-end_group-intro2 #> 22-begin_group-Part1.Part1 #> 23-note-Part1.note_HH01 #> 24-text-Part1.HHH01_aux #> 25-integer-Part1.HHH01_age #> 26-note-Part1.confirm1_hhhage #> 27-end_repeat-Part1.endrpt_hhmnames #> 28-select_one-Part1.respondent #> 29-end_repeat-Part1.S1 #> 30-begin_group-Part1.quality_check.quality_check #> 31-calculate-Part1.quality_check.MM18above #> 32-calculate-Part1.quality_check.member1 #> 33-calculate-Part1.quality_check.member2 #> 34-calculate-Part1.quality_check.member3 #> 35-calculate-Part1.quality_check.member4 #> 36-calculate-Part1.quality_check.member5 #> 37-calculate-Part1.quality_check.member6 #> 38-calculate-Part1.quality_check.adult_sum_001 #> 39-calculate-Part1.quality_check.hh_size_001 #> 40-note-Part1.quality_check.confirm_adult #> 41-note-Part1.quality_check.hhsize_note #> 42-acknowledge-Part1.quality_check.confirm_hhsize #> 43-end_group-Part1.quality_check #> 44-end_group-Part1 #> 45-calculate-namechild2less #> 46-calculate-nochild2less #> 47-calculate-women_name_b_total #> 48-calculate-women_name_b #> 49-calculate-father_name_b #> 50-calculate-women_name #> 51-calculate-father_name #> 52-calculate-adult_name #> 53-end_repeat-S2_repeat #> 54-begin_group-Part2.Part2 #> 55-note-Part2.NoteS2 #> 56-begin_group-Part2.P2_S1.P2_S1 #> 57-select_one-Part2.P2_S1.DWE01 #> 58-text-Part2.P2_S1.DWE01_other #> 59-select_one-Part2.P2_S1.SHEL01 #> 60-select_one-Part2.P2_S1.SHEL02 #> 61-select_one-Part2.P2_S1.SHEL03 #> 62-select_one-Part2.P2_S1.SHEL04 #> 63-select_one-Part2.P2_S1.SHEL05 #> 64-select_one-Part2.P2_S1.SHEL06 #> 65-select_one-Part2.P2_S1.RISK01 #> 66-select_one-Part2.P2_S1.RISK02 #> 67-integer-Part2.P2_S1.DWE05 #> 68-end_group-Part2.P2_S1 #> 69-begin_group-Part2.P2_S2.P2_S2 #> 70-select_one-Part2.P2_S2.filter_camp #> 71-select_one-Part2.P2_S2.DWE06_land #> 72-text-Part2.P2_S2.DWE06_other_land #> 73-select_one-Part2.P2_S2.DWE06a_land #> 74-select_one-Part2.P2_S2.DWE07_land #> 75-text-Part2.P2_S2.DWE07_other_land #> 76-select_one-Part2.P2_S2.DWE06_housing #> 77-text-Part2.P2_S2.DWE06_other_housing #> 78-select_one-Part2.P2_S2.DWE06a_housing #> 79-select_one-Part2.P2_S2.DWE07_housing #> 80-text-Part2.P2_S2.DWE07_other_housing #> 81-select_one-Part2.P2_S2.DWE08 #> 82-select_one-Part2.P2_S2.DWE09 #> 83-text-Part2.P2_S2.DWE09_other #> 84-select_one-Part2.P2_S2.DWE10 #> 85-end_group-Part2.P2_S2 #> 86-begin_group-Part2.P2_S3.P2_S3 #> 87-select_one-Part2.P2_S3.COOK01 #> 88-select_one-Part2.P2_S3.COOK02 #> 89-text-Part2.P2_S3.COOK02_other #> 90-select_one-Part2.P2_S3.COOK03 #> 91-text-Part2.P2_S3.COOK03_other #> 92-select_one-Part2.P2_S3.LIGHT01 #> 93-select_one-Part2.P2_S3.LIGHT02 #> 94-text-Part2.P2_S3.LIGHT02_other #> 95-select_one-Part2.P2_S3.LIGHT03 #> 96-text-Part2.P2_S3.LIGHT03_other #> 97-calculate-Part2.P2_S3.electricity_source #> 98-select_multiple-Part2.P2_S3.LIGHT04 #> 99-text-Part2.P2_S3.LIGHT04_other #> 100-select_one-Part2.P2_S3.LIGHT05 #> 101-integer-Part2.P2_S3.LIGHT05_11 #> 102-integer-Part2.P2_S3.LIGHT05_22 #> 103-select_one-Part2.P2_S3.LIGHT06 #> 104-integer-Part2.P2_S3.LIGHT06_11 #> 105-integer-Part2.P2_S3.LIGHT06_22 #> 106-select_one-Part2.P2_S3.DWA01 #> 107-text-Part2.P2_S3.DWA01_other #> 108-calculate-Part2.P2_S3.source #> 109-calculate-Part2.P2_S3.source2 #> 110-select_one-Part2.P2_S3.DWA02 #> 111-text-Part2.P2_S3.DWA02_other #> 112-begin_group-Part2.P2_S3.time_toi.time_toi #> 113-note-Part2.P2_S3.time_toi.DWA03 #> 114-select_one-Part2.P2_S3.time_toi.DWA03a #> 115-integer-Part2.P2_S3.time_toi.DWA03b #> 116-end_group-Part2.P2_S3.time_toi #> 117-select_one-Part2.P2_S3.DWA04 #> 118-select_one-Part2.P2_S3.TOI01 #> 119-text-Part2.P2_S3.TOI01_other #> 120-select_one-Part2.P2_S3.TOI02 #> 121-select_one-Part2.P2_S3.TOI03 #> 122-text-Part2.P2_S3.TOI03_other #> 123-select_one-Part2.P2_S3.TOI04 #> 124-text-Part2.P2_S3.TOI04_other #> 125-select_one-Part2.P2_S3.TOI05 #> 126-end_group-Part2.P2_S3 #> 127-begin_group-Part2.P2_S4.P2_S4 #> 128-calculate-Part2.P2_S4.latestson #> 129-select_one-Part2.P2_S4.BIR01 #> 130-select_one-Part2.P2_S4.BIR02 #> 131-select_multiple-Part2.P2_S4.BIR03 #> 132-text-Part2.P2_S4.BIR03_other #> 133-select_one-Part2.P2_S4.BIR04 #> 134-text-Part2.P2_S4.BIR04_other #> 135-select_one-Part2.P2_S4.HEA01 #> 136-text-Part2.P2_S4.HEA01_other #> 137-select_one-Part2.P2_S4.HEA02 #> 138-text-Part2.P2_S4.HEA02_other #> 139-integer-Part2.P2_S4.HEA03 #> 140-end_group-Part2.P2_S4 #> 141-begin_group-Part2.P2_S5.P2_S5 #> 142-note-Part2.P2_S5.SPF01 #> 143-select_one-Part2.P2_S5.SPF01_op #> 144-select_one-Part2.P2_S5.SPF01a #> 145-select_one-Part2.P2_S5.SPF01b #> 146-select_one-Part2.P2_S5.SPF01c #> 147-select_one-Part2.P2_S5.SPF01d #> 148-select_one-Part2.P2_S5.SPF01e #> 149-select_one-Part2.P2_S5.SPF01f #> 150-select_one-Part2.P2_S5.SPF01g #> 151-select_one-Part2.P2_S5.SPF01h #> 152-select_one-Part2.P2_S5.SPF01j #> 153-select_one-Part2.P2_S5.SPF01k #> 154-select_one-Part2.P2_S5.SPF01l #> 155-select_one-Part2.P2_S5.SPF01m #> 156-select_one-Part2.P2_S5.SPF01n #> 157-select_one-Part2.P2_S5.SPF01o #> 158-select_one-Part2.P2_S5.SPF01p #> 159-end_group-Part2.P2_S5 #> 160-end_group-Part2 #> 161-begin_group-Part3.Part3 #> 162-note-Part3.NoteS3 #> 163-begin_group-Part3.first_random.first_random #> 164-calculate-Part3.first_random.random1ap #> 165-calculate-Part3.first_random.eadult_nap #> 166-calculate-Part3.first_random.epositionap #> 167-calculate-Part3.first_random.random_indexap #> 168-calculate-Part3.first_random.selected_adultap #> 169-calculate-Part3.first_random.name_selectedadult18 #> 170-note-Part3.first_random.firstselect #> 171-end_group-Part3.first_random #> 172-begin_group-Part3.available_first_random.available_first_random #> 173-note-Part3.available_first_random.Individual #> 174-select_one-Part3.available_first_random.random_present #> 175-note-Part3.available_first_random.random_available #> 176-note-Part3.available_first_random.random_short #> 177-end_group-Part3.available_first_random #> 178-begin_group-Part3.second_random.second_random #> 179-calculate-Part3.second_random.random1ap2 #> 180-calculate-Part3.second_random.eadult_nap2 #> 181-calculate-Part3.second_random.epositionap2 #> 182-calculate-Part3.second_random.random_indexap2 #> 183-calculate-Part3.second_random.selected_adultap2 #> 184-calculate-Part3.second_random.name_selectedadult18_2 #> 185-note-Part3.second_random.secondselect #> 186-end_group-Part3.second_random #> 187-begin_group-Part3.second_availability.second_availability #> 188-note-Part3.second_availability.random_notavailable #> 189-select_one-Part3.second_availability.random_present_2 #> 190-note-Part3.second_availability.random_available_2 #> 191-note-Part3.second_availability.random_short_2 #> 192-note-Part3.second_availability.random_notavailable_2 #> 193-end_group-Part3.second_availability #> 194-note-Part3.enumerator_space #> 195-select_one-Part3.name_respondent_individual #> 196-begin_group-Part3.P3_S1.P3_S1 #> 197-select_one-Part3.P3_S1.EDU01_random #> 198-select_one-Part3.P3_S1.UNEM01 #> 199-select_one-Part3.P3_S1.UNEM02 #> 200-select_one-Part3.P3_S1.UNEM03 #> 201-select_one-Part3.P3_S1.UNEM04 #> 202-select_one-Part3.P3_S1.UNEM05 #> 203-select_one-Part3.P3_S1.UNEM06 #> 204-select_one-Part3.P3_S1.UNEM07 #> 205-select_one-Part3.P3_S1.UNEM08 #> 206-select_one-Part3.P3_S1.UNEM09 #> 207-select_one-Part3.P3_S1.UNEM10 #> 208-select_one-Part3.P3_S1.INC01 #> 209-select_one-Part3.P3_S1.INC02 #> 210-select_one-Part3.P3_S1.BANK01 #> 211-select_one-Part3.P3_S1.BANK02 #> 212-select_one-Part3.P3_S1.BANK03 #> 213-select_one-Part3.P3_S1.BANK04 #> 214-select_one-Part3.P3_S1.BANK05 #> 215-end_group-Part3.P3_S1 #> 216-begin_group-Part3.P3_S3.P3_S3 #> 217-select_one-Part3.P3_S3.FRM01 #> 218-select_one-Part3.P3_S3.FRM02 #> 219-select-Part3.P3_S3.FRM03 #> 220-text-Part3.P3_S3.FRM03_other #> 221-end_group-Part3.P3_S3 #> 222-begin_group-Part3.P3_S2.P3_S2 #> 223-select_one-Part3.P3_S2.SAF01 #> 224-note-Part3.P3_S2.gbv_vaw #> 225-begin_group-Part3.P3_S2.GBV01.GBV01 #> 226-note-Part3.P3_S2.GBV01.GBV01_note #> 227-select_one-Part3.P3_S2.GBV01.GBV01_001 #> 228-select_one-Part3.P3_S2.GBV01.GBV01a #> 229-select_one-Part3.P3_S2.GBV01.GBV01b #> 230-select_one-Part3.P3_S2.GBV01.GBV01c #> 231-select_one-Part3.P3_S2.GBV01.GBV01d #> 232-end_group-Part3.P3_S2.GBV01 #> 233-select_one-Part3.P3_S2.gbv_screen #> 234-note-Part3.P3_S2.VAWpre_note #> 235-select_one-Part3.P3_S2.VAWpre_001 #> 236-select_one-Part3.P3_S2.VAWpre01 #> 237-select_one-Part3.P3_S2.VAWpre02 #> 238-select_one-Part3.P3_S2.VAWpre03 #> 239-select_one-Part3.P3_S2.VAWpre04 #> 240-note-Part3.P3_S2.VAW_presence #> 241-begin_group-Part3.P3_S2.VAW.VAW #> 242-note-Part3.P3_S2.VAW.VAW01_note #> 243-select_one-Part3.P3_S2.VAW.VAW01 #> 244-select_one-Part3.P3_S2.VAW.VAW01a #> 245-select_one-Part3.P3_S2.VAW.VAW01b #> 246-select_one-Part3.P3_S2.VAW.VAW01c #> 247-select_one-Part3.P3_S2.VAW.VAW01d #> 248-select_one-Part3.P3_S2.VAW.VAW01e #> 249-end_group-Part3.P3_S2.VAW #> 250-end_group-Part3.P3_S2S2 #> 251-end_group-Part3 #> 252-begin_group-complete_survey.complete_survey #> 253-note-complete_survey.end_survey #> 254-select_one-complete_survey.contact_number #> 255-text-complete_survey.number_respondent #> 256-select_one-complete_survey.end_result #> 257-select_one-complete_survey.name_respondent #> 258-select_one-complete_survey.final_notes #> 259-text-complete_survey.final_notes_entry #> 260-end_group-complete_survey #> 261-calculate-end_time_1 #> 1 in repeat -rpt_hhmnames ///begin_repeat-Part1.rpt_hhmnames.rpt_hhmnames #> 2 in repeat -rpt_hhmnames ///calculate-Part1.rpt_hhmnames.hhmnames_pos #> 3 in repeat -rpt_hhmnames ///calculate-Part1.rpt_hhmnames.HHH01_2_aux #> 4 in repeat -rpt_hhmnames ///text-Part1.rpt_hhmnames.HH01_aux #> 5 in repeat -rpt_hhmnames ///select_one-Part1.rpt_hhmnames.HH03_aux #> 6 in repeat -rpt_hhmnames ///calculate-Part1.rpt_hhmnames.HH01_2_aux #> 7 in repeat -rpt_hhmnames ///calculate-Part1.rpt_hhmnames.HH03_2_aux #> 8 in repeat -rpt_hhmnames ///note-Part1.rpt_hhmnames.nt_names #> 1 in repeat -S1 ///begin_repeat-Part1.S1.S1 #> 2 in repeat -S1 ///calculate-Part1.S1.personId #> 3 in repeat -S1 ///calculate-Part1.S1.hhroster_pos_aux #> 4 in repeat -S1 ///calculate-Part1.S1.hhmnames_pos_match #> 5 in repeat -S1 ///calculate-Part1.S1.HH01 #> 6 in repeat -S1 ///calculate-Part1.S1.HH03 #> 7 in repeat -S1 ///note-Part1.S1.nt_endnames #> 8 in repeat -S1 ///note-Part1.S1.nt_rostermember #> 9 in repeat -S1 ///select_one-Part1.S1.HH04 #> 10 in repeat -S1 ///select_one-Part1.S1.HH05 #> 11 in repeat -S1 ///date-Part1.S1.HH06 #> 12 in repeat -S1 ///calculate-Part1.S1.calcul1 #> 13 in repeat -S1 ///integer-Part1.S1.age #> 14 in repeat -S1 ///integer-Part1.S1.AgeMonths #> 15 in repeat -S1 ///calculate-Part1.S1.ageMD #> 16 in repeat -S1 ///note-Part1.S1.agecalculated #> 17 in repeat -S1 ///integer-Part1.S1.age_est #> 18 in repeat -S1 ///integer-Part1.S1.months_est #> 19 in repeat -S1 ///calculate-Part1.S1.HH07 #> 20 in repeat -S1 ///calculate-Part1.S1.HH07_months #> 21 in repeat -S1 ///select_one-Part1.S1.HH08 #> 22 in repeat -S1 ///calculate-Part1.S1.start_time_2 #> 23 in repeat -S1 ///calculate-Part1.S1.position #> 24 in repeat -S1 ///calculate-Part1.S1.Relation_R #> 25 in repeat -S1 ///calculate-Part1.S1.adult18 #> 26 in repeat -S1 ///calculate-Part1.S1.women_b #> 27 in repeat -S1 ///calculate-Part1.S1.father_b #> 28 in repeat -S1 ///calculate-Part1.S1.childLess2 #> 29 in repeat -S1 ///calculate-Part1.S1.childLess2name #> 30 in repeat -S1 ///calculate-Part1.S1.women #> 31 in repeat -S1 ///calculate-Part1.S1.father #> 32 in repeat -S1 ///calculate-Part1.S1.adult #> 33 in repeat -S1 ///calculate-Part1.S1.women_b_count #> 34 in repeat -S1 ///calculate-Part1.S1.hh_size #> 35 in repeat -S1 ///calculate-Part1.S1.hhhead_age_ab18 #> 36 in repeat -S1 ///calculate-Part1.S1.adult_sum #> 37 in repeat -S1 ///calculate-Part1.S1.hhhead_age #> 38 in repeat -S1 ///calculate-Part1.S1.position18 #> 39 in repeat -S1 ///calculate-Part1.S1.adult01 #> 40 in repeat -S1 ///calculate-Part1.S1.age18above #> 1 in repeat -S2_repeat ///begin_repeat-S2_repeat.S2_repeat #> 2 in repeat -S2_repeat ///calculate-S2_repeat.name_individual #> 3 in repeat -S2_repeat ///calculate-S2_repeat.ind_age_year #> 4 in repeat -S2_repeat ///calculate-S2_repeat.ind_age_month #> 5 in repeat -S2_repeat ///begin_group-S2_repeat.P1_S2.P1_S2 #> 6 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF01 #> 7 in repeat -S2_repeat ///calculate-S2_repeat.P1_S2.citizenship #> 8 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF02 #> 9 in repeat -S2_repeat ///calculate-S2_repeat.P1_S2.citizenship2 #> 10 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF03 #> 11 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF04 #> 12 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF05 #> 13 in repeat -S2_repeat ///calculate-S2_repeat.P1_S2.countrybirth #> 14 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF07 #> 15 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF08 #> 16 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF09 #> 17 in repeat -S2_repeat ///date-S2_repeat.P1_S2.REF10a #> 18 in repeat -S2_repeat ///text-S2_repeat.P1_S2.REF10b #> 19 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF11 #> 20 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF12 #> 21 in repeat -S2_repeat ///date-S2_repeat.P1_S2.REF12a #> 22 in repeat -S2_repeat ///text-S2_repeat.P1_S2.REF12b #> 23 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF13 #> 24 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF14 #> 25 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF15 #> 26 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF16 #> 27 in repeat -S2_repeat ///text-S2_repeat.P1_S2.REF16_other #> 28 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF16a #> 29 in repeat -S2_repeat ///text-S2_repeat.P1_S2.REF16a_other #> 30 in repeat -S2_repeat ///end_group-S2_repeat.P1_S2 #> 31 in repeat -S2_repeat ///begin_group-S2_repeat.P1_S3.P1_S3 #> 32 in repeat -S2_repeat ///select_multiple-S2_repeat.P1_S3.IDP01 #> 33 in repeat -S2_repeat ///text-S2_repeat.P1_S3.IDP01a #> 34 in repeat -S2_repeat ///select_one-S2_repeat.P1_S3.IDP02 #> 35 in repeat -S2_repeat ///date-S2_repeat.P1_S3.IDP02a #> 36 in repeat -S2_repeat ///text-S2_repeat.P1_S3.IDP02b #> 37 in repeat -S2_repeat ///end_group-S2_repeat.P1_S3 #> 38 in repeat -S2_repeat ///begin_group-S2_repeat.P1_S4.P1_S4 #> 39 in repeat -S2_repeat ///begin_group-S2_repeat.P1_S4.S4_above5.S4_above5 #> 40 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01 #> 41 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01a #> 42 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01b #> 43 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01c #> 44 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01d #> 45 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01e #> 46 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01f #> 47 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01g #> 48 in repeat -S2_repeat ///end_group-S2_repeat.P1_S4.S4_above5 #> 49 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.REG02 #> 50 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.REG03 #> 51 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.REG04 #> 52 in repeat -S2_repeat ///begin_group-S2_repeat.P1_S4.S4_below5.S4_below5 #> 53 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_below5.REG05 #> 54 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_below5.REG05a #> 55 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_below5.REG05b #> 56 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_below5.REG05c #> 57 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_below5.REG05d #> 58 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_below5.REG05e #> 59 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_below5.REG05f #> 60 in repeat -S2_repeat ///end_group-S2_repeat.P1_S4.S4_below5 #> 61 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.REG06 #> 62 in repeat -S2_repeat ///end_group-S2_repeat.P1_S4 #> 63 in repeat -S2_repeat ///begin_group-S2_repeat.P1_S5.P1_S5 #> 64 in repeat -S2_repeat ///note-S2_repeat.P1_S5.ind_name #> 65 in repeat -S2_repeat ///select_one-S2_repeat.P1_S5.MMR01 #> 66 in repeat -S2_repeat ///select_one-S2_repeat.P1_S5.MMR02 #> 67 in repeat -S2_repeat ///select_one-S2_repeat.P1_S5.MMR03 #> 68 in repeat -S2_repeat ///integer-S2_repeat.P1_S5.MMR04 #> 69 in repeat -S2_repeat ///end_group-S2_repeat.P1_S5 #> 70 in repeat -S2_repeat ///begin_group-S2_repeat.P1_S6.P1_S6 #> 71 in repeat -S2_repeat ///note-S2_repeat.P1_S6.N_DIS01 #> 72 in repeat -S2_repeat ///select_one-S2_repeat.P1_S6.DIS01a #> 73 in repeat -S2_repeat ///select_one-S2_repeat.P1_S6.DIS01 #> 74 in repeat -S2_repeat ///select_one-S2_repeat.P1_S6.DIS02 #> 75 in repeat -S2_repeat ///select_one-S2_repeat.P1_S6.DIS03 #> 76 in repeat -S2_repeat ///select_one-S2_repeat.P1_S6.DIS04 #> 77 in repeat -S2_repeat ///select_one-S2_repeat.P1_S6.DIS05 #> 78 in repeat -S2_repeat ///select_one-S2_repeat.P1_S6.DIS06 #> 79 in repeat -S2_repeat ///end_group-S2_repeat.P1_S6 #> 80 in repeat -S2_repeat ///begin_group-S2_repeat.P1_S7.P1_S7 #> 81 in repeat -S2_repeat ///select_one-S2_repeat.P1_S7.HACC01 #> 82 in repeat -S2_repeat ///select_one-S2_repeat.P1_S7.HACC02 #> 83 in repeat -S2_repeat ///text-S2_repeat.P1_S7.HACC02_other #> 84 in repeat -S2_repeat ///calculate-S2_repeat.P1_S7.reason_care #> 85 in repeat -S2_repeat ///select_one-S2_repeat.P1_S7.HACC03 #> 86 in repeat -S2_repeat ///select_multiple-S2_repeat.P1_S7.HACC04 #> 87 in repeat -S2_repeat ///text-S2_repeat.P1_S7.HACC04_other #> 88 in repeat -S2_repeat ///end_group-S2_repeat.P1_S7 #> 89 in repeat -S2_repeat ///begin_group-S2_repeat.P1_S8.P1_S8 #> 90 in repeat -S2_repeat ///begin_group-S2_repeat.P1_S8.S8_edu.S8_edu #> 91 in repeat -S2_repeat ///note-S2_repeat.P1_S8.S8_edu.name_ind #> 92 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_edu.EDU01 #> 93 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_edu.EDU02 #> 94 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_edu.EDU03 #> 95 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_edu.EDU04 #> 96 in repeat -S2_repeat ///text-S2_repeat.P1_S8.S8_edu.EDU04_other #> 97 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_edu.EDU05 #> 98 in repeat -S2_repeat ///text-S2_repeat.P1_S8.S8_edu.EDU05_other #> 99 in repeat -S2_repeat ///end_group-S2_repeat.P1_S8.S8_edu #> 100 in repeat -S2_repeat ///begin_group-S2_repeat.P1_S8.S8_comm.S8_comm #> 101 in repeat -S2_repeat ///note-S2_repeat.P1_S8.S8_comm.name_ind2 #> 102 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_comm.COMM01 #> 103 in repeat -S2_repeat ///integer-S2_repeat.P1_S8.S8_comm.COMM02 #> 104 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_comm.COMM03 #> 105 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_comm.COMM04 #> 106 in repeat -S2_repeat ///end_group-S2_repeat.P1_S8.S8_comm #> 107 in repeat -S2_repeat ///end_group-S2_repeat.P1_S8 ## Save this to use it for testing the package... openxlsx::write.xlsx(datalist, here::here(\"inst\", \"demo_data.xlsx\"))"},{"path":"/articles/utilities.html","id":"fct_plot_rbm_sdg---sdg-comparison","dir":"Articles","previous_headings":"Generating data from a specific form definition","what":"fct_plot_rbm_sdg - SDG Comparison","title":"Utilities","text":"","code":"fct_plot_rbm_sdg( country = \"BRA\", rbm = \"impact2_2\", years = c(2000, 2022)) + unhcrthemes::theme_unhcr(font_size = 10) #> Loading required package: ggplot2 #> Loading required package: dplyr #> #> Attaching package: 'dplyr' #> The following objects are masked from 'package:stats': #> #> filter, lag #> The following objects are masked from 'package:base': #> #> intersect, setdiff, setequal, union"},{"path":"/articles/utilities.html","id":"fct_compass_table","dir":"Articles","previous_headings":"Generating data from a specific form definition","what":"fct_compass_table","title":"Utilities","text":"","code":"# compass <- export_compass_fill( country = \"ECU\", # operation = \"Ecuador ABC\", # year = 2022, # population_type = c(\"REF\",\"ASY\", \"OIP\"), # population_rms = \"Refugees and Asylum-seekers\", # rms_indicator = rbind( # c(\"main\", \"impact2_2\", \"2.2 Proportion of PoCs residing in physically safe and # secure settlements with access to basic facilities\"), # c(\"main\", \"impact2_3\", \"2.3 Proportion of PoC with access to health services\"), # c(\"P2.S3\", \"impact3_2a\", \"3.2a Proportion of PoC enrolled in primary education\" ), # c(\"P2.S3\", \"impact3_2b\", \"3.2b Proportion of PoC enrolled in secondary education\" ), # c(\"main\", \"impact3_3\", \"3.3 Proportion of PoC feeling safe walking alone in their neighborhood (related SDG 16.1.4).\" ), # c(\"S2\", \"outcome1_2\", \"1.2 Proportion of children under 5 years of age whose births # have been registered with a civil authority. [SDG 16.9.1 - Tier 1]\" ), # c(\"S2\", \"outcome1_3\", \"1.3 Proportion of PoC with legally recognized identity documents or credentials [GCR 4.2.2].\" ), # c(\"main\", \"outcome4_1\", \"4.1 Proportion of PoC who know where to access available GBV services.\" ), # c(\"main\", \"outcome4_2\", \"4.2 Proportion of POCs who do not accept violence against women.\" ), # c(\"main\", \"outcome8_2\", \"8.2 Proportion of PoC with primary reliance on clean (cooking) fuels and technology [SDG 7.1.2 Tier 1]\" ), # c(\"main\", \"outcome9_1\", \"9.1 Proportion of PoCs living in habitable and affordable housing.\" ), # c(\"main\", \"outcome9_2\", \"9.2 Proportion of PoC that have energy to ensure lighting (close to Sphere).\" ), # c(\"main\",\"outcome12_1\", \"12.1 Proportion of PoC using at least basic drinking water services (SDG).\" ), # # c(\"main\" , \"outcome12_2\", \"12.2 Proportion of PoC with access to a safe household toilet (SDG).\" ), # c(\"main\", \"outcome13_1\", \"13.1. Proportion of PoC with an account at a bank or other # financial institution or with a mobile-money-service provider [SDG 8.10.2 Tier 1].\" ), # c(\"main\", \"outcome13_2\", \"13.2. Proportion of PoC who self-report positive changes in their income compared to previous year.\" ), # c(\"main\", \"outcome13_3\", \"13.3 Proportion of PoC (working age) who are unemployed.\" ), # c(\"main\", \"outcome16_1\", \"16.1. Proportion of PoC with secure tenure rights and/or # property rights to housing and/or land [revised SDG indicator 1.4.2].\" )#, # # c(\"main\", \"outcome16_2\", \"16.2. Proportion of PoC covered by social protection floors/systems [SDG 1.3.1].\" ) # ), # ridl = params$ridl, # publish = params$publish )"},{"path":"/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Edouard Legoupil. Author, maintainer. Ilgi Bozdag. Contributor. UNHCR. Copyright holder.","code":""},{"path":"/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Legoupil E (2023). IndicatorCalc: Calculate Standard Survey Indicators Forcibly Displaced Population. R package version 0.0.0.9000, https://github.com/unhcr-americas/IndicatorCalc.","code":"@Manual{, title = {IndicatorCalc: Calculate Standard Survey Indicators for Forcibly Displaced Population}, author = {Edouard Legoupil}, year = {2023}, note = {R package version 0.0.0.9000}, url = {https://github.com/unhcr-americas/IndicatorCalc}, }"},{"path":"/index.html","id":"indicatorcalc-","dir":"","previous_headings":"","what":"Calculate Standard Survey Indicators for Forcibly Displaced\n Population","title":"Calculate Standard Survey Indicators for Forcibly Displaced\n Population","text":"broad consensus around key indicators used measure, inform monitor progress towards global development objectives, exemplified Sustainable Development Goals related efforts MICS, DHS, IHSN, together national governments. UNHCR’s objectives largely aligned frameworks. UNHCR Results Monitoring Surveys (RMS) household-level surveys standard questionnaires following context-appropriate methodological approaches. can implemented across UNHCR operations monitor changes lives relevant groups persons concern (impacts) UNHCR’s key areas engagement (outcomes). RMS help us calculate impact outcome indicators standardized way global understanding results. indicators questionnaire also largely aligned MICS, DHS, IHSN, national household surveys UNHCR standardized surveys. goal IndicatorCalc ease implementation standard calculations survey indicators related Forcibly Displaced Population. Among objectives also avoid duplication documentation efforts around information include technical report information already expected gathered recorded within UNHCR Internal Data Repository following Data Documentation Initiative standards. package designed work based dataset standard backup format exported kobotoolbox within UNHCR internal data repository. adapted initial indicator script version. calculation implemented function -built check identify whether expected variables modalities within dataset mapper transform data expected format case divergence data structure collected expected. can check function reference see details documented calculations Please check tutorial ","code":""},{"path":"/index.html","id":"usage","dir":"","previous_headings":"","what":"Usage","title":"Calculate Standard Survey Indicators for Forcibly Displaced\n Population","text":"easiest way use package shiny Companion App follow instruction . workflow described : Run function var_mapping( “path//myxlsform.xlsx”) order create variable mapping. variable mapping designed check expected variables modalities present dataset. Review manually variable mapping recode data manually variables automatic match applied upload back either generate dummy dataset connect project RIDL apply calculation get summary report download expanded XlsForm include within Kobocruncher automatic data exploration","code":""},{"path":"/index.html","id":"console-user--developpers","dir":"","previous_headings":"","what":"Console user / Developpers","title":"Calculate Standard Survey Indicators for Forcibly Displaced\n Population","text":"can install development version {IndicatorCalc} GitHub : riddle package used ensure integration UNHCR Data Repository. requires add API token store use. easiest way store API token .Renviron file automatically read R startup. can retrieve API TOKEN user page. api_token_img use package, ’ll need store RIDL API token RIDL_API_TOKEN environment variable. easiest way calling usethis::edit_r_environ() adding line RIDL_API_TOKEN=xxxxx file saving restarting R session.","code":"install.packages(\"pak\") pak::pkg_install(\"unhcr-americas/IndicatorCalc\")"},{"path":"/index.html","id":"contributing","dir":"","previous_headings":"","what":"Contributing","title":"Calculate Standard Survey Indicators for Forcibly Displaced\n Population","text":"Contributions packages welcome. Please, follow code conduct. encounter bug idea new feature check, please fill ticket github.","code":""},{"path":"/reference/fct_check_map.html","id":null,"dir":"Reference","previous_headings":"","what":"fct_check_map — fct_check_map","title":"fct_check_map — fct_check_map","text":"check standard variables modalities included mapper actually present datalist exact name - actually usually case standard format save kobodatset xlsx includes group variable name","code":""},{"path":"/reference/fct_check_map.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"fct_check_map — fct_check_map","text":"","code":"fct_check_map(datalist, mapper)"},{"path":"/reference/fct_check_map.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"fct_check_map — fct_check_map","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data() mapper list providing mapping variables used calculation - mapper potentially adjusted relation deviation standard XlsForm contextualized dataset","code":""},{"path":"/reference/fct_check_map.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"fct_check_map — fct_check_map","text":"TRUE FALSE","code":""},{"path":"/reference/fct_check_map.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"fct_check_map — fct_check_map","text":"","code":"mapper = list( hierarchy = \"main\", variablemap = data.frame( label = c(\"Does this household use anything for lighting?\", \"What source of electricity is used most of the time in this household?\"), variable = c(\"LIGHT01\", \"LIGHT03\"), mappattern = c(\"LIGHT01\", \"LIGHT03\") ), modalitymap = data.frame( variable = c( \"LIGHT01\", \"LIGHT03\", \"LIGHT03\", \"LIGHT03\"), label = c( \"yes\", \"No electricity in household\", \"Other, specify\", \"Don't know\"), standard = c( \"1\", \"1\", \"96\", \"98\"), map = c(\"1\", \"1\", \"96\", \"98\") ) ) ## Correct format data <- list(main = data.frame( LIGHT01 = c(\"1\", \"1\", \"0\", \"1\", \"1\", \"0\", \"1\", \"1\", \"1\"), LIGHT03 = c(\"1\", \"96\", \"98\", \"1\", \"96\", \"98\", \"0\", \"96\", \"98\")) ) fct_check_map(datalist = data, mapper = mapper ) #> LIGHT01 is in the dataset and has at least one of the expected modality for calculation #> LIGHT03 is in the dataset and has at least one of the expected modality for calculation ## One variable is not correctly data <- list(main = data.frame( LIGHT01 = c(\"1\", \"1\", \"0\", \"1\", \"1\", \"0\", \"1\", \"1\", \"1\"), LIGH03 = c(\"1\", \"96\", \"98\", \"1\", \"96\", \"98\", \"0\", \"96\", \"98\")) ) fct_check_map(datalist = data, mapper = mapper ) #> LIGHT01 is in the dataset and has at least one of the expected modality for calculation #> ℹ LIGHT03 standard variable was not found in the dataset. ## The first variable does not include a single 1... data <- list(main = data.frame( LIGHT01 = c(\"0\", \"0\", \"0\", \"0\", \"0\", \"0\", \"0\", \"0\", \"0\"), LIGHT03 = c(\"1\", \"96\", \"98\", \"1\", \"96\", \"98\", \"0\", \"96\", \"98\")) ) fct_check_map(datalist = data, mapper = mapper ) #> ℹ LIGHT01 standard variable in the dataset misses at least one response among : 1 #> LIGHT03 is in the dataset and has at least one of the expected modality for calculation"},{"path":"/reference/fct_compass_table.html","id":null,"dir":"Reference","previous_headings":"","what":"Write simple compass indicator table — fct_compass_table","title":"Write simple compass indicator table — fct_compass_table","text":"function take list calculated variables RMS output excel document folder correct format import COMPASS.","code":"The function assumes you have already calculated the indicators and have a datalist object with all the correct calculation inside"},{"path":"/reference/fct_compass_table.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Write simple compass indicator table — fct_compass_table","text":"","code":"fct_compass_table( country, operation, year, population_type, population_rms, rms_indicator, ridl, publish )"},{"path":"/reference/fct_compass_table.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Write simple compass indicator table — fct_compass_table","text":"country iso3 code country (easier recall M49 used API) operation operation name year year use extract baseline Population Statistics population_type list population type baseline calculation population_rms list population type covered RMS rms_indicator list indicators related frame pull value ridl name ridl data container push data publish yes / ","code":""},{"path":"/reference/fct_compass_table.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Write simple compass indicator table — fct_compass_table","text":"frame compass indicators","code":""},{"path":"/reference/fct_compass_table.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Write simple compass indicator table — fct_compass_table","text":"","code":"# compass <- export_compass_fill( country = \"ECU\", # operation = \"Ecuador ABC\", # year = 2022, # population_type = c(\"REF\",\"ASY\", \"OIP\"), # population_rms = \"Refugees and Asylum-seekers\", # rms_indicator = rbind( # c(\"main\", \"impact2_2\", \"2.2 Proportion of PoCs residing in physically safe and # secure settlements with access to basic facilities\"), # c(\"main\", \"impact2_3\", \"2.3 Proportion of PoC with access to health services\"), # c(\"P2.S3\", \"impact3_2a\", \"3.2a Proportion of PoC enrolled in primary education\" ), # c(\"P2.S3\", \"impact3_2b\", \"3.2b Proportion of PoC enrolled in secondary education\" ), # c(\"main\", \"impact3_3\", \"3.3 Proportion of PoC feeling safe walking alone in their neighborhood (related SDG 16.1.4).\" ), # c(\"S2\", \"outcome1_2\", \"1.2 Proportion of children under 5 years of age whose births # have been registered with a civil authority. [SDG 16.9.1 - Tier 1]\" ), # c(\"S2\", \"outcome1_3\", \"1.3 Proportion of PoC with legally recognized identity documents or credentials [GCR 4.2.2].\" ), # c(\"main\", \"outcome4_1\", \"4.1 Proportion of PoC who know where to access available GBV services.\" ), # c(\"main\", \"outcome4_2\", \"4.2 Proportion of POCs who do not accept violence against women.\" ), # c(\"main\", \"outcome8_2\", \"8.2 Proportion of PoC with primary reliance on clean (cooking) fuels and technology [SDG 7.1.2 Tier 1]\" ), # c(\"main\", \"outcome9_1\", \"9.1 Proportion of PoCs living in habitable and affordable housing.\" ), # c(\"main\", \"outcome9_2\", \"9.2 Proportion of PoC that have energy to ensure lighting (close to Sphere).\" ), # c(\"main\",\"outcome12_1\", \"12.1 Proportion of PoC using at least basic drinking water services (SDG).\" ), # # c(\"main\" , \"outcome12_2\", \"12.2 Proportion of PoC with access to a safe household toilet (SDG).\" ), # c(\"main\", \"outcome13_1\", \"13.1. Proportion of PoC with an account at a bank or other # financial institution or with a mobile-money-service provider [SDG 8.10.2 Tier 1].\" ), # c(\"main\", \"outcome13_2\", \"13.2. Proportion of PoC who self-report positive changes in their income compared to previous year.\" ), # c(\"main\", \"outcome13_3\", \"13.3 Proportion of PoC (working age) who are unemployed.\" ), # c(\"main\", \"outcome16_1\", \"16.1. Proportion of PoC with secure tenure rights and/or # property rights to housing and/or land [revised SDG indicator 1.4.2].\" )#, # # c(\"main\", \"outcome16_2\", \"16.2. Proportion of PoC covered by social protection floors/systems [SDG 1.3.1].\" ) # ), # ridl = params$ridl, # publish = params$publish )"},{"path":"/reference/fct_get_all_variable_names.html","id":null,"dir":"Reference","previous_headings":"","what":"fct_get_all_variable_names — fct_get_all_variable_names","title":"fct_get_all_variable_names — fct_get_all_variable_names","text":"Generate map variables within datalist obtained RIDL - standard Kobo extract Excel","code":""},{"path":"/reference/fct_get_all_variable_names.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"fct_get_all_variable_names — fct_get_all_variable_names","text":"","code":"fct_get_all_variable_names(datalist)"},{"path":"/reference/fct_get_all_variable_names.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"fct_get_all_variable_names — fct_get_all_variable_names","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data()","code":""},{"path":"/reference/fct_get_all_variable_names.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"fct_get_all_variable_names — fct_get_all_variable_names","text":"dataframe variables list member names","code":""},{"path":"/reference/fct_get_all_variable_names.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"fct_get_all_variable_names — fct_get_all_variable_names","text":"","code":"datalist <- kobocruncher::kobo_data( system.file(\"demo_data.xlsx\", #\"test.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_index`. #> Warning: Unknown or uninitialised column: `_parent_index`. #> Warning: Unknown or uninitialised column: `_parent_index`. #> Warning: Unknown or uninitialised column: `_parent_index`. varname <- fct_get_all_variable_names(datalist = datalist) head(varname, 10) #> # A tibble: 10 × 2 #> df value #> #> 1 main index #> 2 main start #> 3 main end #> 4 main start_time_1 #> 5 main intro.intro #> 6 main intro.interviewdate #> 7 main intro.Bureau #> 8 main intro.Country #> 9 main intro.countryname #> 10 main intro.geopoint"},{"path":"/reference/fct_kobo_dummy.html","id":null,"dir":"Reference","previous_headings":"","what":"fct_kobo_dummy — fct_kobo_dummy","title":"fct_kobo_dummy — fct_kobo_dummy","text":"Automatically produce dummy dataset line structure XlsForm Making decisions research design analysis strategies often difficult data collected, hard imagine exact form data take. function helps imagine data look like collect . samplesize set per defautl 500 records Supported Features: Generate data set respects ODK structure \"relevant\" skip logic (advanced functionality \"coalesce()\" covered) respects \"constraint\" respects \"repeat\" adds ID column link hierarchical data based \"repeat_count\" function rewriting https://unhcr.github.io/koboloadeR/docs/reference/kobo_dummy.html also build https://thinkr-open.github.io/fakir/ https://docs.ropensci.org/charlatan/","code":""},{"path":"/reference/fct_kobo_dummy.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"fct_kobo_dummy — fct_kobo_dummy","text":"","code":"fct_kobo_dummy(form, n = 384, file)"},{"path":"/reference/fct_kobo_dummy.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"fct_kobo_dummy — fct_kobo_dummy","text":"form file path XlsForm n number main records generated file file xlsx save nrepeat max random number repeat records generated repeat_count mentionned","code":""},{"path":"/reference/fct_kobo_dummy.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"fct_kobo_dummy — fct_kobo_dummy","text":"data list series dummy data","code":""},{"path":"/reference/fct_kobo_dummy.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"fct_kobo_dummy — fct_kobo_dummy","text":"","code":"form <- system.file(\"RMSCAPI.xlsx\", package = \"IndicatorCalc\") datalist <- fct_kobo_dummy(form, n = 384, file = NULL) #> Warning: Expected 2 pieces. Additional pieces discarded in 1 rows [374]. #> 1-start-start #> 2-end-end #> 3-calculate-start_time_1 #> 4-begin_group-intro.intro #> 5-date-intro.interviewdate #> 6-select_one-intro.Bureau #> 7-select_one-intro.Country #> 8-calculate-intro.countryname #> 9-geopoint-intro.geopoint #> 10-select_one-intro.pop_groups #> 11-end_group-intro #> 12-begin_group-intro2.intro2 #> 13-text-intro2.name_enumerator #> 14-text-intro2.Intro01 #> 15-text-intro2.Intro02 #> 16-select_one-intro2.Intro03 #> 17-acknowledge-intro2.consent_form #> 18-select_one-intro2.Intro04 #> 19-select_one-intro2.Intro05 #> 20-text-intro2.Intro05_other #> 21-end_group-intro2 #> 22-begin_group-Part1.Part1 #> 23-note-Part1.note_HH01 #> 24-text-Part1.HHH01_aux #> 25-integer-Part1.HHH01_age #> 26-note-Part1.confirm1_hhhage #> 27-end_repeat-Part1.endrpt_hhmnames #> 28-select_one-Part1.respondent #> 29-end_repeat-Part1.S1 #> 30-begin_group-Part1.quality_check.quality_check #> 31-calculate-Part1.quality_check.MM18above #> 32-calculate-Part1.quality_check.member1 #> 33-calculate-Part1.quality_check.member2 #> 34-calculate-Part1.quality_check.member3 #> 35-calculate-Part1.quality_check.member4 #> 36-calculate-Part1.quality_check.member5 #> 37-calculate-Part1.quality_check.member6 #> 38-calculate-Part1.quality_check.adult_sum_001 #> 39-calculate-Part1.quality_check.hh_size_001 #> 40-note-Part1.quality_check.confirm_adult #> 41-note-Part1.quality_check.hhsize_note #> 42-acknowledge-Part1.quality_check.confirm_hhsize #> 43-end_group-Part1.quality_check #> 44-end_group-Part1 #> 45-calculate-namechild2less #> 46-calculate-nochild2less #> 47-calculate-women_name_b_total #> 48-calculate-women_name_b #> 49-calculate-father_name_b #> 50-calculate-women_name #> 51-calculate-father_name #> 52-calculate-adult_name #> 53-end_repeat-S2_repeat #> 54-begin_group-Part2.Part2 #> 55-note-Part2.NoteS2 #> 56-begin_group-Part2.P2_S1.P2_S1 #> 57-select_one-Part2.P2_S1.DWE01 #> 58-text-Part2.P2_S1.DWE01_other #> 59-select_one-Part2.P2_S1.SHEL01 #> 60-select_one-Part2.P2_S1.SHEL02 #> 61-select_one-Part2.P2_S1.SHEL03 #> 62-select_one-Part2.P2_S1.SHEL04 #> 63-select_one-Part2.P2_S1.SHEL05 #> 64-select_one-Part2.P2_S1.SHEL06 #> 65-select_one-Part2.P2_S1.RISK01 #> 66-select_one-Part2.P2_S1.RISK02 #> 67-integer-Part2.P2_S1.DWE05 #> 68-end_group-Part2.P2_S1 #> 69-begin_group-Part2.P2_S2.P2_S2 #> 70-select_one-Part2.P2_S2.filter_camp #> 71-select_one-Part2.P2_S2.DWE06_land #> 72-text-Part2.P2_S2.DWE06_other_land #> 73-select_one-Part2.P2_S2.DWE06a_land #> 74-select_one-Part2.P2_S2.DWE07_land #> 75-text-Part2.P2_S2.DWE07_other_land #> 76-select_one-Part2.P2_S2.DWE06_housing #> 77-text-Part2.P2_S2.DWE06_other_housing #> 78-select_one-Part2.P2_S2.DWE06a_housing #> 79-select_one-Part2.P2_S2.DWE07_housing #> 80-text-Part2.P2_S2.DWE07_other_housing #> 81-select_one-Part2.P2_S2.DWE08 #> 82-select_one-Part2.P2_S2.DWE09 #> 83-text-Part2.P2_S2.DWE09_other #> 84-select_one-Part2.P2_S2.DWE10 #> 85-end_group-Part2.P2_S2 #> 86-begin_group-Part2.P2_S3.P2_S3 #> 87-select_one-Part2.P2_S3.COOK01 #> 88-select_one-Part2.P2_S3.COOK02 #> 89-text-Part2.P2_S3.COOK02_other #> 90-select_one-Part2.P2_S3.COOK03 #> 91-text-Part2.P2_S3.COOK03_other #> 92-select_one-Part2.P2_S3.LIGHT01 #> 93-select_one-Part2.P2_S3.LIGHT02 #> 94-text-Part2.P2_S3.LIGHT02_other #> 95-select_one-Part2.P2_S3.LIGHT03 #> 96-text-Part2.P2_S3.LIGHT03_other #> 97-calculate-Part2.P2_S3.electricity_source #> 98-select_multiple-Part2.P2_S3.LIGHT04 #> 99-text-Part2.P2_S3.LIGHT04_other #> 100-select_one-Part2.P2_S3.LIGHT05 #> 101-integer-Part2.P2_S3.LIGHT05_11 #> 102-integer-Part2.P2_S3.LIGHT05_22 #> 103-select_one-Part2.P2_S3.LIGHT06 #> 104-integer-Part2.P2_S3.LIGHT06_11 #> 105-integer-Part2.P2_S3.LIGHT06_22 #> 106-select_one-Part2.P2_S3.DWA01 #> 107-text-Part2.P2_S3.DWA01_other #> 108-calculate-Part2.P2_S3.source #> 109-calculate-Part2.P2_S3.source2 #> 110-select_one-Part2.P2_S3.DWA02 #> 111-text-Part2.P2_S3.DWA02_other #> 112-begin_group-Part2.P2_S3.time_toi.time_toi #> 113-note-Part2.P2_S3.time_toi.DWA03 #> 114-select_one-Part2.P2_S3.time_toi.DWA03a #> 115-integer-Part2.P2_S3.time_toi.DWA03b #> 116-end_group-Part2.P2_S3.time_toi #> 117-select_one-Part2.P2_S3.DWA04 #> 118-select_one-Part2.P2_S3.TOI01 #> 119-text-Part2.P2_S3.TOI01_other #> 120-select_one-Part2.P2_S3.TOI02 #> 121-select_one-Part2.P2_S3.TOI03 #> 122-text-Part2.P2_S3.TOI03_other #> 123-select_one-Part2.P2_S3.TOI04 #> 124-text-Part2.P2_S3.TOI04_other #> 125-select_one-Part2.P2_S3.TOI05 #> 126-end_group-Part2.P2_S3 #> 127-begin_group-Part2.P2_S4.P2_S4 #> 128-calculate-Part2.P2_S4.latestson #> 129-select_one-Part2.P2_S4.BIR01 #> 130-select_one-Part2.P2_S4.BIR02 #> 131-select_multiple-Part2.P2_S4.BIR03 #> 132-text-Part2.P2_S4.BIR03_other #> 133-select_one-Part2.P2_S4.BIR04 #> 134-text-Part2.P2_S4.BIR04_other #> 135-select_one-Part2.P2_S4.HEA01 #> 136-text-Part2.P2_S4.HEA01_other #> 137-select_one-Part2.P2_S4.HEA02 #> 138-text-Part2.P2_S4.HEA02_other #> 139-integer-Part2.P2_S4.HEA03 #> 140-end_group-Part2.P2_S4 #> 141-begin_group-Part2.P2_S5.P2_S5 #> 142-note-Part2.P2_S5.SPF01 #> 143-select_one-Part2.P2_S5.SPF01_op #> 144-select_one-Part2.P2_S5.SPF01a #> 145-select_one-Part2.P2_S5.SPF01b #> 146-select_one-Part2.P2_S5.SPF01c #> 147-select_one-Part2.P2_S5.SPF01d #> 148-select_one-Part2.P2_S5.SPF01e #> 149-select_one-Part2.P2_S5.SPF01f #> 150-select_one-Part2.P2_S5.SPF01g #> 151-select_one-Part2.P2_S5.SPF01h #> 152-select_one-Part2.P2_S5.SPF01j #> 153-select_one-Part2.P2_S5.SPF01k #> 154-select_one-Part2.P2_S5.SPF01l #> 155-select_one-Part2.P2_S5.SPF01m #> 156-select_one-Part2.P2_S5.SPF01n #> 157-select_one-Part2.P2_S5.SPF01o #> 158-select_one-Part2.P2_S5.SPF01p #> 159-end_group-Part2.P2_S5 #> 160-end_group-Part2 #> 161-begin_group-Part3.Part3 #> 162-note-Part3.NoteS3 #> 163-begin_group-Part3.first_random.first_random #> 164-calculate-Part3.first_random.random1ap #> 165-calculate-Part3.first_random.eadult_nap #> 166-calculate-Part3.first_random.epositionap #> 167-calculate-Part3.first_random.random_indexap #> 168-calculate-Part3.first_random.selected_adultap #> 169-calculate-Part3.first_random.name_selectedadult18 #> 170-note-Part3.first_random.firstselect #> 171-end_group-Part3.first_random #> 172-begin_group-Part3.available_first_random.available_first_random #> 173-note-Part3.available_first_random.Individual #> 174-select_one-Part3.available_first_random.random_present #> 175-note-Part3.available_first_random.random_available #> 176-note-Part3.available_first_random.random_short #> 177-end_group-Part3.available_first_random #> 178-begin_group-Part3.second_random.second_random #> 179-calculate-Part3.second_random.random1ap2 #> 180-calculate-Part3.second_random.eadult_nap2 #> 181-calculate-Part3.second_random.epositionap2 #> 182-calculate-Part3.second_random.random_indexap2 #> 183-calculate-Part3.second_random.selected_adultap2 #> 184-calculate-Part3.second_random.name_selectedadult18_2 #> 185-note-Part3.second_random.secondselect #> 186-end_group-Part3.second_random #> 187-begin_group-Part3.second_availability.second_availability #> 188-note-Part3.second_availability.random_notavailable #> 189-select_one-Part3.second_availability.random_present_2 #> 190-note-Part3.second_availability.random_available_2 #> 191-note-Part3.second_availability.random_short_2 #> 192-note-Part3.second_availability.random_notavailable_2 #> 193-end_group-Part3.second_availability #> 194-note-Part3.enumerator_space #> 195-select_one-Part3.name_respondent_individual #> 196-begin_group-Part3.P3_S1.P3_S1 #> 197-select_one-Part3.P3_S1.EDU01_random #> 198-select_one-Part3.P3_S1.UNEM01 #> 199-select_one-Part3.P3_S1.UNEM02 #> 200-select_one-Part3.P3_S1.UNEM03 #> 201-select_one-Part3.P3_S1.UNEM04 #> 202-select_one-Part3.P3_S1.UNEM05 #> 203-select_one-Part3.P3_S1.UNEM06 #> 204-select_one-Part3.P3_S1.UNEM07 #> 205-select_one-Part3.P3_S1.UNEM08 #> 206-select_one-Part3.P3_S1.UNEM09 #> 207-select_one-Part3.P3_S1.UNEM10 #> 208-select_one-Part3.P3_S1.INC01 #> 209-select_one-Part3.P3_S1.INC02 #> 210-select_one-Part3.P3_S1.BANK01 #> 211-select_one-Part3.P3_S1.BANK02 #> 212-select_one-Part3.P3_S1.BANK03 #> 213-select_one-Part3.P3_S1.BANK04 #> 214-select_one-Part3.P3_S1.BANK05 #> 215-end_group-Part3.P3_S1 #> 216-begin_group-Part3.P3_S3.P3_S3 #> 217-select_one-Part3.P3_S3.FRM01 #> 218-select_one-Part3.P3_S3.FRM02 #> 219-select-Part3.P3_S3.FRM03 #> 220-text-Part3.P3_S3.FRM03_other #> 221-end_group-Part3.P3_S3 #> 222-begin_group-Part3.P3_S2.P3_S2 #> 223-select_one-Part3.P3_S2.SAF01 #> 224-note-Part3.P3_S2.gbv_vaw #> 225-begin_group-Part3.P3_S2.GBV01.GBV01 #> 226-note-Part3.P3_S2.GBV01.GBV01_note #> 227-select_one-Part3.P3_S2.GBV01.GBV01_001 #> 228-select_one-Part3.P3_S2.GBV01.GBV01a #> 229-select_one-Part3.P3_S2.GBV01.GBV01b #> 230-select_one-Part3.P3_S2.GBV01.GBV01c #> 231-select_one-Part3.P3_S2.GBV01.GBV01d #> 232-end_group-Part3.P3_S2.GBV01 #> 233-select_one-Part3.P3_S2.gbv_screen #> 234-note-Part3.P3_S2.VAWpre_note #> 235-select_one-Part3.P3_S2.VAWpre_001 #> 236-select_one-Part3.P3_S2.VAWpre01 #> 237-select_one-Part3.P3_S2.VAWpre02 #> 238-select_one-Part3.P3_S2.VAWpre03 #> 239-select_one-Part3.P3_S2.VAWpre04 #> 240-note-Part3.P3_S2.VAW_presence #> 241-begin_group-Part3.P3_S2.VAW.VAW #> 242-note-Part3.P3_S2.VAW.VAW01_note #> 243-select_one-Part3.P3_S2.VAW.VAW01 #> 244-select_one-Part3.P3_S2.VAW.VAW01a #> 245-select_one-Part3.P3_S2.VAW.VAW01b #> 246-select_one-Part3.P3_S2.VAW.VAW01c #> 247-select_one-Part3.P3_S2.VAW.VAW01d #> 248-select_one-Part3.P3_S2.VAW.VAW01e #> 249-end_group-Part3.P3_S2.VAW #> 250-end_group-Part3.P3_S2S2 #> 251-end_group-Part3 #> 252-begin_group-complete_survey.complete_survey #> 253-note-complete_survey.end_survey #> 254-select_one-complete_survey.contact_number #> 255-text-complete_survey.number_respondent #> 256-select_one-complete_survey.end_result #> 257-select_one-complete_survey.name_respondent #> 258-select_one-complete_survey.final_notes #> 259-text-complete_survey.final_notes_entry #> 260-end_group-complete_survey #> 261-calculate-end_time_1 #> 1 in repeat -rpt_hhmnames ///begin_repeat-Part1.rpt_hhmnames.rpt_hhmnames #> 2 in repeat -rpt_hhmnames ///calculate-Part1.rpt_hhmnames.hhmnames_pos #> 3 in repeat -rpt_hhmnames ///calculate-Part1.rpt_hhmnames.HHH01_2_aux #> 4 in repeat -rpt_hhmnames ///text-Part1.rpt_hhmnames.HH01_aux #> 5 in repeat -rpt_hhmnames ///select_one-Part1.rpt_hhmnames.HH03_aux #> 6 in repeat -rpt_hhmnames ///calculate-Part1.rpt_hhmnames.HH01_2_aux #> 7 in repeat -rpt_hhmnames ///calculate-Part1.rpt_hhmnames.HH03_2_aux #> 8 in repeat -rpt_hhmnames ///note-Part1.rpt_hhmnames.nt_names #> 1 in repeat -S1 ///begin_repeat-Part1.S1.S1 #> 2 in repeat -S1 ///calculate-Part1.S1.personId #> 3 in repeat -S1 ///calculate-Part1.S1.hhroster_pos_aux #> 4 in repeat -S1 ///calculate-Part1.S1.hhmnames_pos_match #> 5 in repeat -S1 ///calculate-Part1.S1.HH01 #> 6 in repeat -S1 ///calculate-Part1.S1.HH03 #> 7 in repeat -S1 ///note-Part1.S1.nt_endnames #> 8 in repeat -S1 ///note-Part1.S1.nt_rostermember #> 9 in repeat -S1 ///select_one-Part1.S1.HH04 #> 10 in repeat -S1 ///select_one-Part1.S1.HH05 #> 11 in repeat -S1 ///date-Part1.S1.HH06 #> 12 in repeat -S1 ///calculate-Part1.S1.calcul1 #> 13 in repeat -S1 ///integer-Part1.S1.age #> 14 in repeat -S1 ///integer-Part1.S1.AgeMonths #> 15 in repeat -S1 ///calculate-Part1.S1.ageMD #> 16 in repeat -S1 ///note-Part1.S1.agecalculated #> 17 in repeat -S1 ///integer-Part1.S1.age_est #> 18 in repeat -S1 ///integer-Part1.S1.months_est #> 19 in repeat -S1 ///calculate-Part1.S1.HH07 #> 20 in repeat -S1 ///calculate-Part1.S1.HH07_months #> 21 in repeat -S1 ///select_one-Part1.S1.HH08 #> 22 in repeat -S1 ///calculate-Part1.S1.start_time_2 #> 23 in repeat -S1 ///calculate-Part1.S1.position #> 24 in repeat -S1 ///calculate-Part1.S1.Relation_R #> 25 in repeat -S1 ///calculate-Part1.S1.adult18 #> 26 in repeat -S1 ///calculate-Part1.S1.women_b #> 27 in repeat -S1 ///calculate-Part1.S1.father_b #> 28 in repeat -S1 ///calculate-Part1.S1.childLess2 #> 29 in repeat -S1 ///calculate-Part1.S1.childLess2name #> 30 in repeat -S1 ///calculate-Part1.S1.women #> 31 in repeat -S1 ///calculate-Part1.S1.father #> 32 in repeat -S1 ///calculate-Part1.S1.adult #> 33 in repeat -S1 ///calculate-Part1.S1.women_b_count #> 34 in repeat -S1 ///calculate-Part1.S1.hh_size #> 35 in repeat -S1 ///calculate-Part1.S1.hhhead_age_ab18 #> 36 in repeat -S1 ///calculate-Part1.S1.adult_sum #> 37 in repeat -S1 ///calculate-Part1.S1.hhhead_age #> 38 in repeat -S1 ///calculate-Part1.S1.position18 #> 39 in repeat -S1 ///calculate-Part1.S1.adult01 #> 40 in repeat -S1 ///calculate-Part1.S1.age18above #> 1 in repeat -S2_repeat ///begin_repeat-S2_repeat.S2_repeat #> 2 in repeat -S2_repeat ///calculate-S2_repeat.name_individual #> 3 in repeat -S2_repeat ///calculate-S2_repeat.ind_age_year #> 4 in repeat -S2_repeat ///calculate-S2_repeat.ind_age_month #> 5 in repeat -S2_repeat ///begin_group-S2_repeat.P1_S2.P1_S2 #> 6 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF01 #> 7 in repeat -S2_repeat ///calculate-S2_repeat.P1_S2.citizenship #> 8 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF02 #> 9 in repeat -S2_repeat ///calculate-S2_repeat.P1_S2.citizenship2 #> 10 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF03 #> 11 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF04 #> 12 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF05 #> 13 in repeat -S2_repeat ///calculate-S2_repeat.P1_S2.countrybirth #> 14 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF07 #> 15 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF08 #> 16 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF09 #> 17 in repeat -S2_repeat ///date-S2_repeat.P1_S2.REF10a #> 18 in repeat -S2_repeat ///text-S2_repeat.P1_S2.REF10b #> 19 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF11 #> 20 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF12 #> 21 in repeat -S2_repeat ///date-S2_repeat.P1_S2.REF12a #> 22 in repeat -S2_repeat ///text-S2_repeat.P1_S2.REF12b #> 23 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF13 #> 24 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF14 #> 25 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF15 #> 26 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF16 #> 27 in repeat -S2_repeat ///text-S2_repeat.P1_S2.REF16_other #> 28 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF16a #> 29 in repeat -S2_repeat ///text-S2_repeat.P1_S2.REF16a_other #> 30 in repeat -S2_repeat ///end_group-S2_repeat.P1_S2 #> 31 in repeat -S2_repeat ///begin_group-S2_repeat.P1_S3.P1_S3 #> 32 in repeat -S2_repeat ///select_multiple-S2_repeat.P1_S3.IDP01 #> 33 in repeat -S2_repeat ///text-S2_repeat.P1_S3.IDP01a #> 34 in repeat -S2_repeat ///select_one-S2_repeat.P1_S3.IDP02 #> 35 in repeat -S2_repeat ///date-S2_repeat.P1_S3.IDP02a #> 36 in repeat -S2_repeat ///text-S2_repeat.P1_S3.IDP02b #> 37 in repeat -S2_repeat ///end_group-S2_repeat.P1_S3 #> 38 in repeat -S2_repeat ///begin_group-S2_repeat.P1_S4.P1_S4 #> 39 in repeat -S2_repeat ///begin_group-S2_repeat.P1_S4.S4_above5.S4_above5 #> 40 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01 #> 41 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01a #> 42 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01b #> 43 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01c #> 44 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01d #> 45 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01e #> 46 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01f #> 47 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01g #> 48 in repeat -S2_repeat ///end_group-S2_repeat.P1_S4.S4_above5 #> 49 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.REG02 #> 50 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.REG03 #> 51 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.REG04 #> 52 in repeat -S2_repeat ///begin_group-S2_repeat.P1_S4.S4_below5.S4_below5 #> 53 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_below5.REG05 #> 54 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_below5.REG05a #> 55 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_below5.REG05b #> 56 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_below5.REG05c #> 57 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_below5.REG05d #> 58 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_below5.REG05e #> 59 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_below5.REG05f #> 60 in repeat -S2_repeat ///end_group-S2_repeat.P1_S4.S4_below5 #> 61 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.REG06 #> 62 in repeat -S2_repeat ///end_group-S2_repeat.P1_S4 #> 63 in repeat -S2_repeat ///begin_group-S2_repeat.P1_S5.P1_S5 #> 64 in repeat -S2_repeat ///note-S2_repeat.P1_S5.ind_name #> 65 in repeat -S2_repeat ///select_one-S2_repeat.P1_S5.MMR01 #> 66 in repeat -S2_repeat ///select_one-S2_repeat.P1_S5.MMR02 #> 67 in repeat -S2_repeat ///select_one-S2_repeat.P1_S5.MMR03 #> 68 in repeat -S2_repeat ///integer-S2_repeat.P1_S5.MMR04 #> 69 in repeat -S2_repeat ///end_group-S2_repeat.P1_S5 #> 70 in repeat -S2_repeat ///begin_group-S2_repeat.P1_S6.P1_S6 #> 71 in repeat -S2_repeat ///note-S2_repeat.P1_S6.N_DIS01 #> 72 in repeat -S2_repeat ///select_one-S2_repeat.P1_S6.DIS01a #> 73 in repeat -S2_repeat ///select_one-S2_repeat.P1_S6.DIS01 #> 74 in repeat -S2_repeat ///select_one-S2_repeat.P1_S6.DIS02 #> 75 in repeat -S2_repeat ///select_one-S2_repeat.P1_S6.DIS03 #> 76 in repeat -S2_repeat ///select_one-S2_repeat.P1_S6.DIS04 #> 77 in repeat -S2_repeat ///select_one-S2_repeat.P1_S6.DIS05 #> 78 in repeat -S2_repeat ///select_one-S2_repeat.P1_S6.DIS06 #> 79 in repeat -S2_repeat ///end_group-S2_repeat.P1_S6 #> 80 in repeat -S2_repeat ///begin_group-S2_repeat.P1_S7.P1_S7 #> 81 in repeat -S2_repeat ///select_one-S2_repeat.P1_S7.HACC01 #> 82 in repeat -S2_repeat ///select_one-S2_repeat.P1_S7.HACC02 #> 83 in repeat -S2_repeat ///text-S2_repeat.P1_S7.HACC02_other #> 84 in repeat -S2_repeat ///calculate-S2_repeat.P1_S7.reason_care #> 85 in repeat -S2_repeat ///select_one-S2_repeat.P1_S7.HACC03 #> 86 in repeat -S2_repeat ///select_multiple-S2_repeat.P1_S7.HACC04 #> 87 in repeat -S2_repeat ///text-S2_repeat.P1_S7.HACC04_other #> 88 in repeat -S2_repeat ///end_group-S2_repeat.P1_S7 #> 89 in repeat -S2_repeat ///begin_group-S2_repeat.P1_S8.P1_S8 #> 90 in repeat -S2_repeat ///begin_group-S2_repeat.P1_S8.S8_edu.S8_edu #> 91 in repeat -S2_repeat ///note-S2_repeat.P1_S8.S8_edu.name_ind #> 92 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_edu.EDU01 #> 93 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_edu.EDU02 #> 94 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_edu.EDU03 #> 95 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_edu.EDU04 #> 96 in repeat -S2_repeat ///text-S2_repeat.P1_S8.S8_edu.EDU04_other #> 97 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_edu.EDU05 #> 98 in repeat -S2_repeat ///text-S2_repeat.P1_S8.S8_edu.EDU05_other #> 99 in repeat -S2_repeat ///end_group-S2_repeat.P1_S8.S8_edu #> 100 in repeat -S2_repeat ///begin_group-S2_repeat.P1_S8.S8_comm.S8_comm #> 101 in repeat -S2_repeat ///note-S2_repeat.P1_S8.S8_comm.name_ind2 #> 102 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_comm.COMM01 #> 103 in repeat -S2_repeat ///integer-S2_repeat.P1_S8.S8_comm.COMM02 #> 104 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_comm.COMM03 #> 105 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_comm.COMM04 #> 106 in repeat -S2_repeat ///end_group-S2_repeat.P1_S8.S8_comm #> 107 in repeat -S2_repeat ///end_group-S2_repeat.P1_S8 ## Save this to use it for testing the package... openxlsx::write.xlsx(datalist, here::here(\"inst\", \"demo_data.xlsx\"))"},{"path":"/reference/fct_plot_indic_donut.html","id":null,"dir":"Reference","previous_headings":"","what":"fct_plot_indic_donut — fct_plot_indic_donut","title":"fct_plot_indic_donut — fct_plot_indic_donut","text":"Wrapper summary chart indicator - allows add hint, source, icon interpretation threshold available","code":""},{"path":"/reference/fct_plot_indic_donut.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"fct_plot_indic_donut — fct_plot_indic_donut","text":"","code":"fct_plot_indic_donut( indicator, subtitle_chart = NULL, caption_chart = NULL, ordered_threhold = NULL, iconunicode = \"f496\" )"},{"path":"/reference/fct_plot_indic_donut.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"fct_plot_indic_donut — fct_plot_indic_donut","text":"indicator vector subtitle_chart caption_chart ordered_threhold vector different threshold (green, orange, red) iconunicode unicode value fontawesome --- see https://fontawesome.com/search?o=r&m=free","code":""},{"path":"/reference/fct_plot_indic_donut.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"fct_plot_indic_donut — fct_plot_indic_donut","text":"ggplot2 object","code":""},{"path":"/reference/fct_plot_indic_donut.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"fct_plot_indic_donut — fct_plot_indic_donut","text":"","code":"test <- data.frame( shelter = rbinom(20, 1, 0.5)) |> dplyr::mutate( shelter = labelled::labelled( shelter, labels = c( \"Yes\" = 1, \"No\" = 0), label = \"Access to adequate shelter\")) fct_plot_indic_donut(indicator = test$shelter, subtitle_chart = NULL, caption_chart = NULL, ordered_threhold = NULL, iconunicode = \"e54f\")"},{"path":"/reference/fct_plot_rbm_sdg.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot SDG Indicator for a country — fct_plot_rbm_sdg","title":"Plot SDG Indicator for a country — fct_plot_rbm_sdg","text":"function designed help interpretation survey results providing comparison guidelines. displays chart base comparison analyzing results UNHCR UNHCR Result monitoring survey. pulls values published within UN Registry SDG Indicator values function includes mapping table RBM/RMS SDG extract data https://unstats.un.org/SDGAPI/swagger/ using package SDGsR https://drmattg.github.io/SDGsR/articles/Introduction_to_SDGsR.html devtools::install_github(\"DrMattG/SDGsR\", dependencies = TRUE)","code":""},{"path":"/reference/fct_plot_rbm_sdg.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot SDG Indicator for a country — fct_plot_rbm_sdg","text":"","code":"fct_plot_rbm_sdg(country = \"BRA\", rbm = \"outcome16_2\", years = c(2000, 2022))"},{"path":"/reference/fct_plot_rbm_sdg.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot SDG Indicator for a country — fct_plot_rbm_sdg","text":"country iso3 code country (easier recall M49 used API) rbm RBM variable name - can match SDG years years filter chart - instance c(2000,2022)","code":""},{"path":"/reference/fct_plot_rbm_sdg.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot SDG Indicator for a country — fct_plot_rbm_sdg","text":"ggplot2 object","code":""},{"path":"/reference/fct_plot_rbm_sdg.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plot SDG Indicator for a country — fct_plot_rbm_sdg","text":"","code":"fct_plot_rbm_sdg( country = \"BRA\", rbm = \"impact2_2\", years = c(2000, 2022)) + unhcrthemes::theme_unhcr(font_size = 10) #> Loading required package: ggplot2 #> Loading required package: dplyr #> #> Attaching package: ‘dplyr’ #> The following objects are masked from ‘package:stats’: #> #> filter, lag #> The following objects are masked from ‘package:base’: #> #> intersect, setdiff, setequal, union"},{"path":"/reference/fct_re_map.html","id":null,"dir":"Reference","previous_headings":"","what":"fct_re_map — fct_re_map","title":"fct_re_map — fct_re_map","text":"Take list hierarchical survey entry - use another list remap variables modalities specific questions","code":""},{"path":"/reference/fct_re_map.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"fct_re_map — fct_re_map","text":"","code":"fct_re_map(datalist, mapper)"},{"path":"/reference/fct_re_map.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"fct_re_map — fct_re_map","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data() mapper list providing mapping variables used calculation - mapper potentially adjusted relation deviation standard XlsForm contextualized dataset","code":""},{"path":"/reference/fct_re_map.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"fct_re_map — fct_re_map","text":"datalist","code":""},{"path":"/reference/fct_re_map.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"fct_re_map — fct_re_map","text":"","code":"mapper = list( hierarchy = \"main\", variablemap = data.frame( label = c(\"Does this household use anything for lighting?\", \"What source of electricity is used most of the time in this household?\"), variable = c(\"LIGHT01\", \"LIGHT03\"), mappattern = c(\"LIGHT01\", \"LIGHT03\") ), modalitymap = data.frame( variable = c( \"LIGHT01\", \"LIGHT03\", \"LIGHT03\", \"LIGHT03\"), label = c( \"yes\", \"No electricity in household\", \"Other, specify\", \"Don't know\"), standard = c( \"1\", \"1\", \"96\", \"98\"), map = c(\"yes\", \"Noelec\", \"Other\", \"Dontknow\") ) ) ## One variable is not correctly datalist <- list(mainhousehold = data.frame( group.LIGHT01 = c(\"yes\", \"yes\", \"no\", \"yes\", \"yes\", \"no\", \"yes\", \"yes\", \"yes\"), group.LIGHT03 = c(\"Noelec\", \"Other\", \"Dontknow\", \"Noelec\", \"Other\", \"Dontknow\", \"Nuclear\", \"Other\", \"Dontknow\")) ) datalist <- fct_re_map(datalist = datalist, mapper = mapper ) #> Mapped levels for LIGHT01 are now: 1, no #> Mapped levels for LIGHT03 are now: 1, 96, 98, Nuclear fct_check_map(datalist = datalist, mapper = mapper ) #> LIGHT01 is in the dataset and has at least one of the expected modality for calculation #> LIGHT03 is in the dataset and has at least one of the expected modality for calculation"},{"path":"/reference/fct_var_mapping.html","id":null,"dir":"Reference","previous_headings":"","what":"fct_var_mapping — fct_var_mapping","title":"fct_var_mapping — fct_var_mapping","text":"Create diff identify mapping expected variables / modalities configured specific xlsform","code":""},{"path":"/reference/fct_var_mapping.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"fct_var_mapping — fct_var_mapping","text":"","code":"fct_var_mapping(xlsformpath)"},{"path":"/reference/fct_var_mapping.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"fct_var_mapping — fct_var_mapping","text":"xlsformpath path xlsform mappingfile_out path file mapping","code":""},{"path":"/reference/fct_var_mapping.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"fct_var_mapping — fct_var_mapping","text":"list best mapping...","code":""},{"path":"/reference/fct_var_mapping.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"fct_var_mapping — fct_var_mapping","text":"","code":"form <- system.file(\"RMSCAPI.xlsx\", package = \"IndicatorCalc\") #fct_var_mapping(xlsformpath = form)"},{"path":"/reference/impact_2_2.html","id":null,"dir":"Reference","previous_headings":"","what":"impact_2_2 — impact_2_2","title":"impact_2_2 — impact_2_2","text":"Proportion Persons Concern residing physically safe secure settlements access basic facilities","code":""},{"path":"/reference/impact_2_2.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"impact_2_2 — impact_2_2","text":"","code":"impact_2_2( datalist, mapper = list(hierarchy = \"main\", variablemap = data.frame(label = c(\"Access to shelter\", \"Access to electricity\", \"Access to drinking water\", \"Access to healthcare\"), variable = c(\"shelter\", \"electricity\", \"drinkingwater\", \"healthcare\"), mappattern = c(\"shelter\", \"electricity\", \"drinkingwater\", \"healthcare\")), modalitymap = data.frame(variable = c(\"shelter\", \"shelter\", \"electricity\", \"electricity\", \"drinkingwater\", \"drinkingwater\", \"healthcare\", \"healthcare\"), label = c(\"Yes\", \"No\", \"Yes\", \"No\", \"Yes\", \"No\", \"Yes\", \"No\"), standard = c(\"1\", \"0\", \"1\", \"0\", \"1\", \"0\", \"1\", \"0\"), map = c(\"1\", \"0\", \"1\", \"0\", \"1\", \"0\", \"1\", \"0\"))) )"},{"path":"/reference/impact_2_2.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"impact_2_2 — impact_2_2","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data() mapper list providing mapping variables used calculation - mapper potentially adjusted relation deviation standard XlsForm contextualized dataset","code":""},{"path":"/reference/impact_2_2.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"impact_2_2 — impact_2_2","text":"new calculated variable - appended ...","code":""},{"path":"/reference/impact_2_2.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"impact_2_2 — impact_2_2","text":"electricity, healthcare, drinking water adequate shelter calculated, check values variable , calculating 2.2 impact indicator. variables correctly calculated, can compute final variable impact 2.2 indicator. Numerator: Population residing physically safe secure settlements access basic facilities Denominator: Total population Formula: shelter=1 & electricity=1 & healthcare=1 & drinkingwater=1 Impact 2.2 \"1\" services accessible","code":""},{"path":"/reference/impact_2_2.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"impact_2_2 — impact_2_2","text":"","code":"datalist <- kobocruncher::kobo_data( system.file(\"test.xlsx\", package = \"IndicatorCalc\")) #> Warning: Expecting logical in G1286 / R1286C7: got 'no' #Healthcare mapper <- list( hierarchy = \"main\", variablemap = data.frame( label = c( \"In general, when anyone in your household is sick, where do they go to seek care?\", \"How long does it take to go there when you use the mode of transport that you mentioned above?\"), variable = c(\"HEA01\", \"HEA03\"), mappattern = c(\"HEA01\", \"HEA03\") ), modalitymap = data.frame( variable = c( \"HEA01\", \"HEA01\" ), label = c( \"Other, specify\", \"Don't know\"), standard = c(\"96\", \"98\" ), map = c(\"96\", \"98\" ))) datalist <- inter_healthcare(datalist, mapper ) #> ℹ HEA01 standard variable was not found in the dataset. #> ℹ HEA03 standard variable was not found in the dataset. #> ℹ HEA01 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for HEA01 are now: 1, 2, 3, 4, 5, 96, 98 #> Mapped levels for HEA03 are now: 0, 1, 10, 100, 12, 120, 13, 15, 18, 2, 20, 22, 25, 3, 30, 300, 35, 4, 40, 45, 5, 50, 55, 6, 60, 7, 70, 75, 8, 90, 900 ## Electricity mapper <- list( hierarchy = \"main\", variablemap = data.frame( label = c(\"Does this household use anything for lighting?\", \"What source of electricity is used most of the time in this household?\"), variable = c(\"LIGHT01\", \"LIGHT03\"), mappattern = c(\"LIGHT01\", \"LIGHT03\") ), modalitymap = data.frame( variable = c( \"LIGHT01\", \"LIGHT03\", \"LIGHT03\", \"LIGHT03\"), label = c( \"yes\", \"No electricity in household\", \"Other, specify\", \"Don't know\"), standard = c( \"1\", \"1\", \"96\", \"98\"), map = c(\"yes\", \"1\", \"96\", \"98\"))) datalist <- inter_electricity( datalist =datalist, mapper = mapper ) #> ℹ LIGHT01 standard variable was not found in the dataset. #> ℹ LIGHT03 standard variable was not found in the dataset. #> Mapped levels for LIGHT01 are now: 1, no, notell #> ℹ LIGHT03 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for LIGHT03 are now: 1, 2, 3, 4, 5, 6, 7, 96, 98 ## Drinking Water ## in the contextualised form - DWA03a has been skipped and all results are in min... ## only manual transformation can adjust this before we use the mapper.. datalist[[\"main\"]]$DWA03a <- \"1\" datalist[[\"main\"]]$DWA03b <- datalist[[\"main\"]]$VulnerabilityScoring.BasicNeeds.DWA03 # now the mapper mapper <- list( hierarchy = \"main\", variablemap = data.frame( label = c( \"What is the main source of drinking water for this household?\", \"Where is this source located?\", \"Unit used to measure time to access\", \"How long does it take to go there, get water, and come back, including waiting time?\"), variable = c(\"DWA01\", \"DWA02\", \"DWA03a\", \"DWA03b\" ), mappattern = c(\"DWA01\", \"DWA02\", \"DWA03a\", \"DWA03b\" ) ), modalitymap = data.frame( variable = c(\"DWA01\", \"DWA01\", \"DWA01\",\"DWA01\", \"DWA01\", \"DWA02\",\"DWA02\", \"DWA02\", \"DWA03a\",\"DWA03a\"), label = c( ##DWA01 \"Unprotected Dug Well\", \"Unprotected Spring\", \"Surface Water (River, Stream, Pond, Dam, Canal)\", \"Other, specify\", \"Don't know\", ##DWA02 \"In Own Dwelling\", \"In Own Yard/Plot\", \"Elsewhere\", ## DWA03a \"Minutes\", \"Hours\" ), standard = c( \"7\", \"9\", \"13\", \"96\", \"98\", \"1\", \"2\", \"3\", \"1\", \"2\"), map = c( \"7\", \"9\", \"13\", \"96\", \"98\", \"1\", \"2\", \"3\", \"1\", \"2\") ) ) datalist <- inter_drinkingwater(datalist, mapper ) #> ℹ DWA01 standard variable was not found in the dataset. #> ℹ DWA02 standard variable was not found in the dataset. #> DWA03a is in the dataset and has at least one of the expected modality for calculation #> ℹ DWA03b standard variable in the dataset misses at least one response among : #> ℹ DWA01 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> The following `from` values were not present in `x`: 9 #> Mapped levels for DWA01 are now: 1, 11, 12, 13, 14, 15, 2, 3, 4, 5, 7, 96, 98 #> ℹ DWA02 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWA02 are now: 1, 2, 3 #> The following `from` values were not present in `x`: 2 #> Mapped levels for DWA03a are now: 1 #> Mapped levels for DWA03b are now: 0, 10, 15, 2, 3, 30, 5, 90 ##Shelter mapper <- list( hierarchy = \"main\", variablemap = data.frame( label = c( \"What type of dwelling does the household live in?\", \"Main material of the dwelling floor\", \"Main material of the roof\", \"Main material of the exterior walls\", \"How many separate rooms do the members of your household occupy?\", \"What is the total number of persons in this household?\"), variable = c(\"DWE01\",\"DWE02\",\"DWE03\",\"DWE04\",\"DWE05\", \"HH01\"), mappattern = c(\"DWE01\",\"DWE02\",\"DWE03\",\"DWE04\",\"DWE05\", \"progres_groupsize\") ), modalitymap = data.frame( variable = c( \"DWE01\",\"DWE01\", \"DWE02\",\"DWE02\",\"DWE02\", \"DWE03\",\"DWE03\",\"DWE03\",\"DWE03\",\"DWE03\",\"DWE03\", \"DWE04\",\"DWE04\",\"DWE04\",\"DWE04\",\"DWE04\",\"DWE04\"), label = c( \"Apartment\", \"House\", # DWE01 \"Earth/sand\", \"Dung\", \"Other (Specify)\", #DWE02 \"Metal/tin\", \"Wood\", \"Calamine/Cement fibre\", \"Ceramic tiles\", \"Cement\", \"Roofing shingles\",#DWE03 \"Cement\", \"Stone with lime/ cement\", \"Bricks\", \"Cement blocks\", \"Covered adobe\", \"Wood planks/shingles\" # DWE04 ), standard = c( \"1\",\"2\", \"1\", \"2\",\"96\", \"8\",\"9\",\"10\",\"11\",\"12\",\"13\", \"10\",\"11\",\"12\",\"13\",\"14\",\"15\"), map = c(\"1\",\"2\", \"1\", \"2\",\"96\", \"8\",\"9\",\"10\",\"11\",\"12\",\"13\", \"10\",\"11\",\"12\",\"13\",\"14\",\"15\"))) ## Calculate datalist <- inter_shelter(datalist, mapper) #> ℹ DWE01 standard variable was not found in the dataset. #> ℹ DWE02 standard variable was not found in the dataset. #> ℹ DWE03 standard variable was not found in the dataset. #> ℹ DWE04 standard variable was not found in the dataset. #> ℹ DWE05 standard variable was not found in the dataset. #> ℹ HH01 standard variable was not found in the dataset. #> ℹ DWE01 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE01 are now: 1, 2, 3, 5, 6, 7, 8, 9, 96 #> ℹ DWE02 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE02 are now: 1, 2, 3, 5, 6, 7, 8, 96 #> ℹ DWE03 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE03 are now: 1, 10, 11, 12, 13, 2, 4, 6, 7, 8, 9, 96 #> ℹ DWE04 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE04 are now: 1, 10, 11, 12, 13, 14, 15, 2, 3, 4, 5, 6, 7, 8, 9, 96 #> Mapped levels for DWE05 are now: 1, 2, 3, 4, 5, 6 #> Mapped levels for HH01 are now: 1, 10, 11, 12, 2, 3, 4, 5, 6, 7, 8, 9 ## and now impact mapper <- list( hierarchy = \"main\", variablemap = data.frame( label = c(\"Access to shelter\", \"Access to electricity\", \"Access to drinking water\", \"Access to healthcare\"), variable = c(\"shelter\", \"electricity\", \"drinkingwater\", \"healthcare\"), mappattern = c(\"shelter\", \"electricity\", \"drinkingwater\", \"healthcare\") ), modalitymap = data.frame( variable = c( \"shelter\", \"shelter\", \"electricity\", \"electricity\", \"drinkingwater\", \"drinkingwater\", \"healthcare\",\"healthcare\"), label = c( \"Yes\",\"No\", \"Yes\",\"No\", \"Yes\",\"No\", \"Yes\",\"No\"), standard = c( \"1\",\"0\", \"1\",\"0\", \"1\",\"0\", \"1\",\"0\"), map = c(\"1\",\"0\", \"1\",\"0\", \"1\",\"0\", \"1\",\"0\"))) datalist <- impact_2_2(datalist, mapper) #> shelter is in the dataset and has at least one of the expected modality for calculation #> electricity is in the dataset and has at least one of the expected modality for calculation #> drinkingwater is in the dataset and has at least one of the expected modality for calculation #> healthcare is in the dataset and has at least one of the expected modality for calculation fct_plot_indic_donut(indicator = datalist[[\"main\"]]$impact2_2, iconunicode = \"f140\")"},{"path":"/reference/inter_drinkingwater.html","id":null,"dir":"Reference","previous_headings":"","what":"inter_drinkingwater — inter_drinkingwater","title":"inter_drinkingwater — inter_drinkingwater","text":"Access clean drinking water essential person's survival well precursor achieving protection outcomes related health, education economic developed. calculation access drinking water linked SGD Indicator 6.1.1. questionnaire module analysis guidance taken UNICEF MICS6. Numerator: Population using improved sources drinking water either dwelling/yard/plot within 30 minutes round trip collection time Denominator: Total population Formula: DWA03 < 30 (30 minutes), & DWA01 != 7,9,13,96,98 & DWA02 != 3 basic service calculated main dataset three conditions improved source, dwelling/yard/plot reachable 30 minutes","code":""},{"path":"/reference/inter_drinkingwater.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"inter_drinkingwater — inter_drinkingwater","text":"","code":"inter_drinkingwater( datalist, mapper = list(hierarchy = \"main\", variablemap = data.frame(label = c(\"What is the main source of drinking water for this household?\", \"Where is this source located?\", \"Unit used to measure time to access\", \"How long does it take to go there, get water, and come back,\\n including waiting time?\"), variable = c(\"DWA01\", \"DWA02\", \"DWA03a\", \"DWA03b\"), mappattern = c(\"DWA01\", \"DWA02\", \"DWA03a\", \"DWA03b\")), modalitymap = data.frame(variable = c(\"DWA01\", \"DWA01\", \"DWA01\", \"DWA01\", \"DWA01\", \"DWA02\", \"DWA02\", \"DWA02\", \"DWA03a\", \"DWA03a\"), label = c(\"Unprotected Dug Well\", \"Unprotected Spring\", \"Surface Water (River, Stream, Pond, Dam, Canal)\", \"Other, specify\", \"Don't know\", \"In Own Dwelling\", \"In Own Yard/Plot\", \"Elsewhere\", \"Minutes\", \"Hours\"), standard = c(\"7\", \"9\", \"13\", \"96\", \"98\", \"1\", \"2\", \"3\", \"1\", \"2\"), map = c(\"7\", \"9\", \"13\", \"96\", \"98\", \"1\", \"2\", \"3\", \"1\", \"2\"))) )"},{"path":"/reference/inter_drinkingwater.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"inter_drinkingwater — inter_drinkingwater","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data() mapper list providing mapping variables used calculation - mapper potentially adjusted relation deviation standard XlsForm contextualized dataset","code":""},{"path":"/reference/inter_drinkingwater.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"inter_drinkingwater — inter_drinkingwater","text":"new calculated variable - appended ...","code":""},{"path":"/reference/inter_drinkingwater.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"inter_drinkingwater — inter_drinkingwater","text":"","code":"datalist <- kobocruncher::kobo_data( system.file(\"test.xlsx\", package = \"IndicatorCalc\")) #> Warning: Expecting logical in G1286 / R1286C7: got 'no' ## in the contextualised form - DWA03a has been skipped and all results are in min... ## only manual transformation can adjust this before we use the mapper.. datalist[[\"main\"]]$DWA03a <- \"1\" datalist[[\"main\"]]$DWA03b <- datalist[[\"main\"]]$VulnerabilityScoring.BasicNeeds.DWA03 # now the mapper mapper <- list( hierarchy = \"main\", variablemap = data.frame( label = c( \"What is the main source of drinking water for this household?\", \"Where is this source located?\", \"Unit used to measure time to access\", \"How long does it take to go there, wait get water, and come back?\"), variable = c(\"DWA01\", \"DWA02\", \"DWA03a\", \"DWA03b\" ), mappattern = c(\"DWA01\", \"DWA02\", \"DWA03a\", \"DWA03b\" ) ), modalitymap = data.frame( variable = c(\"DWA01\", \"DWA01\", \"DWA01\",\"DWA01\", \"DWA01\", \"DWA02\",\"DWA02\", \"DWA02\", \"DWA03a\",\"DWA03a\"), label = c( ##DWA01 \"Unprotected Dug Well\", \"Unprotected Spring\", \"Surface Water (River, Stream, Pond, Dam, Canal)\", \"Other, specify\", \"Don't know\", ##DWA02 \"In Own Dwelling\", \"In Own Yard/Plot\", \"Elsewhere\", ## DWA03a \"Minutes\", \"Hours\" ), standard = c( \"7\", \"9\", \"13\", \"96\", \"98\", \"1\", \"2\", \"3\", \"1\", \"2\"), map = c( \"7\", \"9\", \"13\", \"96\", \"98\", \"1\", \"2\", \"3\", \"1\", \"2\") ) ) datalist <- inter_drinkingwater(datalist, mapper ) #> ℹ DWA01 standard variable was not found in the dataset. #> ℹ DWA02 standard variable was not found in the dataset. #> DWA03a is in the dataset and has at least one of the expected modality for calculation #> ℹ DWA03b standard variable in the dataset misses at least one response among : #> ℹ DWA01 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> The following `from` values were not present in `x`: 9 #> Mapped levels for DWA01 are now: 1, 11, 12, 13, 14, 15, 2, 3, 4, 5, 7, 96, 98 #> ℹ DWA02 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWA02 are now: 1, 2, 3 #> The following `from` values were not present in `x`: 2 #> Mapped levels for DWA03a are now: 1 #> Mapped levels for DWA03b are now: 0, 10, 15, 2, 3, 30, 5, 90 ## Indicator summary table(datalist[[\"main\"]]$drinkingwater, useNA = \"ifany\") #> #> 0 1 #> 1204 86 fct_plot_indic_donut(indicator = datalist[[\"main\"]]$drinkingwater, iconunicode = \"e006\") ## Check auxilliary table(datalist[[\"main\"]]$dwa_cond1, useNA = \"ifany\") #> #> 0 1 #> 69 1221 table(datalist[[\"main\"]]$reachableU30, useNA = \"ifany\") #> #> 0 1 #> 1 1289 table(datalist[[\"main\"]]$DWA02, useNA = \"ifany\") #> #> 1 2 3 #> 42 34 11 1203 table(datalist[[\"main\"]]$dwa_cond2, useNA = \"ifany\") #> #> 0 1 #> 1 86 1203"},{"path":"/reference/inter_electricity.html","id":null,"dir":"Reference","previous_headings":"","what":"inter_electricity — inter_electricity","title":"inter_electricity — inter_electricity","text":"Households lighting provides sense safety security within outside households sunset. households lack access electricity, especially lighting connectivity, affects occupants' security limits opportunities socialization, learning self-reliance. Numerator: Population access electricity, especially lighting connectivity Denominator: Total population Formula: LIGHT01 = 1 & LIGHT03 != 1, 96, 98","code":""},{"path":"/reference/inter_electricity.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"inter_electricity — inter_electricity","text":"","code":"inter_electricity( datalist, mapper = list(hierarchy = \"main\", variablemap = data.frame(label = c(\"Does this household use anything for lighting?\", \"What source of electricity is used most of the time in this household?\"), variable = c(\"LIGHT01\", \"LIGHT03\"), mappattern = c(\"LIGHT01\", \"LIGHT03\")), modalitymap = data.frame(variable = c(\"LIGHT01\", \"LIGHT03\", \"LIGHT03\", \"LIGHT03\"), label = c(\"yes\", \"No electricity in household\", \"Other, specify\", \"Don't know\"), standard = c(\"1\", \"1\", \"96\", \"98\"), map = c(\"1\", \"1\", \"96\", \"98\"))) )"},{"path":"/reference/inter_electricity.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"inter_electricity — inter_electricity","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data() mapper list providing mapping variables used calculation - mapper potentially adjusted relation deviation standard XlsForm contextualized dataset","code":""},{"path":"/reference/inter_electricity.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"inter_electricity — inter_electricity","text":"new calculated variable - appended ...","code":""},{"path":"/reference/inter_electricity.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"inter_electricity — inter_electricity","text":"","code":"datalist <- kobocruncher::kobo_data( system.file(\"test.xlsx\", package = \"IndicatorCalc\")) #> Warning: Expecting logical in G1286 / R1286C7: got 'no' mapper <- list( hierarchy = \"main\", variablemap = data.frame( label = c(\"Does this household use anything for lighting?\", \"What source of electricity is used most of the time in this household?\"), variable = c(\"LIGHT01\", \"LIGHT03\"), mappattern = c(\"LIGHT01\", \"LIGHT03\") ), modalitymap = data.frame( variable = c( \"LIGHT01\", \"LIGHT03\", \"LIGHT03\", \"LIGHT03\"), label = c( \"yes\", \"No electricity in household\", \"Other, specify\", \"Don't know\"), standard = c( \"1\", \"1\", \"96\", \"98\"), map = c(\"yes\", \"1\", \"96\", \"98\"))) datalist <- inter_electricity( datalist =datalist, mapper = mapper ) #> ℹ LIGHT01 standard variable was not found in the dataset. #> ℹ LIGHT03 standard variable was not found in the dataset. #> Mapped levels for LIGHT01 are now: 1, no, notell #> ℹ LIGHT03 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for LIGHT03 are now: 1, 2, 3, 4, 5, 6, 7, 96, 98 table(datalist[[\"main\"]]$electricity) #> #> 0 1 #> 81 1209 fct_plot_indic_donut(indicator = datalist[[\"main\"]]$electricity, iconunicode = \"f0e7\")"},{"path":"/reference/inter_healthcare.html","id":null,"dir":"Reference","previous_headings":"","what":"inter_healthcare — inter_healthcare","title":"inter_healthcare — inter_healthcare","text":"Access healthcare depends availability healthcare, including physical reach, acceptability affordability . indicator, focus availability healthcare system. According Sphere Handbook, primary healthcare facility accessible within one hour's walk dwellings. Numerator: Population can reach primary healthcare facility within one hour dwellings Denominator: Total population Formula: HEA01 != 96, 98 & HEA03 <= 60 (reachable within one hour/60 minutes)","code":""},{"path":"/reference/inter_healthcare.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"inter_healthcare — inter_healthcare","text":"","code":"inter_healthcare( datalist, mapper = list(hierarchy = \"main\", variablemap = data.frame(label = c(\"In general, when anyone in your household is sick, where do they go to seek care?\", \"How long does it take to go there when you use the mode of transport that you mentioned above?\"), variable = c(\"HEA01\", \"HEA03\"), mappattern = c(\"HEA01\", \"HEA03\")), modalitymap = data.frame(variable = c(\"HEA01\", \"HEA01\"), label = c(\"Other, specify\", \"Don't know\"), standard = c(\"96\", \"98\"), map = c(\"96\", \"98\"))) )"},{"path":"/reference/inter_healthcare.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"inter_healthcare — inter_healthcare","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data() mapper list providing mapping variables used calculation - mapper potentially adjusted relation deviation standard XlsForm contextualized dataset","code":""},{"path":"/reference/inter_healthcare.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"inter_healthcare — inter_healthcare","text":"new calculated variable - appended ...","code":""},{"path":"/reference/inter_healthcare.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"inter_healthcare — inter_healthcare","text":"","code":"datalist <- kobocruncher::kobo_data( system.file(\"test.xlsx\", package = \"IndicatorCalc\")) #> Warning: Expecting logical in G1286 / R1286C7: got 'no' mapper <- list( hierarchy = \"main\", variablemap = data.frame( label = c( \"In general, when anyone in your household is sick, where do they go to seek care?\", \"How long it takes to go there when you use the mode of transport mentioned above?\"), variable = c(\"HEA01\", \"HEA03\"), mappattern = c(\"HEA01\", \"HEA03\") ), modalitymap = data.frame( variable = c( \"HEA01\", \"HEA01\" ), label = c( \"Other, specify\", \"Don't know\"), standard = c(\"96\", \"98\" ), map = c(\"96\", \"98\" ))) datalist <- inter_healthcare(datalist, mapper ) #> ℹ HEA01 standard variable was not found in the dataset. #> ℹ HEA03 standard variable was not found in the dataset. #> ℹ HEA01 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for HEA01 are now: 1, 2, 3, 4, 5, 96, 98 #> Mapped levels for HEA03 are now: 0, 1, 10, 100, 12, 120, 13, 15, 18, 2, 20, 22, 25, 3, 30, 300, 35, 4, 40, 45, 5, 50, 55, 6, 60, 7, 70, 75, 8, 90, 900 table(datalist[[\"main\"]]$healthcare) #> #> 0 1 #> 93 1197 fct_plot_indic_donut(indicator = datalist[[\"main\"]]$healthcare, iconunicode = \"f479\")"},{"path":"/reference/inter_shelter.html","id":null,"dir":"Reference","previous_headings":"","what":"inter_shelter — inter_shelter","title":"inter_shelter — inter_shelter","text":"right access adequate housing protected international law. concept \"adequacy\" means housing four walls roof indicated Sphere Handbook. Habitable housing primarily refers fact housing provide protection cold, damp, heat, rain, wind, threats health, structural hazards, disease vectors overcrowded. shelter/housing primarily contextual element, may discrepancies country country data measured. Adequate shelter measured based improved material dwelling indicated DHS publication housing conditions also used MICS6. Overcrowding also used occurs three people per habitable room defined UN-Habitat. Formula:","code":"**Numerator**: Population that have access to adequate housing **Denominator**: Total population"},{"path":"/reference/inter_shelter.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"inter_shelter — inter_shelter","text":"","code":"inter_shelter( datalist, mapper = list(hierarchy = \"main\", variablemap = data.frame(label = c(\"What type of dwelling does the household live in?\", \"Main material of the dwelling floor\", \"Main material of the roof\", \"Main material of the exterior walls\", \"How many separate rooms do the members of your household occupy?\", \"What is the total number of persons in this household?\"), variable = c(\"DWE01\", \"DWE02\", \"DWE03\", \"DWE04\", \"DWE05\", \"HH01\"), mappattern = c(\"DWE01\", \"DWE02\", \"DWE03\", \"DWE04\", \"DWE05\", \"HH01\")), modalitymap = data.frame(variable = c(\"DWE01\", \"DWE01\", \"DWE02\", \"DWE02\", \"DWE02\", \"DWE03\", \"DWE03\", \"DWE03\", \"DWE03\", \"DWE03\", \"DWE03\", \"DWE04\", \"DWE04\", \"DWE04\", \"DWE04\", \"DWE04\", \"DWE04\"), label = c(\"Apartment\", \"House\", \"Earth/sand\", \"Dung\", \"Other (Specify)\", \"Metal/tin\", \"Wood\", \"Calamine/Cement fibre\", \"Ceramic tiles\", \"Cement\", \"Roofing shingles\", \"Cement\", \"Stone with lime/ cement\", \"Bricks\", \"Cement blocks\", \"Covered adobe\", \"Wood planks/shingles\"), standard = c(\"1\", \"2\", \"1\", \"2\", \"96\", \"8\", \"9\", \"10\", \"11\", \"12\", \"13\", \"10\", \"11\", \"12\", \"13\", \"14\", \"15\"), map = c(\"1\", \"2\", \"1\", \"2\", \"96\", \"8\", \"9\", \"10\", \"11\", \"12\", \"13\", \"10\", \"11\", \"12\", \"13\", \"14\", \"15\"))) )"},{"path":"/reference/inter_shelter.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"inter_shelter — inter_shelter","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data() mapper list providing mapping variables used calculation - mapper potentially adjusted relation deviation standard XlsForm contextualized dataset","code":""},{"path":"/reference/inter_shelter.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"inter_shelter — inter_shelter","text":"new calculated variable - appended ...","code":""},{"path":"/reference/inter_shelter.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"inter_shelter — inter_shelter","text":"Adequate shelter calculated main dataset classify habitable improved/adequate shelter","code":"*DWE01* = 1,2 & *DWE02* = 3,4,5,6,7,8,9 & *DWE03* = 8,9,10,11,12,13 & *DWE04* = 10,11,12,13,14,15 & crowding (*HH01*/*DWE05*) \\<= 3"},{"path":"/reference/inter_shelter.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"inter_shelter — inter_shelter","text":"","code":"datalist <- kobocruncher::kobo_data( system.file(\"test.xlsx\", package = \"IndicatorCalc\")) #> Warning: Expecting logical in G1286 / R1286C7: got 'no' mapper <- list( hierarchy = \"main\", variablemap = data.frame( label = c( \"What type of dwelling does the household live in?\", \"Main material of the dwelling floor\", \"Main material of the roof\", \"Main material of the exterior walls\", \"How many separate rooms do the members of your household occupy?\", \"What is the total number of persons in this household?\"), variable = c(\"DWE01\",\"DWE02\",\"DWE03\",\"DWE04\",\"DWE05\", \"HH01\"), mappattern = c(\"DWE01\",\"DWE02\",\"DWE03\",\"DWE04\",\"DWE05\", \"progres_groupsize\") ), modalitymap = data.frame( variable = c( \"DWE01\",\"DWE01\", \"DWE02\",\"DWE02\",\"DWE02\", \"DWE03\",\"DWE03\",\"DWE03\",\"DWE03\",\"DWE03\",\"DWE03\", \"DWE04\",\"DWE04\",\"DWE04\",\"DWE04\",\"DWE04\",\"DWE04\"), label = c( \"Apartment\", \"House\", # DWE01 \"Earth/sand\", \"Dung\", \"Other (Specify)\", #DWE02 \"Metal/tin\", \"Wood\", \"Calamine/Cement fibre\", \"Ceramic tiles\", \"Cement\", \"Roofing shingles\",#DWE03 \"Cement\", \"Stone with lime/ cement\", \"Bricks\", \"Cement blocks\", \"Covered adobe\", \"Wood planks/shingles\" # DWE04 ), standard = c( \"1\",\"2\", \"1\", \"2\",\"96\", \"8\",\"9\",\"10\",\"11\",\"12\",\"13\", \"10\",\"11\",\"12\",\"13\",\"14\",\"15\"), map = c(\"1\",\"2\", \"1\", \"2\",\"96\", \"8\",\"9\",\"10\",\"11\",\"12\",\"13\", \"10\",\"11\",\"12\",\"13\",\"14\",\"15\"))) ## Calculate datalist <- inter_shelter(datalist, mapper) #> ℹ DWE01 standard variable was not found in the dataset. #> ℹ DWE02 standard variable was not found in the dataset. #> ℹ DWE03 standard variable was not found in the dataset. #> ℹ DWE04 standard variable was not found in the dataset. #> ℹ DWE05 standard variable was not found in the dataset. #> ℹ HH01 standard variable was not found in the dataset. #> ℹ DWE01 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE01 are now: 1, 2, 3, 5, 6, 7, 8, 9, 96 #> ℹ DWE02 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE02 are now: 1, 2, 3, 5, 6, 7, 8, 96 #> ℹ DWE03 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE03 are now: 1, 10, 11, 12, 13, 2, 4, 6, 7, 8, 9, 96 #> ℹ DWE04 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE04 are now: 1, 10, 11, 12, 13, 14, 15, 2, 3, 4, 5, 6, 7, 8, 9, 96 #> Mapped levels for DWE05 are now: 1, 2, 3, 4, 5, 6 #> Mapped levels for HH01 are now: 1, 10, 11, 12, 2, 3, 4, 5, 6, 7, 8, 9 # Tabulate table(datalist[[\"main\"]]$dwe01_cat) #> #> 0 1 #> 639 651 table(datalist[[\"main\"]]$dwe02_cat) #> #> 0 1 #> 55 1235 table(datalist[[\"main\"]]$dwe03_cat) #> #> 0 1 #> 154 1136 table(datalist[[\"main\"]]$dwe04_cat) #> #> 0 1 #> 189 1101 table(datalist[[\"main\"]]$dwe05_cat) #> #> 0 1 #> 409 881 table(datalist[[\"main\"]]$shelter) #> #> 0 1 #> 860 430 #plot fct_plot_indic_donut(datalist[[\"main\"]]$shelter, iconunicode = \"e54f\")"},{"path":"/reference/run_app.html","id":null,"dir":"Reference","previous_headings":"","what":"Run the Shiny Application — run_app","title":"Run the Shiny Application — run_app","text":"Run Shiny Application","code":""},{"path":"/reference/run_app.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Run the Shiny Application — run_app","text":"","code":"run_app( onStart = NULL, options = list(), enableBookmarking = NULL, uiPattern = \"/\", ... )"},{"path":"/reference/run_app.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Run the Shiny Application — run_app","text":"onStart function called app actually run. needed shinyAppObj, since shinyAppDir case, global.R file can used purpose. options Named options passed runApp call (can following: \"port\", \"launch.browser\", \"host\", \"quiet\", \"display.mode\" \"test.mode\"). can also specify width height parameters provide hint embedding environment ideal height/width app. enableBookmarking Can one \"url\", \"server\", \"disable\". default value, NULL, respect setting previous calls enableBookmarking(). See enableBookmarking() information bookmarking app. uiPattern regular expression applied GET request determine whether ui used handle request. Note entire request path must match regular expression order match considered successful. ... arguments pass golem_opts. See ?golem::get_golem_options details.","code":""},{"path":"/news/index.html","id":"indicatorcalc-0009000","dir":"Changelog","previous_headings":"","what":"IndicatorCalc 0.0.0.9000","title":"IndicatorCalc 0.0.0.9000","text":"Added NEWS.md file track changes package.","code":""}]
+[{"path":[]},{"path":"/CODE_OF_CONDUCT.html","id":"our-pledge","dir":"","previous_headings":"","what":"Our Pledge","title":"Contributor Covenant Code of Conduct","text":"members, contributors, leaders pledge make participation community harassment-free experience everyone, regardless age, body size, visible invisible disability, ethnicity, sex characteristics, gender identity expression, level experience, education, socio-economic status, nationality, personal appearance, race, caste, color, religion, sexual identity orientation. pledge act interact ways contribute open, welcoming, diverse, inclusive, healthy community.","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"our-standards","dir":"","previous_headings":"","what":"Our Standards","title":"Contributor Covenant Code of Conduct","text":"Examples behavior contributes positive environment community include: Demonstrating empathy kindness toward people respectful differing opinions, viewpoints, experiences Giving gracefully accepting constructive feedback Accepting responsibility apologizing affected mistakes, learning experience Focusing best just us individuals, overall community Examples unacceptable behavior include: use sexualized language imagery, sexual attention advances kind Trolling, insulting derogatory comments, personal political attacks Public private harassment Publishing others’ private information, physical email address, without explicit permission conduct reasonably considered inappropriate professional setting","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"enforcement-responsibilities","dir":"","previous_headings":"","what":"Enforcement Responsibilities","title":"Contributor Covenant Code of Conduct","text":"Community leaders responsible clarifying enforcing standards acceptable behavior take appropriate fair corrective action response behavior deem inappropriate, threatening, offensive, harmful. Community leaders right responsibility remove, edit, reject comments, commits, code, wiki edits, issues, contributions aligned Code Conduct, communicate reasons moderation decisions appropriate.","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"scope","dir":"","previous_headings":"","what":"Scope","title":"Contributor Covenant Code of Conduct","text":"Code Conduct applies within community spaces, also applies individual officially representing community public spaces. Examples representing community include using official e-mail address, posting via official social media account, acting appointed representative online offline event.","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"enforcement","dir":"","previous_headings":"","what":"Enforcement","title":"Contributor Covenant Code of Conduct","text":"Instances abusive, harassing, otherwise unacceptable behavior may reported community leaders responsible enforcement legoupil@unhcr.org. complaints reviewed investigated promptly fairly. community leaders obligated respect privacy security reporter incident.","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"enforcement-guidelines","dir":"","previous_headings":"","what":"Enforcement Guidelines","title":"Contributor Covenant Code of Conduct","text":"Community leaders follow Community Impact Guidelines determining consequences action deem violation Code Conduct:","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"id_1-correction","dir":"","previous_headings":"Enforcement Guidelines","what":"1. Correction","title":"Contributor Covenant Code of Conduct","text":"Community Impact: Use inappropriate language behavior deemed unprofessional unwelcome community. Consequence: private, written warning community leaders, providing clarity around nature violation explanation behavior inappropriate. public apology may requested.","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"id_2-warning","dir":"","previous_headings":"Enforcement Guidelines","what":"2. Warning","title":"Contributor Covenant Code of Conduct","text":"Community Impact: violation single incident series actions. Consequence: warning consequences continued behavior. interaction people involved, including unsolicited interaction enforcing Code Conduct, specified period time. includes avoiding interactions community spaces well external channels like social media. Violating terms may lead temporary permanent ban.","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"id_3-temporary-ban","dir":"","previous_headings":"Enforcement Guidelines","what":"3. Temporary Ban","title":"Contributor Covenant Code of Conduct","text":"Community Impact: serious violation community standards, including sustained inappropriate behavior. Consequence: temporary ban sort interaction public communication community specified period time. public private interaction people involved, including unsolicited interaction enforcing Code Conduct, allowed period. Violating terms may lead permanent ban.","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"id_4-permanent-ban","dir":"","previous_headings":"Enforcement Guidelines","what":"4. Permanent Ban","title":"Contributor Covenant Code of Conduct","text":"Community Impact: Demonstrating pattern violation community standards, including sustained inappropriate behavior, harassment individual, aggression toward disparagement classes individuals. Consequence: permanent ban sort public interaction within community.","code":""},{"path":"/CODE_OF_CONDUCT.html","id":"attribution","dir":"","previous_headings":"","what":"Attribution","title":"Contributor Covenant Code of Conduct","text":"Code Conduct adapted Contributor Covenant, version 2.1, available https://www.contributor-covenant.org/version/2/1/code_of_conduct.html. Community Impact Guidelines inspired [Mozilla’s code conduct enforcement ladder][https://github.com/mozilla/inclusion]. answers common questions code conduct, see FAQ https://www.contributor-covenant.org/faq. Translations available https://www.contributor-covenant.org/translations.","code":""},{"path":"/LICENSE.html","id":null,"dir":"","previous_headings":"","what":"MIT License","title":"MIT License","text":"Copyright (c) 2023 UNHCR Permission hereby granted, free charge, person obtaining copy software associated documentation files (“Software”), deal Software without restriction, including without limitation rights use, copy, modify, merge, publish, distribute, sublicense, /sell copies Software, permit persons Software furnished , subject following conditions: copyright notice permission notice shall included copies substantial portions Software. SOFTWARE PROVIDED “”, WITHOUT WARRANTY KIND, EXPRESS IMPLIED, INCLUDING LIMITED WARRANTIES MERCHANTABILITY, FITNESS PARTICULAR PURPOSE NONINFRINGEMENT. EVENT SHALL AUTHORS COPYRIGHT HOLDERS LIABLE CLAIM, DAMAGES LIABILITY, WHETHER ACTION CONTRACT, TORT OTHERWISE, ARISING , CONNECTION SOFTWARE USE DEALINGS SOFTWARE.","code":""},{"path":[]},{"path":"/articles/development.html","id":"impact_2_2","dir":"Articles","previous_headings":"Impact Indicators","what":"impact_2_2","title":"Development","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply calculation datalist <- impact_2_2(datalist) #> ✔ HEA01 #> ✔ HEA02 #> ℹ HEA03 misses responses options among : NA #> ✔ LIGHT01 #> ✔ LIGHT02 #> ✔ LIGHT03 #> ✔ DWA01 #> ✔ DWA02 #> ✔ DWA03a #> ℹ DWA03b misses responses options among : NA #> ✔ DWA04 #> ✔ DWE01 #> ✔ DWE02 #> ✔ DWE03 #> ✔ DWE04 #> ℹ DWE05 misses responses options among : NA #> ✔ DWE08 #> ✔ DWE09 #> ℹ HH01 misses responses options among : NA #> There are missing data requirement to calculate Indicator Impact 2.2 table(datalist[[\"main\"]]$impact2_2, useNA = \"ifany\") #> Warning: Unknown or uninitialised column: `impact2_2`. #> < table of extent 0 > fct_plot_indic_donut(indicator = datalist[[\"main\"]]$impact2_2, iconunicode = \"f140\") #> Warning: Unknown or uninitialised column: `impact2_2`. #> No value was supplied for plotting... ## Can get the details as well table(datalist[[\"main\"]]$electricity, useNA = \"ifany\") #> Warning: Unknown or uninitialised column: `electricity`. #> < table of extent 0 > fct_plot_indic_donut(indicator = datalist[[\"main\"]]$electricity, iconunicode = \"f0e7\") #> Warning: Unknown or uninitialised column: `electricity`. #> No value was supplied for plotting... table(datalist[[\"main\"]]$healthcare, useNA = \"ifany\") #> Warning: Unknown or uninitialised column: `healthcare`. #> < table of extent 0 > fct_plot_indic_donut(indicator = datalist[[\"main\"]]$healthcare, iconunicode = \"f479\") #> Warning: Unknown or uninitialised column: `healthcare`. #> No value was supplied for plotting... table(datalist[[\"main\"]]$drinkingwater, useNA = \"ifany\") #> Warning: Unknown or uninitialised column: `drinkingwater`. #> < table of extent 0 > fct_plot_indic_donut(indicator = datalist[[\"main\"]]$drinkingwater, iconunicode = \"e006\") #> Warning: Unknown or uninitialised column: `drinkingwater`. #> No value was supplied for plotting... ## Check intermediary variables table(datalist[[\"main\"]]$dwa_cond1, useNA = \"ifany\") #> Warning: Unknown or uninitialised column: `dwa_cond1`. #> < table of extent 0 > table(datalist[[\"main\"]]$reachableU30, useNA = \"ifany\") #> Warning: Unknown or uninitialised column: `reachableU30`. #> < table of extent 0 > table(datalist[[\"main\"]]$DWA02, useNA = \"ifany\") #> #> 1 2 3 #> 128 136 120 table(datalist[[\"main\"]]$dwa_cond2, useNA = \"ifany\") #> Warning: Unknown or uninitialised column: `dwa_cond2`. #> < table of extent 0 > # Tabulate table(datalist[[\"main\"]]$dwe01_cat, useNA = \"ifany\") #> Warning: Unknown or uninitialised column: `dwe01_cat`. #> < table of extent 0 > table(datalist[[\"main\"]]$dwe02_cat, useNA = \"ifany\") #> Warning: Unknown or uninitialised column: `dwe02_cat`. #> < table of extent 0 > table(datalist[[\"main\"]]$dwe03_cat, useNA = \"ifany\") #> Warning: Unknown or uninitialised column: `dwe03_cat`. #> < table of extent 0 > table(datalist[[\"main\"]]$dwe04_cat, useNA = \"ifany\") #> Warning: Unknown or uninitialised column: `dwe04_cat`. #> < table of extent 0 > table(datalist[[\"main\"]]$dwe05_cat, useNA = \"ifany\") #> Warning: Unknown or uninitialised column: `dwe05_cat`. #> < table of extent 0 > table(datalist[[\"main\"]]$shelter, useNA = \"ifany\") #> Warning: Unknown or uninitialised column: `shelter`. #> < table of extent 0 > #plot fct_plot_indic_donut(datalist[[\"main\"]]$shelter, iconunicode = \"e54f\") #> Warning: Unknown or uninitialised column: `shelter`. #> No value was supplied for plotting..."},{"path":"/articles/development.html","id":"impact2_3","dir":"Articles","previous_headings":"Impact Indicators","what":"impact2_3","title":"Development","text":"","code":"## data, cf example fct_re_map() # datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", # package = \"IndicatorCalc\")) # ## Apply calculation # datalist <- impact2_3(datalist ) # # ## Visualise value # fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$impact2_3, # iconunicode = \"f140\")"},{"path":"/articles/development.html","id":"impact3_2a","dir":"Articles","previous_headings":"Impact Indicators","what":"impact3_2a","title":"Development","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply calculation datalist <- impact3_2a(datalist ) #> ✔ EDU01 #> ✔ EDU02 #> ✔ EDU03 #> ✔ EDU04 #> ℹ HH07 misses responses options among : NA #> There are missing data requirement to calculate Indicator Impact 3.2.a ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$impact3_2a, iconunicode = \"f140\") #> Warning: Unknown or uninitialised column: `impact3_2a`. #> No value was supplied for plotting..."},{"path":"/articles/development.html","id":"impact3_2b","dir":"Articles","previous_headings":"Impact Indicators","what":"impact3_2b","title":"Development","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply calculation datalist <- impact3_2b(datalist ) #> ✔ EDU01 #> ✔ EDU02 #> ✔ EDU03 #> ✔ EDU04 #> ℹ HH07 misses responses options among : NA #> There are missing data requirement to calculate Indicator Impact 3.2.b ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$impact3_2b, iconunicode = \"f140\") #> Warning: Unknown or uninitialised column: `impact3_2b`. #> No value was supplied for plotting..."},{"path":"/articles/development.html","id":"impact3_3","dir":"Articles","previous_headings":"Impact Indicators","what":"impact3_3","title":"Development","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply calculation datalist <- impact3_3(datalist) #> ✔ SAF01 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$impact3_3, iconunicode = \"f140\") #> Warning: Unknown or uninitialised column: `impact3_3`. #> No value was supplied for plotting..."},{"path":[]},{"path":"/articles/development.html","id":"outcome1_2","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome1_2","title":"Development","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome1_2(datalist) #> ✔ REG03 #> ✔ REG04 #> ℹ HH07 misses responses options among : NA #> There are missing data requirement to calculate Indicator Outcome 1.2 table(datalist[[\"ind\"]]$outcome1_2, useNA = \"ifany\") #> Warning: Unknown or uninitialised column: `outcome1_2`. #> < table of extent 0 > ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$outcome1_2, iconunicode = \"f140\") #> Warning: Unknown or uninitialised column: `outcome1_2`. #> No value was supplied for plotting... fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$birthCertificate, iconunicode = \"f140\") #> Warning: Unknown or uninitialised column: `birthCertificate`. #> No value was supplied for plotting... fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$birthRegistered, iconunicode = \"f140\") #> Warning: Unknown or uninitialised column: `birthRegistered`. #> No value was supplied for plotting..."},{"path":"/articles/development.html","id":"outcome1_3","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome1_3","title":"Development","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome1_3(datalist) #> ✔ REG01a #> ✔ REG01b #> ✔ REG01c #> ✔ REG01d #> ✔ REG01e #> ✔ REG01f #> ✔ REG01g #> ✔ REG02 #> ✔ REG03 #> ✔ REG05a #> ✔ REG05b #> ✔ REG05c #> ✔ REG05d #> ✔ REG05e #> ✔ REG05f #> ✔ REG06 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$outcome1_3, iconunicode = \"f140\") fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$document_above5, iconunicode = \"f140\") fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$document_under5, iconunicode = \"f140\")"},{"path":"/articles/development.html","id":"outcome4_1","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome4_1","title":"Development","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome4_1(datalist ) #> ✔ GBV01a #> ✔ GBV01b #> ✔ GBV01c #> ✔ GBV01d ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome1_4, iconunicode = \"f140\") #> Warning: Unknown or uninitialised column: `outcome1_4`. #> No value was supplied for plotting..."},{"path":"/articles/development.html","id":"outcome4_2","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome4_2","title":"Development","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome4_2(datalist) #> ✔ VAW01a #> ✔ VAW01b #> ✔ VAW01c #> ✔ VAW01d #> ✔ VAW01e ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome4_2, iconunicode = \"f140\")"},{"path":"/articles/development.html","id":"outcome5_2","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome5_2","title":"Development","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome5_2(datalist ) #> ✔ COMM01 #> ℹ COMM02 misses responses options among : NA #> ✔ COMM03 #> ✔ COMM04 #> There are missing data requirement to calculate Indicator Outcome 5.2 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$outcome5_2, iconunicode = \"f140\") #> Warning: Unknown or uninitialised column: `outcome5_2`. #> No value was supplied for plotting..."},{"path":"/articles/development.html","id":"outcome8_2","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome8_2","title":"Development","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome8_2(datalist ) #> ✔ COOK01 #> ✖ COOK02 not found in the dataset. #> ✖ COOK03 not found in the dataset. #> There are missing data requirement to calculate Indicator Outcome 8.2 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome8_2, iconunicode = \"f140\") #> Warning: Unknown or uninitialised column: `outcome8_2`. #> No value was supplied for plotting..."},{"path":"/articles/development.html","id":"outcome9_1","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome9_1","title":"Development","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome9_1(datalist) #> ✔ DWE01 #> ✔ DWE02 #> ✔ DWE03 #> ✔ DWE04 #> ℹ DWE05 misses responses options among : NA #> ✔ DWE08 #> ✔ DWE09 #> ℹ HH01 misses responses options among : NA #> There are missing data requirement to calculate Indicator Outcome 9.1 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome9_1, iconunicode = \"f140\") #> Warning: Unknown or uninitialised column: `outcome9_1`. #> No value was supplied for plotting..."},{"path":"/articles/development.html","id":"outcome9_2","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome9_2","title":"Development","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome9_2(datalist ) #> ✔ LIGHT01 #> ✔ LIGHT02 #> ✔ LIGHT03 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome9_2, iconunicode = \"f140\")"},{"path":"/articles/development.html","id":"outcome10_1","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome10_1","title":"Development","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome10_1(datalist) #> ✔ MMR03 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$outcome10_1, iconunicode = \"f140\")"},{"path":"/articles/development.html","id":"outcome10_2","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome10_2","title":"Development","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome10_2(datalist ) #> ✔ BIR01 #> ✔ BIR02 #> ✔ BIR03 #> ✔ BIR04 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome10_2, iconunicode = \"f140\")"},{"path":"/articles/development.html","id":"outcome12_1","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome12_1","title":"Development","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome12_1(datalist ) #> ✔ DWA01 #> ✔ DWA02 #> ✔ DWA03a #> ℹ DWA03b misses responses options among : NA #> ✔ DWA04 #> There are missing data requirement to calculate Indicator Outcome 12.1 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome12_1, iconunicode = \"f140\") #> Warning: Unknown or uninitialised column: `outcome12_1`. #> No value was supplied for plotting..."},{"path":"/articles/development.html","id":"outcome12_2","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome12_2","title":"Development","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome12_2(datalist) #> ✔ TOI01 #> ✔ TOI02 #> ✖ TOI03 not found in the dataset. #> ✖ TOI04 not found in the dataset. #> ✖ TOI05 not found in the dataset. #> There are missing data requirement to calculate Indicator Outcome 12.2 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome12_2, iconunicode = \"f140\") #> Warning: Unknown or uninitialised column: `outcome12_2`. #> No value was supplied for plotting..."},{"path":"/articles/development.html","id":"outcome13_1---financial-inclusion","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome13_1 - Financial Inclusion","title":"Development","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome13_1(datalist ) #> ✔ BANK01 #> ✔ BANK02 #> ✔ BANK03 #> ✔ BANK04 #> ✔ BANK05 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome13_1, iconunicode = \"f140\")"},{"path":"/articles/development.html","id":"outcome13_2","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome13_2","title":"Development","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome13_2(datalist) #> ✔ INC01 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome13_2, iconunicode = \"f140\")"},{"path":"/articles/development.html","id":"outcome13_3","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome13_3","title":"Development","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome13_3(datalist ) #> ✔ UNEM01 #> ✔ UNEM02 #> ✔ UNEM03 #> ✔ UNEM04 #> ✔ UNEM05 #> ✔ UNEM06 #> ✔ UNEM07 #> ✔ UNEM08 #> ✔ UNEM09 #> ✔ UNEM10 table( datalist[[\"main\"]]$outcome13_3, useNA = \"ifany\") #> #> 0 1 #> 334 12 38 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome13_3, iconunicode = \"f140\")"},{"path":"/articles/development.html","id":"outcome14_1","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome14_1","title":"Development","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome14_1(datalist ) #> ✔ REG01a #> ✔ REG01b #> ✔ REG01c #> ✔ REG01d #> ✔ REG01e #> ✔ REG01f #> ✔ REG01g #> ✔ REG02 #> ✔ REG03 #> ✔ REG04 #> ✔ REG05a #> ✔ REG05b #> ✔ REG05c #> ✔ REG05d #> ✔ REG05e #> ✔ REG05f #> ✔ REG06 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$outcome14_1, iconunicode = \"f140\")"},{"path":"/articles/development.html","id":"outcome16_1","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome16_1","title":"Development","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome16_1(datalist ) #> ✔ DWE06 #> ✔ DWE07 #> ✔ DWE10 #> ✔ DWE11 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome16_1, iconunicode = \"f140\")"},{"path":"/articles/development.html","id":"outcome16_2","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome16_2","title":"Development","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome16_2(datalist) #> ✔ SPF01a #> ✔ SPF01b #> ✔ SPF01c #> ✔ SPF01d #> ✔ SPF01e #> ✔ SPF01f #> ✔ SPF01g #> ✔ SPF01h table( datalist[[\"main\"]]$outcome16_2, useNA = \"ifany\") #> #> 0 1 #> 17 367 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome16_2, iconunicode = \"f140\")"},{"path":[]},{"path":"/articles/indicators-calculation-functions.html","id":"impact_2_2","dir":"Articles","previous_headings":"Impact Indicators","what":"impact_2_2","title":"Indicators calculation functions","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) ## Apply calculation datalist <- impact_2_2(datalist) #> ✔ HEA01 #> ✔ HEA02 #> ✔ HEA03 #> ✔ LIGHT01 #> ✔ LIGHT02 #> ✔ LIGHT03 #> ✔ DWA01 #> ✔ DWA02 #> ✔ DWA03a #> ✔ DWA03b #> ✔ DWA04 #> ✔ DWE01 #> ✔ DWE02 #> ✔ DWE03 #> ✔ DWE04 #> ✔ DWE05 #> ✔ DWE08 #> ✔ DWE09 #> ✔ HH01 table(datalist[[\"main\"]]$impact2_2, useNA = \"ifany\") #> #> 0 #> 384 fct_plot_indic_donut(indicator = datalist[[\"main\"]]$impact2_2, iconunicode = \"f140\") ## Can get the details as well table(datalist[[\"main\"]]$electricity, useNA = \"ifany\") #> #> 0 1 #> 198 186 fct_plot_indic_donut(indicator = datalist[[\"main\"]]$electricity, iconunicode = \"f0e7\") table(datalist[[\"main\"]]$healthcare, useNA = \"ifany\") #> #> 0 1 #> 179 205 fct_plot_indic_donut(indicator = datalist[[\"main\"]]$healthcare, iconunicode = \"f479\") table(datalist[[\"main\"]]$drinkingwater, useNA = \"ifany\") #> #> 0 1 #> 113 271 fct_plot_indic_donut(indicator = datalist[[\"main\"]]$drinkingwater, iconunicode = \"e006\") ## Check intermediary variables table(datalist[[\"main\"]]$dwa_cond1, useNA = \"ifany\") #> #> 1 #> 384 table(datalist[[\"main\"]]$reachableU30, useNA = \"ifany\") #> #> 0 1 #> 356 28 table(datalist[[\"main\"]]$DWA02, useNA = \"ifany\") #> #> 1 2 3 #> 128 136 120 table(datalist[[\"main\"]]$dwa_cond2, useNA = \"ifany\") #> #> 0 1 #> 113 271 # Tabulate table(datalist[[\"main\"]]$dwe01_cat, useNA = \"ifany\") #> #> 0 1 #> 317 67 table(datalist[[\"main\"]]$dwe02_cat, useNA = \"ifany\") #> #> 0 1 #> 120 264 table(datalist[[\"main\"]]$dwe03_cat, useNA = \"ifany\") #> #> 0 1 #> 227 157 table(datalist[[\"main\"]]$dwe04_cat, useNA = \"ifany\") #> #> 0 1 #> 234 150 table(datalist[[\"main\"]]$dwe05_cat, useNA = \"ifany\") #> #> 0 1 #> 18 366 table(datalist[[\"main\"]]$shelter, useNA = \"ifany\") #> #> 0 1 #> 375 9 #plot fct_plot_indic_donut(datalist[[\"main\"]]$shelter, iconunicode = \"e54f\")"},{"path":"/articles/indicators-calculation-functions.html","id":"impact2_3","dir":"Articles","previous_headings":"Impact Indicators","what":"impact2_3","title":"Indicators calculation functions","text":"","code":"## data, cf example fct_re_map() # datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", # package = \"IndicatorCalc\")) # ## Apply calculation # datalist <- impact2_3(datalist ) # # ## Visualise value # fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$impact2_3, # iconunicode = \"f140\")"},{"path":"/articles/indicators-calculation-functions.html","id":"impact3_2a","dir":"Articles","previous_headings":"Impact Indicators","what":"impact3_2a","title":"Indicators calculation functions","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) ## Apply calculation datalist <- impact3_2a(datalist ) #> ✔ EDU01 #> ✔ EDU02 #> ✔ EDU03 #> ✔ EDU04 #> ✔ HH07 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$impact3_2a, iconunicode = \"f140\")"},{"path":"/articles/indicators-calculation-functions.html","id":"impact3_2b","dir":"Articles","previous_headings":"Impact Indicators","what":"impact3_2b","title":"Indicators calculation functions","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) ## Apply calculation datalist <- impact3_2b(datalist ) #> ✔ EDU01 #> ✔ EDU02 #> ✔ EDU03 #> ✔ EDU04 #> ✔ HH07 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$impact3_2b, iconunicode = \"f140\")"},{"path":"/articles/indicators-calculation-functions.html","id":"impact3_3","dir":"Articles","previous_headings":"Impact Indicators","what":"impact3_3","title":"Indicators calculation functions","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) ## Apply calculation datalist <- impact3_3(datalist) #> ✔ SAF01 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$impact3_3, iconunicode = \"f140\")"},{"path":[]},{"path":"/articles/indicators-calculation-functions.html","id":"outcome1_2","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome1_2","title":"Indicators calculation functions","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) ## Apply indicator function on datalist datalist <- outcome1_2(datalist) #> ✔ REG03 #> ✔ REG04 #> ✔ HH07 table(datalist[[\"ind\"]]$outcome1_2, useNA = \"ifany\") #> #> #> 384 table(datalist[[\"ind\"]]$less_than_5, useNA = \"ifany\") #> #> 0 #> 384 table(datalist[[\"ind\"]]$HH07, useNA = \"ifany\") #> #> 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 #> 6 3 5 3 7 2 6 6 7 7 3 6 2 9 4 5 9 8 2 4 4 5 4 3 6 2 #> 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 #> 3 2 1 4 4 5 5 4 8 6 9 3 11 8 6 6 6 4 4 3 5 6 2 6 6 8 #> 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 #> 3 8 5 4 5 7 1 3 3 3 5 7 5 7 2 5 6 6 4 2 3 7 2 7 5 6 barplot(as.integer(datalist[[\"ind\"]]$HH07)) table(datalist[[\"ind\"]]$birthCertificate, useNA = \"ifany\") #> #> 0 1 #> 251 133 table(datalist[[\"ind\"]]$birthRegistered, useNA = \"ifany\") #> #> 0 1 #> 190 88 106 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$outcome1_2, iconunicode = \"f140\") fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$birthCertificate, iconunicode = \"f140\") fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$birthRegistered, iconunicode = \"f140\")"},{"path":"/articles/indicators-calculation-functions.html","id":"outcome1_3","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome1_3","title":"Indicators calculation functions","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) ## Apply indicator function on datalist datalist <- outcome1_3(datalist) #> ✔ REG01a #> ✔ REG01b #> ✔ REG01c #> ✔ REG01d #> ✔ REG01e #> ✔ REG01f #> ✔ REG01g #> ✔ REG02 #> ✔ REG03 #> ✔ REG05a #> ✔ REG05b #> ✔ REG05c #> ✔ REG05d #> ✔ REG05e #> ✔ REG05f #> ✔ REG06 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$outcome1_3, iconunicode = \"f140\") fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$document_above5, iconunicode = \"f140\") fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$document_under5, iconunicode = \"f140\")"},{"path":"/articles/indicators-calculation-functions.html","id":"outcome4_1","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome4_1","title":"Indicators calculation functions","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) ## Apply indicator function on datalist datalist <- outcome4_1(datalist ) #> ✔ GBV01a #> ✔ GBV01b #> ✔ GBV01c #> ✔ GBV01d ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome1_4, iconunicode = \"f140\") #> No value was supplied for plotting..."},{"path":"/articles/indicators-calculation-functions.html","id":"outcome4_2","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome4_2","title":"Indicators calculation functions","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) ## Apply indicator function on datalist datalist <- outcome4_2(datalist) #> ✔ VAW01a #> ✔ VAW01b #> ✔ VAW01c #> ✔ VAW01d #> ✔ VAW01e ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome4_2, iconunicode = \"f140\")"},{"path":"/articles/indicators-calculation-functions.html","id":"outcome5_2","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome5_2","title":"Indicators calculation functions","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) ## Apply indicator function on datalist datalist <- outcome5_2(datalist ) #> ✔ COMM01 #> ✔ COMM02 #> ✔ COMM03 #> ✔ COMM04 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$outcome5_2, iconunicode = \"f140\")"},{"path":"/articles/indicators-calculation-functions.html","id":"outcome8_2","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome8_2","title":"Indicators calculation functions","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) ## Apply indicator function on datalist datalist <- outcome8_2(datalist ) #> ✔ COOK01 #> ✖ COOK02 not found in the dataset. #> ✖ COOK03 not found in the dataset. #> There are missing data requirement to calculate Indicator Outcome 8.2 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome8_2, iconunicode = \"f140\") #> No value was supplied for plotting..."},{"path":"/articles/indicators-calculation-functions.html","id":"outcome9_1","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome9_1","title":"Indicators calculation functions","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) ## Apply indicator function on datalist datalist <- outcome9_1(datalist) #> ✔ DWE01 #> ✔ DWE02 #> ✔ DWE03 #> ✔ DWE04 #> ✔ DWE05 #> ✔ DWE08 #> ✔ DWE09 #> ✔ HH01 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome9_1, iconunicode = \"f140\")"},{"path":"/articles/indicators-calculation-functions.html","id":"outcome9_2","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome9_2","title":"Indicators calculation functions","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) ## Apply indicator function on datalist datalist <- outcome9_2(datalist ) #> ✔ LIGHT01 #> ✔ LIGHT02 #> ✔ LIGHT03 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome9_2, iconunicode = \"f140\")"},{"path":"/articles/indicators-calculation-functions.html","id":"outcome10_1","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome10_1","title":"Indicators calculation functions","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) ## Apply indicator function on datalist datalist <- outcome10_1(datalist) #> ✔ MMR03 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$outcome10_1, iconunicode = \"f140\")"},{"path":"/articles/indicators-calculation-functions.html","id":"outcome10_2","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome10_2","title":"Indicators calculation functions","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) ## Apply indicator function on datalist datalist <- outcome10_2(datalist ) #> ✔ BIR01 #> ✔ BIR02 #> ✔ BIR03 #> ✔ BIR04 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome10_2, iconunicode = \"f140\")"},{"path":"/articles/indicators-calculation-functions.html","id":"outcome12_1","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome12_1","title":"Indicators calculation functions","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) ## Apply indicator function on datalist datalist <- outcome12_1(datalist ) #> ✔ DWA01 #> ✔ DWA02 #> ✔ DWA03a #> ✔ DWA03b #> ✔ DWA04 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome12_1, iconunicode = \"f140\")"},{"path":"/articles/indicators-calculation-functions.html","id":"outcome12_2","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome12_2","title":"Indicators calculation functions","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) ## Apply indicator function on datalist datalist <- outcome12_2(datalist) #> ✔ TOI01 #> ✔ TOI02 #> ✖ TOI03 not found in the dataset. #> ✖ TOI04 not found in the dataset. #> ✖ TOI05 not found in the dataset. #> There are missing data requirement to calculate Indicator Outcome 12.2 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome12_2, iconunicode = \"f140\") #> No value was supplied for plotting..."},{"path":"/articles/indicators-calculation-functions.html","id":"outcome13_1","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome13_1","title":"Indicators calculation functions","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) ## Apply indicator function on datalist datalist <- outcome13_1(datalist ) #> ✔ BANK01 #> ✔ BANK02 #> ✔ BANK03 #> ✔ BANK04 #> ✔ BANK05 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome13_1, iconunicode = \"f140\")"},{"path":"/articles/indicators-calculation-functions.html","id":"outcome13_2","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome13_2","title":"Indicators calculation functions","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) ## Apply indicator function on datalist datalist <- outcome13_2(datalist) #> ✔ INC01 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome13_2, iconunicode = \"f140\")"},{"path":"/articles/indicators-calculation-functions.html","id":"outcome13_3","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome13_3","title":"Indicators calculation functions","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) ## Apply indicator function on datalist datalist <- outcome13_3(datalist ) #> ✔ UNEM01 #> ✔ UNEM02 #> ✔ UNEM03 #> ✔ UNEM04 #> ✔ UNEM05 #> ✔ UNEM06 #> ✔ UNEM07 #> ✔ UNEM08 #> ✔ UNEM09 #> ✔ UNEM10 table( datalist[[\"main\"]]$outcome13_3, useNA = \"ifany\") #> #> 0 1 #> 334 12 38 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome13_3, iconunicode = \"f140\")"},{"path":"/articles/indicators-calculation-functions.html","id":"outcome14_1","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome14_1","title":"Indicators calculation functions","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) ## Apply indicator function on datalist datalist <- outcome14_1(datalist ) #> ✔ REG01a #> ✔ REG01b #> ✔ REG01c #> ✔ REG01d #> ✔ REG01e #> ✔ REG01f #> ✔ REG01g #> ✔ REG02 #> ✔ REG03 #> ✔ REG04 #> ✔ REG05a #> ✔ REG05b #> ✔ REG05c #> ✔ REG05d #> ✔ REG05e #> ✔ REG05f #> ✔ REG06 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$outcome14_1, iconunicode = \"f140\")"},{"path":"/articles/indicators-calculation-functions.html","id":"outcome16_1","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome16_1","title":"Indicators calculation functions","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) ## Apply indicator function on datalist datalist <- outcome16_1(datalist ) #> ✔ DWE06 #> ✔ DWE07 #> ✔ DWE10 #> ✔ DWE11 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome16_1, iconunicode = \"f140\")"},{"path":"/articles/indicators-calculation-functions.html","id":"outcome16_2","dir":"Articles","previous_headings":"Outcome indicators","what":"outcome16_2","title":"Indicators calculation functions","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) ## Apply indicator function on datalist datalist <- outcome16_2(datalist) #> ✔ SPF01a #> ✔ SPF01b #> ✔ SPF01c #> ✔ SPF01d #> ✔ SPF01e #> ✔ SPF01f #> ✔ SPF01g #> ✔ SPF01h table( datalist[[\"main\"]]$outcome16_2, useNA = \"ifany\") #> #> 0 1 #> 17 367 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome16_2, iconunicode = \"f140\")"},{"path":"/articles/utilities.html","id":"generating-data-from-a-specific-form-definition","dir":"Articles","previous_headings":"","what":"Generating data from a specific form definition","title":"Utilities","text":"One key function generate dummy dataset based specific form structure demonstrate package use standard questionnaire apply indicator function demonstrate . can also re-use function create dummy data based form apply indicator function actually verify indicators can created based form content.","code":""},{"path":"/articles/utilities.html","id":"fct_var_dummy","dir":"Articles","previous_headings":"Generating data from a specific form definition","what":"fct_var_dummy","title":"Utilities","text":"","code":"## let's initiate a dataframe with an index of n r records n <- 384 frame <- dplyr::tibble( index = paste0( \"ID-\", purrr::as_vector( purrr::map(n, sample(LETTERS, 4)) |> purrr::map(paste0, collapse = \"\")), \"-\", formatC(1:n, width = nchar(n) + 1, flag = \"0\") )) ## test inject select_one frame <- fct_var_dummy( frame = frame, name = \"testselect_one\", type = \"select_one\", list_opt = c(\"alpha\", \"beta\", \"delta\"), constraint = NULL ) ## test inject select_multiple in main frame <- fct_var_dummy( frame = frame, name = \"testselect_multiple\", type = \"select_multiple\", list_opt = c(\"alpha\", \"beta\", \"delta\"), constraint = NULL ) ## test inject text frame <- fct_var_dummy( frame = frame, name = \"testtext\", type = \"text\", list_opt = NULL, constraint = NULL ) ## test inject numeric frame <- fct_var_dummy( frame = frame, name = \"testnumeric\", type = \"numeric\", list_opt = NULL, constraint = NULL ) ## test inject date frame <- fct_var_dummy( frame = frame, name = \"testdate\", type = \"date\", list_opt = NULL, constraint = NULL ) ## Preview out out knitr::kable(head(frame, 5))"},{"path":"/articles/utilities.html","id":"fct_kobo_dummy","dir":"Articles","previous_headings":"Generating data from a specific form definition","what":"fct_kobo_dummy","title":"Utilities","text":"","code":"## generate dummy dataset for different form version ## CAPI form <- system.file(\"RMS_CAPI_v2.xlsx\", package = \"IndicatorCalc\") datalist <- fct_kobo_dummy(form, n = 384, file = NULL) #> 1-start-start #> 2-end-end #> 3-calculate-start_t #> 4-calculate-end_t #> 5-calculate-time_ds #> 6-calculate-time_dm #> 7-start-geopoint-gps #> 8-date-group_intro.interviewdate #> 9-select_one-group_intro.Bureau #> 10-select_one-group_intro.Country #> 11-calculate-group_intro.countryname #> 12-geopoint-group_intro.geopoint #> 13-select_one-group_intro.pop_groups #> 14-text-group_intro2.Intro01 #> 15-text-group_intro2.Intro02 #> 16-select_one-group_intro2.Intro03 #> 17-acknowledge-group_intro2.consent_form #> 18-select_one-group_intro2.Intro04 #> 19-select_one-group_intro2.Intro05 #> 20-text-group_intro2.Intro05_other #> 21-integer-group_Part1.HH01 #> 22-calculate-group_Part1.Relation_Count #> 23-calculate-group_Part1.namechild2less #> 24-calculate-group_Part1.nochild2less #> 25-calculate-group_Part1.women_name_b_total #> 26-calculate-group_Part1.women_name_b #> 27-calculate-group_Part1.father_name_b #> 28-calculate-group_Part1.women_name #> 29-calculate-group_Part1.father_name #> 30-calculate-group_Part1.adult_name #> 31-calculate-group_Part1.woman1 #> 32-calculate-group_Part1.woman2 #> 33-calculate-group_Part1.woman3 #> 34-calculate-group_Part1.woman4 #> 35-calculate-group_Part1.woman5 #> 36-calculate-group_Part1.woman6 #> 37-calculate-group_Part1.fam_name1 #> 38-calculate-group_Part1.fam_name2 #> 39-calculate-group_Part1.fam_name3 #> 40-calculate-group_Part1.fam_name4 #> 41-calculate-group_Part1.fam_name5 #> 42-calculate-group_Part1.fam_name6 #> 43-calculate-group_Part1.fam_name7 #> 44-calculate-group_Part1.fam_name8 #> 45-calculate-group_Part1.fam_name9 #> 46-calculate-group_Part1.fam_name10 #> 47-calculate-group_Part1.fam_name11 #> 48-calculate-group_Part1.fam_name12 #> 49-calculate-group_Part1.fam_name13 #> 50-calculate-group_Part1.fam_name14 #> 51-calculate-group_Part1.fam_name15 #> 52-calculate-group_Part1.fam_name16 #> 53-calculate-group_Part1.fam_name17 #> 54-calculate-group_Part1.fam_name18 #> 55-calculate-group_Part1.fam_name19 #> 56-calculate-group_Part1.fam_name20 #> 57-calculate-group_Part1.age1 #> 58-calculate-group_Part1.age2 #> 59-calculate-group_Part1.age3 #> 60-calculate-group_Part1.age4 #> 61-calculate-group_Part1.age5 #> 62-calculate-group_Part1.age6 #> 63-calculate-group_Part1.age7 #> 64-calculate-group_Part1.age8 #> 65-calculate-group_Part1.age9 #> 66-calculate-group_Part1.age10 #> 67-calculate-group_Part1.age11 #> 68-calculate-group_Part1.age12 #> 69-calculate-group_Part1.age13 #> 70-calculate-group_Part1.age14 #> 71-calculate-group_Part1.age15 #> 72-calculate-group_Part1.age16 #> 73-calculate-group_Part1.age17 #> 74-calculate-group_Part1.age18 #> 75-calculate-group_Part1.age19 #> 76-calculate-group_Part1.age20 #> 77-calculate-group_Part1.sex1 #> 78-calculate-group_Part1.sex2 #> 79-calculate-group_Part1.sex3 #> 80-calculate-group_Part1.sex4 #> 81-calculate-group_Part1.sex5 #> 82-calculate-group_Part1.sex6 #> 83-calculate-group_Part1.sex7 #> 84-calculate-group_Part1.sex8 #> 85-calculate-group_Part1.sex9 #> 86-calculate-group_Part1.sex10 #> 87-calculate-group_Part1.sex11 #> 88-calculate-group_Part1.sex12 #> 89-calculate-group_Part1.sex13 #> 90-calculate-group_Part1.sex14 #> 91-calculate-group_Part1.sex15 #> 92-calculate-group_Part1.sex16 #> 93-calculate-group_Part1.sex17 #> 94-calculate-group_Part1.sex18 #> 95-calculate-group_Part1.sex19 #> 96-calculate-group_Part1.sex20 #> 97-select_one-group_Part2.P2.S1.S1_Dwelling.DWE01 #> 98-text-group_Part2.P2.S1.S1_Dwelling.DWE01_other #> 99-select_one-group_Part2.P2.S1.S1_Dwelling.DWE02 #> 100-text-group_Part2.P2.S1.S1_Dwelling.DWE02_other #> 101-select_one-group_Part2.P2.S1.S1_Dwelling.DWE03 #> 102-text-group_Part2.P2.S1.S1_Dwelling.DWE03_other #> 103-select_one-group_Part2.P2.S1.S1_Dwelling.DWE04 #> 104-text-group_Part2.P2.S1.S1_Dwelling.DWE04_other #> 105-integer-group_Part2.P2.S1.S1_Dwelling.DWE05 #> 106-select_one-group_Part2.P2.S1.S1_Dwelling.filter_camp #> 107-select_one-group_Part2.P2.S1.S1_Dwelling.DWE06 #> 108-text-group_Part2.P2.S1.S1_Dwelling.DWE06_other #> 109-select_one-group_Part2.P2.S1.S1_Dwelling.DWE07 #> 110-text-group_Part2.P2.S1.S1_Dwelling.DWE07_other #> 111-select_one-group_Part2.P2.S1.S1_Dwelling.DWE08 #> 112-select_one-group_Part2.P2.S1.S1_Dwelling.DWE09 #> 113-select_one-group_Part2.P2.S1.S1_Dwelling.DWE10 #> 114-text-group_Part2.P2.S1.S1_Dwelling.DWE10_other #> 115-select_one-group_Part2.P2.S1.S1_Dwelling.DWE11 #> 116-select_one-group_Part2.P2.S1.S1_Habitable_housing.COOK01 #> 117-select_one-group_Part2.P2.S1.S1_Habitable_housing.COOK02 #> 118-text-group_Part2.P2.S1.S1_Habitable_housing.COOK02_other #> 119-select_one-group_Part2.P2.S1.S1_Habitable_housing.COOK03 #> 120-text-group_Part2.P2.S1.S1_Habitable_housing.COOK03_other #> 121-select_one-group_Part2.P2.S1.S1_Habitable_housing.LIGHT01 #> 122-select_one-group_Part2.P2.S1.S1_Habitable_housing.LIGHT02 #> 123-text-group_Part2.P2.S1.S1_Habitable_housing.LIGHT02b #> 124-select_one-group_Part2.P2.S1.S1_Habitable_housing.LIGHT03 #> 125-text-group_Part2.P2.S1.S1_Habitable_housing.LIGHT03b #> 126-select_one-group_Part2.P2.S1.S1_Habitable_housing.DWA01 #> 127-text-group_Part2.P2.S1.S1_Habitable_housing.DWA01_other #> 128-calculate-group_Part2.P2.S1.S1_Habitable_housing.source #> 129-calculate-group_Part2.P2.S1.S1_Habitable_housing.source2 #> 130-select_one-group_Part2.P2.S1.S1_Habitable_housing.DWA02 #> 131-text-group_Part2.P2.S1.S1_Habitable_housing.DWA02_other #> 132-select_one-group_Part2.P2.S1.S1_Habitable_housing.time_toi.DWA03a #> 133-integer-group_Part2.P2.S1.S1_Habitable_housing.time_toi.DWA03b #> 134-select_one-group_Part2.P2.S1.S1_Habitable_housing.DWA04 #> 135-select_one-group_Part2.P2.S1.S1_Habitable_housing.TOI01 #> 136-text-group_Part2.P2.S1.S1_Habitable_housing.TOI01_other #> 137-select_one-group_Part2.P2.S1.S1_Habitable_housing.TOI02 #> 138-select_one-group_Part2.P2.S1.S1_Habitable_housing.TOI03 #> 139-text-group_Part2.P2.S1.S1_Habitable_housing.TOI03_other #> 140-select_one-group_Part2.P2.S1.S1_Habitable_housing.TOI04 #> 141-text-group_Part2.P2.S1.S1_Habitable_housing.TOI04_other #> 142-select_one-group_Part2.P2.S1.S1_Habitable_housing.TOI05 #> 143-calculate-group_Part2.P2.S2.latestson #> 144-select_one-group_Part2.P2.S2.BIR01 #> 145-select_one-group_Part2.P2.S2.BIR02 #> 146-select_multiple-group_Part2.P2.S2.BIR03 #> 147-text-group_Part2.P2.S2.BIR03_other #> 148-select_one-group_Part2.P2.S2.BIR04 #> 149-text-group_Part2.P2.S2.BIR04_other #> 150-select_one-group_Part2.P2.S2.HEA01 #> 151-text-group_Part2.P2.S2.HEA01_other #> 152-select_one-group_Part2.P2.S2.HEA02 #> 153-text-group_Part2.P2.S2.HEA02_other #> 154-integer-group_Part2.P2.S2.HEA03 #> 155-select_one-group_Part2.P2.S2.SPF.SPF01_op #> 156-select_one-group_Part2.P2.S2.SPF.SPF01a #> 157-select_one-group_Part2.P2.S2.SPF.SPF01b #> 158-select_one-group_Part2.P2.S2.SPF.SPF01c #> 159-select_one-group_Part2.P2.S2.SPF.SPF01d #> 160-select_one-group_Part2.P2.S2.SPF.SPF01e #> 161-select_one-group_Part2.P2.S2.SPF.SPF01f #> 162-select_one-group_Part2.P2.S2.SPF.SPF01g #> 163-select_one-group_Part2.P2.S2.SPF.SPF01h #> 164-calculate-group_Part3.listadult #> 165-calculate-group_Part3.n_selected_adult18 #> 166-calculate-group_Part3.selected_adult18 #> 167-calculate-group_Part3.name_selectedadult18_age #> 168-calculate-group_Part3.name_selectedadult18 #> 169-select_one-group_Part3.P3.S1.UNEM01 #> 170-select_one-group_Part3.P3.S1.UNEM02 #> 171-select_one-group_Part3.P3.S1.UNEM03 #> 172-select_one-group_Part3.P3.S1.UNEM04 #> 173-select_one-group_Part3.P3.S1.UNEM05 #> 174-select_one-group_Part3.P3.S1.UNEM06 #> 175-select_one-group_Part3.P3.S1.UNEM07 #> 176-select_one-group_Part3.P3.S1.UNEM08 #> 177-select_one-group_Part3.P3.S1.UNEM09 #> 178-select_one-group_Part3.P3.S1.UNEM10 #> 179-select_one-group_Part3.P3.S1.INC01 #> 180-select_one-group_Part3.P3.S1.BANK01 #> 181-select_one-group_Part3.P3.S1.BANK02 #> 182-select_one-group_Part3.P3.S1.BANK03 #> 183-select_one-group_Part3.P3.S1.BANK04 #> 184-select_one-group_Part3.P3.S1.BANK05 #> 185-select_one-group_Part3.P3.S2.SAF01 #> 186-select_one-group_Part3.P3.S2.GBV01.GBV01_001 #> 187-select_one-group_Part3.P3.S2.GBV01.GBV01a #> 188-select_one-group_Part3.P3.S2.GBV01.GBV01b #> 189-select_one-group_Part3.P3.S2.GBV01.GBV01c #> 190-select_one-group_Part3.P3.S2.GBV01.GBV01d #> 191-select_one-group_Part3.P3.S2.gbv_screen #> 192-select_one-group_Part3.P3.S2.VAW.VAW01 #> 193-select_one-group_Part3.P3.S2.VAW.VAW01a #> 194-select_one-group_Part3.P3.S2.VAW.VAW01b #> 195-select_one-group_Part3.P3.S2.VAW.VAW01c #> 196-select_one-group_Part3.P3.S2.VAW.VAW01d #> 197-select_one-group_Part3.P3.S2.VAW.VAW01e #> 198-select_one-end_survey.contact_number #> 199-text-end_survey.number_respondent #> 200-select_one-end_survey.end_result #> 201-select_one-end_survey.name_respondent #> 202-select_one-end_survey.final_notes #> 203-text-end_survey.final_notes_entry #> 1 in repeat -S1 ///calculate-group_Part1.S1.personId #> 2 in repeat -S1 ///text-group_Part1.S1.S1_Household.HH02 #> 3 in repeat -S1 ///select_one-group_Part1.S1.S1_Household.HH03 #> 4 in repeat -S1 ///select_one-group_Part1.S1.S1_Household.HH04 #> 5 in repeat -S1 ///select_one-group_Part1.S1.S1_Household.HH05 #> 6 in repeat -S1 ///date-group_Part1.S1.S1_Household.HH06 #> 7 in repeat -S1 ///calculate-group_Part1.S1.S1_Household.calcul1 #> 8 in repeat -S1 ///integer-group_Part1.S1.S1_Household.age #> 9 in repeat -S1 ///integer-group_Part1.S1.S1_Household.AgeMonths #> 10 in repeat -S1 ///calculate-group_Part1.S1.S1_Household.ageMD #> 11 in repeat -S1 ///integer-group_Part1.S1.S1_Household.HH07 #> 12 in repeat -S1 ///integer-group_Part1.S1.S1_Household.HH07_months #> 13 in repeat -S1 ///select_one-group_Part1.S1.S1_Household.HH08 #> 14 in repeat -S1 ///calculate-group_Part1.S1.Relation_R #> 15 in repeat -S1 ///calculate-group_Part1.S1.adult18 #> 16 in repeat -S1 ///calculate-group_Part1.S1.women_b #> 17 in repeat -S1 ///calculate-group_Part1.S1.father_b #> 18 in repeat -S1 ///calculate-group_Part1.S1.childLess2 #> 19 in repeat -S1 ///calculate-group_Part1.S1.childLess2name #> 20 in repeat -S1 ///calculate-group_Part1.S1.women #> 21 in repeat -S1 ///calculate-group_Part1.S1.father #> 22 in repeat -S1 ///calculate-group_Part1.S1.adult #> 23 in repeat -S1 ///calculate-group_Part1.S1.women_b_count #> 1 in repeat -S2 ///calculate-group_Part1.S2.name_individual #> 2 in repeat -S2 ///calculate-group_Part1.S2.ind_age_year #> 3 in repeat -S2 ///calculate-group_Part1.S2.ind_age_month #> 4 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF01 #> 5 in repeat -S2 ///calculate-group_Part1.S2.S2_start.citizenship #> 6 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF02 #> 7 in repeat -S2 ///calculate-group_Part1.S2.S2_start.citizenship2 #> 8 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF03 #> 9 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF04 #> 10 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF05 #> 11 in repeat -S2 ///calculate-group_Part1.S2.S2_start.countrybirth #> 12 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF07a #> 13 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF07b #> 14 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF07c #> 15 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF07d #> 16 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF08a #> 17 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF08b #> 18 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF08c #> 19 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF08d #> 20 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF09 #> 21 in repeat -S2 ///date-group_Part1.S2.S2_start.REF10a #> 22 in repeat -S2 ///text-group_Part1.S2.S2_start.REF10b #> 23 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF11 #> 24 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF12 #> 25 in repeat -S2 ///date-group_Part1.S2.S2_start.REF12a #> 26 in repeat -S2 ///text-group_Part1.S2.S2_start.REF12b #> 27 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF13 #> 28 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF14 #> 29 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF15 #> 30 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF16 #> 31 in repeat -S2 ///text-group_Part1.S2.S2_start.REF16_other #> 32 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF16a #> 33 in repeat -S2 ///text-group_Part1.S2.S2_start.REF16a_other #> 34 in repeat -S2 ///select_multiple-group_Part1.S2.S3.IDP01 #> 35 in repeat -S2 ///text-group_Part1.S2.S3.IDP01a #> 36 in repeat -S2 ///select_one-group_Part1.S2.S3.IDP02 #> 37 in repeat -S2 ///date-group_Part1.S2.S3.IDP02a #> 38 in repeat -S2 ///text-group_Part1.S2.S3.IDP02b #> 39 in repeat -S2 ///select_one_from_file-group_Part1.S2.S3.IDP03 #> 40 in repeat -S2 ///select_one_from_file-group_Part1.S2.S3.IDP04 #> 41 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_above5.REG01 #> 42 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_above5.REG01a #> 43 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_above5.REG01b #> 44 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_above5.REG01c #> 45 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_above5.REG01d #> 46 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_above5.REG01e #> 47 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_above5.REG01f #> 48 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_above5.REG01g #> 49 in repeat -S2 ///select_one-group_Part1.S2.S4.REG02 #> 50 in repeat -S2 ///select_one-group_Part1.S2.S4.REG03 #> 51 in repeat -S2 ///select_one-group_Part1.S2.S4.REG04 #> 52 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_below5.REG05 #> 53 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_below5.REG05a #> 54 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_below5.REG05b #> 55 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_below5.REG05c #> 56 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_below5.REG05d #> 57 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_below5.REG05e #> 58 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_below5.REG05f #> 59 in repeat -S2 ///select_one-group_Part1.S2.S4.REG06 #> 60 in repeat -S2 ///calculate-group_Part1.S2.indiv_05Less_name #> 61 in repeat -S2 ///calculate-group_Part1.S2.indiv_05Less_age #> 62 in repeat -S2 ///calculate-group_Part1.S2.age_month #> 63 in repeat -S2 ///select_one-group_Part1.S2.S5.MMR01 #> 64 in repeat -S2 ///select_one-group_Part1.S2.S5.MMR02 #> 65 in repeat -S2 ///select_one-group_Part1.S2.S5.MMR03 #> 66 in repeat -S2 ///integer-group_Part1.S2.S5.MMR04 #> 67 in repeat -S2 ///select_one-group_Part1.S2.S6.DIS01a #> 68 in repeat -S2 ///select_one-group_Part1.S2.S6.DIS01 #> 69 in repeat -S2 ///select_one-group_Part1.S2.S6.DIS02 #> 70 in repeat -S2 ///select_one-group_Part1.S2.S6.DIS03 #> 71 in repeat -S2 ///select_one-group_Part1.S2.S6.DIS04 #> 72 in repeat -S2 ///select_one-group_Part1.S2.S6.DIS05 #> 73 in repeat -S2 ///select_one-group_Part1.S2.S6.DIS06 #> 74 in repeat -S2 ///select_one-group_Part1.S2.S7.HACC01 #> 75 in repeat -S2 ///select_multiple-group_Part1.S2.S7.HACC02 #> 76 in repeat -S2 ///text-group_Part1.S2.S7.HACC02_other #> 77 in repeat -S2 ///select_one-group_Part1.S2.S7.HACC03 #> 78 in repeat -S2 ///select_multiple-group_Part1.S2.S7.HACC04 #> 79 in repeat -S2 ///text-group_Part1.S2.S7.HACC04_other #> 1 in repeat -P2.S3 ///calculate-group_Part2.P2.S3.child_edu_name #> 2 in repeat -P2.S3 ///calculate-group_Part2.P2.S3.child_edu_age #> 3 in repeat -P2.S3 ///select_one-group_Part2.P2.S3.child_edu.EDU01 #> 4 in repeat -P2.S3 ///select_one-group_Part2.P2.S3.child_edu.EDU02 #> 5 in repeat -P2.S3 ///select_one-group_Part2.P2.S3.child_edu.EDU03 #> 6 in repeat -P2.S3 ///select_one-group_Part2.P2.S3.child_edu.EDU04 #> 7 in repeat -P2.S3 ///text-group_Part2.P2.S3.child_edu.EDU04_other #> 8 in repeat -P2.S3 ///select_one-group_Part2.P2.S3.comm_act.COMM01 #> 9 in repeat -P2.S3 ///integer-group_Part2.P2.S3.comm_act.COMM02 #> 10 in repeat -P2.S3 ///select_one-group_Part2.P2.S3.comm_act.COMM03 #> 11 in repeat -P2.S3 ///select_one-group_Part2.P2.S3.comm_act.COMM04 # openxlsx::write.xlsx(datalist, here::here(\"inst\", \"dummy_RMS_CAPI_v2.xlsx\")) form <- system.file(\"RMS_CAPI_v3.xlsx\", package = \"IndicatorCalc\") datalist <- fct_kobo_dummy(form, n = 384, file = NULL) #> Warning: Expected 2 pieces. Additional pieces discarded in 1 rows [376]. #> 1-start-start #> 2-end-end #> 3-calculate-start_time_1 #> 4-date-intro.interviewdate #> 5-select_one-intro.Bureau #> 6-select_one-intro.Country #> 7-calculate-intro.countryname #> 8-geopoint-intro.geopoint #> 9-select_one-intro.pop_groups #> 10-text-intro2.name_enumerator #> 11-text-intro2.Intro01 #> 12-text-intro2.Intro02 #> 13-select_one-intro2.Intro03 #> 14-acknowledge-intro2.consent_form #> 15-select_one-intro2.Intro04 #> 16-select_one-intro2.Intro05 #> 17-text-intro2.Intro05_other #> 18-text-Part1.HHH01_aux #> 19-integer-Part1.HHH01_age #> 20-select_one-Part1.respondent #> 21-calculate-Part1.quality_check.MM18above #> 22-calculate-Part1.quality_check.member1 #> 23-calculate-Part1.quality_check.member2 #> 24-calculate-Part1.quality_check.member3 #> 25-calculate-Part1.quality_check.member4 #> 26-calculate-Part1.quality_check.member5 #> 27-calculate-Part1.quality_check.member6 #> 28-calculate-Part1.quality_check.adult_sum_001 #> 29-calculate-Part1.quality_check.hh_size_001 #> 30-acknowledge-Part1.quality_check.confirm_hhsize #> 31-calculate-namechild2less #> 32-calculate-nochild2less #> 33-calculate-women_name_b_total #> 34-calculate-women_name_b #> 35-calculate-father_name_b #> 36-calculate-women_name #> 37-calculate-father_name #> 38-calculate-adult_name #> 39-select_one-Part2.P2_S1.DWE01 #> 40-text-Part2.P2_S1.DWE01_other #> 41-select_one-Part2.P2_S1.SHEL01 #> 42-select_one-Part2.P2_S1.SHEL02 #> 43-select_one-Part2.P2_S1.SHEL03 #> 44-select_one-Part2.P2_S1.SHEL04 #> 45-select_one-Part2.P2_S1.SHEL05 #> 46-select_one-Part2.P2_S1.SHEL06 #> 47-select_one-Part2.P2_S1.RISK01 #> 48-select_one-Part2.P2_S1.RISK02 #> 49-integer-Part2.P2_S1.DWE05 #> 50-select_one-Part2.P2_S2.filter_camp #> 51-select_one-Part2.P2_S2.DWE06_land #> 52-text-Part2.P2_S2.DWE06_other_land #> 53-select_one-Part2.P2_S2.DWE06a_land #> 54-select_one-Part2.P2_S2.DWE07_land #> 55-text-Part2.P2_S2.DWE07_other_land #> 56-select_one-Part2.P2_S2.DWE06_housing #> 57-text-Part2.P2_S2.DWE06_other_housing #> 58-select_one-Part2.P2_S2.DWE06a_housing #> 59-select_one-Part2.P2_S2.DWE07_housing #> 60-text-Part2.P2_S2.DWE07_other_housing #> 61-select_one-Part2.P2_S2.DWE08 #> 62-select_one-Part2.P2_S2.DWE09 #> 63-text-Part2.P2_S2.DWE09_other #> 64-select_one-Part2.P2_S2.DWE10 #> 65-select_one-Part2.P2_S3.COOK01 #> 66-select_one-Part2.P2_S3.COOK02 #> 67-text-Part2.P2_S3.COOK02_other #> 68-select_one-Part2.P2_S3.COOK03 #> 69-text-Part2.P2_S3.COOK03_other #> 70-select_one-Part2.P2_S3.LIGHT01 #> 71-select_one-Part2.P2_S3.LIGHT02 #> 72-text-Part2.P2_S3.LIGHT02_other #> 73-select_one-Part2.P2_S3.LIGHT03 #> 74-text-Part2.P2_S3.LIGHT03_other #> 75-calculate-Part2.P2_S3.electricity_source #> 76-select_multiple-Part2.P2_S3.LIGHT04 #> 77-text-Part2.P2_S3.LIGHT04_other #> 78-select_one-Part2.P2_S3.LIGHT05 #> 79-integer-Part2.P2_S3.LIGHT05_11 #> 80-integer-Part2.P2_S3.LIGHT05_22 #> 81-select_one-Part2.P2_S3.LIGHT06 #> 82-integer-Part2.P2_S3.LIGHT06_11 #> 83-integer-Part2.P2_S3.LIGHT06_22 #> 84-select_one-Part2.P2_S3.DWA01 #> 85-text-Part2.P2_S3.DWA01_other #> 86-calculate-Part2.P2_S3.source #> 87-calculate-Part2.P2_S3.source2 #> 88-select_one-Part2.P2_S3.DWA02 #> 89-text-Part2.P2_S3.DWA02_other #> 90-select_one-Part2.P2_S3.time_toi.DWA03a #> 91-integer-Part2.P2_S3.time_toi.DWA03b #> 92-select_one-Part2.P2_S3.DWA04 #> 93-select_one-Part2.P2_S3.TOI01 #> 94-text-Part2.P2_S3.TOI01_other #> 95-select_one-Part2.P2_S3.TOI02 #> 96-select_one-Part2.P2_S3.TOI03 #> 97-text-Part2.P2_S3.TOI03_other #> 98-select_one-Part2.P2_S3.TOI04 #> 99-text-Part2.P2_S3.TOI04_other #> 100-select_one-Part2.P2_S3.TOI05 #> 101-calculate-Part2.P2_S4.latestson #> 102-select_one-Part2.P2_S4.BIR01 #> 103-select_one-Part2.P2_S4.BIR02 #> 104-select_multiple-Part2.P2_S4.BIR03 #> 105-text-Part2.P2_S4.BIR03_other #> 106-select_one-Part2.P2_S4.BIR04 #> 107-text-Part2.P2_S4.BIR04_other #> 108-select_one-Part2.P2_S4.HEA01 #> 109-text-Part2.P2_S4.HEA01_other #> 110-select_one-Part2.P2_S4.HEA02 #> 111-text-Part2.P2_S4.HEA02_other #> 112-integer-Part2.P2_S4.HEA03 #> 113-select_one-Part2.P2_S5.SPF01_op #> 114-select_one-Part2.P2_S5.SPF01a #> 115-select_one-Part2.P2_S5.SPF01b #> 116-select_one-Part2.P2_S5.SPF01c #> 117-select_one-Part2.P2_S5.SPF01d #> 118-select_one-Part2.P2_S5.SPF01e #> 119-select_one-Part2.P2_S5.SPF01f #> 120-select_one-Part2.P2_S5.SPF01g #> 121-select_one-Part2.P2_S5.SPF01h #> 122-select_one-Part2.P2_S5.SPF01j #> 123-select_one-Part2.P2_S5.SPF01k #> 124-select_one-Part2.P2_S5.SPF01l #> 125-select_one-Part2.P2_S5.SPF01m #> 126-select_one-Part2.P2_S5.SPF01n #> 127-select_one-Part2.P2_S5.SPF01o #> 128-select_one-Part2.P2_S5.SPF01p #> 129-calculate-Part3.first_random.random1ap #> 130-calculate-Part3.first_random.eadult_nap #> 131-calculate-Part3.first_random.epositionap #> 132-calculate-Part3.first_random.random_indexap #> 133-calculate-Part3.first_random.selected_adultap #> 134-calculate-Part3.first_random.name_selectedadult18 #> 135-select_one-Part3.available_first_random.random_present #> 136-calculate-Part3.second_random.random1ap2 #> 137-calculate-Part3.second_random.eadult_nap2 #> 138-calculate-Part3.second_random.epositionap2 #> 139-calculate-Part3.second_random.random_indexap2 #> 140-calculate-Part3.second_random.selected_adultap2 #> 141-calculate-Part3.second_random.name_selectedadult18_2 #> 142-select_one-Part3.second_availability.random_present_2 #> 143-select_one-Part3.name_respondent_individual #> 144-select_one-Part3.P3_S1.EDU01_random #> 145-select_one-Part3.P3_S1.UNEM01 #> 146-select_one-Part3.P3_S1.UNEM02 #> 147-select_one-Part3.P3_S1.UNEM03 #> 148-select_one-Part3.P3_S1.UNEM04 #> 149-select_one-Part3.P3_S1.UNEM05 #> 150-select_one-Part3.P3_S1.UNEM06 #> 151-select_one-Part3.P3_S1.UNEM07 #> 152-select_one-Part3.P3_S1.UNEM08 #> 153-select_one-Part3.P3_S1.UNEM09 #> 154-select_one-Part3.P3_S1.UNEM10 #> 155-select_one-Part3.P3_S1.INC01 #> 156-select_one-Part3.P3_S1.INC02 #> 157-select_one-Part3.P3_S1.BANK01 #> 158-select_one-Part3.P3_S1.BANK02 #> 159-select_one-Part3.P3_S1.BANK03 #> 160-select_one-Part3.P3_S1.BANK04 #> 161-select_one-Part3.P3_S1.BANK05 #> 162-select_one-Part3.P3_S3.FRM01 #> 163-select_one-Part3.P3_S3.FRM02 #> 164-select-Part3.P3_S3.FRM03 #> 165-text-Part3.P3_S3.FRM03_other #> 166-select_one-Part3.P3_S2.SAF01 #> 167-select_one-Part3.P3_S2.GBV01.GBV01_001 #> 168-select_one-Part3.P3_S2.GBV01.GBV01a #> 169-select_one-Part3.P3_S2.GBV01.GBV01b #> 170-select_one-Part3.P3_S2.GBV01.GBV01c #> 171-select_one-Part3.P3_S2.GBV01.GBV01d #> 172-select_one-Part3.P3_S2.gbv_screen #> 173-select_one-Part3.P3_S2.VAWpre_001 #> 174-select_one-Part3.P3_S2.VAWpre01 #> 175-select_one-Part3.P3_S2.VAWpre02 #> 176-select_one-Part3.P3_S2.VAWpre03 #> 177-select_one-Part3.P3_S2.VAWpre04 #> 178-select_one-Part3.P3_S2.VAW.VAW01 #> 179-select_one-Part3.P3_S2.VAW.VAW01a #> 180-select_one-Part3.P3_S2.VAW.VAW01b #> 181-select_one-Part3.P3_S2.VAW.VAW01c #> 182-select_one-Part3.P3_S2.VAW.VAW01d #> 183-select_one-Part3.P3_S2.VAW.VAW01e #> 184-select_one-complete_survey.contact_number #> 185-text-complete_survey.number_respondent #> 186-select_one-complete_survey.end_result #> 187-select_one-complete_survey.name_respondent #> 188-select_one-complete_survey.final_notes #> 189-text-complete_survey.final_notes_entry #> 190-calculate-end_time_1 #> 1 in repeat -rpt_hhmnames ///calculate-Part1.rpt_hhmnames.hhmnames_pos #> 2 in repeat -rpt_hhmnames ///calculate-Part1.rpt_hhmnames.HHH01_2_aux #> 3 in repeat -rpt_hhmnames ///text-Part1.rpt_hhmnames.HH01_aux #> 4 in repeat -rpt_hhmnames ///select_one-Part1.rpt_hhmnames.HH03_aux #> 5 in repeat -rpt_hhmnames ///calculate-Part1.rpt_hhmnames.HH01_2_aux #> 6 in repeat -rpt_hhmnames ///calculate-Part1.rpt_hhmnames.HH03_2_aux #> 1 in repeat -S1 ///calculate-Part1.S1.personId #> 2 in repeat -S1 ///calculate-Part1.S1.hhroster_pos_aux #> 3 in repeat -S1 ///calculate-Part1.S1.hhmnames_pos_match #> 4 in repeat -S1 ///calculate-Part1.S1.HH01 #> 5 in repeat -S1 ///calculate-Part1.S1.HH03 #> 6 in repeat -S1 ///select_one-Part1.S1.HH04 #> 7 in repeat -S1 ///select_one-Part1.S1.HH05 #> 8 in repeat -S1 ///date-Part1.S1.HH06 #> 9 in repeat -S1 ///calculate-Part1.S1.calcul1 #> 10 in repeat -S1 ///integer-Part1.S1.age #> 11 in repeat -S1 ///integer-Part1.S1.AgeMonths #> 12 in repeat -S1 ///calculate-Part1.S1.ageMD #> 13 in repeat -S1 ///integer-Part1.S1.age_est #> 14 in repeat -S1 ///integer-Part1.S1.months_est #> 15 in repeat -S1 ///calculate-Part1.S1.HH07 #> 16 in repeat -S1 ///calculate-Part1.S1.HH07_months #> 17 in repeat -S1 ///select_one-Part1.S1.HH08 #> 18 in repeat -S1 ///calculate-Part1.S1.start_time_2 #> 19 in repeat -S1 ///calculate-Part1.S1.position #> 20 in repeat -S1 ///calculate-Part1.S1.Relation_R #> 21 in repeat -S1 ///calculate-Part1.S1.adult18 #> 22 in repeat -S1 ///calculate-Part1.S1.women_b #> 23 in repeat -S1 ///calculate-Part1.S1.father_b #> 24 in repeat -S1 ///calculate-Part1.S1.childLess2 #> 25 in repeat -S1 ///calculate-Part1.S1.childLess2name #> 26 in repeat -S1 ///calculate-Part1.S1.women #> 27 in repeat -S1 ///calculate-Part1.S1.father #> 28 in repeat -S1 ///calculate-Part1.S1.adult #> 29 in repeat -S1 ///calculate-Part1.S1.women_b_count #> 30 in repeat -S1 ///calculate-Part1.S1.hh_size #> 31 in repeat -S1 ///calculate-Part1.S1.hhhead_age_ab18 #> 32 in repeat -S1 ///calculate-Part1.S1.adult_sum #> 33 in repeat -S1 ///calculate-Part1.S1.hhhead_age #> 34 in repeat -S1 ///calculate-Part1.S1.position18 #> 35 in repeat -S1 ///calculate-Part1.S1.adult01 #> 36 in repeat -S1 ///calculate-Part1.S1.age18above #> 1 in repeat -S2_repeat ///calculate-S2_repeat.name_individual #> 2 in repeat -S2_repeat ///calculate-S2_repeat.ind_age_year #> 3 in repeat -S2_repeat ///calculate-S2_repeat.ind_age_month #> 4 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF01 #> 5 in repeat -S2_repeat ///calculate-S2_repeat.P1_S2.citizenship #> 6 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF02 #> 7 in repeat -S2_repeat ///calculate-S2_repeat.P1_S2.citizenship2 #> 8 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF03 #> 9 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF04 #> 10 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF05 #> 11 in repeat -S2_repeat ///calculate-S2_repeat.P1_S2.countrybirth #> 12 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF07 #> 13 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF08 #> 14 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF09 #> 15 in repeat -S2_repeat ///date-S2_repeat.P1_S2.REF10a #> 16 in repeat -S2_repeat ///text-S2_repeat.P1_S2.REF10b #> 17 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF11 #> 18 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF12 #> 19 in repeat -S2_repeat ///date-S2_repeat.P1_S2.REF12a #> 20 in repeat -S2_repeat ///text-S2_repeat.P1_S2.REF12b #> 21 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF13 #> 22 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF14 #> 23 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF15 #> 24 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF16 #> 25 in repeat -S2_repeat ///text-S2_repeat.P1_S2.REF16_other #> 26 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF16a #> 27 in repeat -S2_repeat ///text-S2_repeat.P1_S2.REF16a_other #> 28 in repeat -S2_repeat ///select_multiple-S2_repeat.P1_S3.IDP01 #> 29 in repeat -S2_repeat ///text-S2_repeat.P1_S3.IDP01a #> 30 in repeat -S2_repeat ///select_one-S2_repeat.P1_S3.IDP02 #> 31 in repeat -S2_repeat ///date-S2_repeat.P1_S3.IDP02a #> 32 in repeat -S2_repeat ///text-S2_repeat.P1_S3.IDP02b #> 33 in repeat -S2_repeat ///select_one_from_file-S2_repeat.P1_S3.IDP03 #> 34 in repeat -S2_repeat ///select_one_from_file-S2_repeat.P1_S3.IDP04 #> 35 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01 #> 36 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01a #> 37 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01b #> 38 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01c #> 39 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01d #> 40 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01e #> 41 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01f #> 42 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01g #> 43 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.REG02 #> 44 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.REG03 #> 45 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.REG04 #> 46 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_below5.REG05 #> 47 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_below5.REG05a #> 48 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_below5.REG05b #> 49 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_below5.REG05c #> 50 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_below5.REG05d #> 51 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_below5.REG05e #> 52 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_below5.REG05f #> 53 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.REG06 #> 54 in repeat -S2_repeat ///select_one-S2_repeat.P1_S5.MMR01 #> 55 in repeat -S2_repeat ///select_one-S2_repeat.P1_S5.MMR02 #> 56 in repeat -S2_repeat ///select_one-S2_repeat.P1_S5.MMR03 #> 57 in repeat -S2_repeat ///integer-S2_repeat.P1_S5.MMR04 #> 58 in repeat -S2_repeat ///select_one-S2_repeat.P1_S6.DIS01a #> 59 in repeat -S2_repeat ///select_one-S2_repeat.P1_S6.DIS01 #> 60 in repeat -S2_repeat ///select_one-S2_repeat.P1_S6.DIS02 #> 61 in repeat -S2_repeat ///select_one-S2_repeat.P1_S6.DIS03 #> 62 in repeat -S2_repeat ///select_one-S2_repeat.P1_S6.DIS04 #> 63 in repeat -S2_repeat ///select_one-S2_repeat.P1_S6.DIS05 #> 64 in repeat -S2_repeat ///select_one-S2_repeat.P1_S6.DIS06 #> 65 in repeat -S2_repeat ///select_one-S2_repeat.P1_S7.HACC01 #> 66 in repeat -S2_repeat ///select_one-S2_repeat.P1_S7.HACC02 #> 67 in repeat -S2_repeat ///text-S2_repeat.P1_S7.HACC02_other #> 68 in repeat -S2_repeat ///calculate-S2_repeat.P1_S7.reason_care #> 69 in repeat -S2_repeat ///select_one-S2_repeat.P1_S7.HACC03 #> 70 in repeat -S2_repeat ///select_multiple-S2_repeat.P1_S7.HACC04 #> 71 in repeat -S2_repeat ///text-S2_repeat.P1_S7.HACC04_other #> 72 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_edu.EDU01 #> 73 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_edu.EDU02 #> 74 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_edu.EDU03 #> 75 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_edu.EDU04 #> 76 in repeat -S2_repeat ///text-S2_repeat.P1_S8.S8_edu.EDU04_other #> 77 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_edu.EDU05 #> 78 in repeat -S2_repeat ///text-S2_repeat.P1_S8.S8_edu.EDU05_other #> 79 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_comm.COMM01 #> 80 in repeat -S2_repeat ///integer-S2_repeat.P1_S8.S8_comm.COMM02 #> 81 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_comm.COMM03 #> 82 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_comm.COMM04 # openxlsx::write.xlsx(datalist, here::here(\"inst\", \"dummy_RMS_CAPI_v3.xlsx\")) ## CATI form <- system.file(\"RMS_CATI_v0.xlsx\", package = \"IndicatorCalc\") datalist <- fct_kobo_dummy(form, n = 384, file = NULL) #> 1-start-start #> 2-end-end #> 3-calculate-start_t #> 4-calculate-end_t #> 5-calculate-time_ds #> 6-calculate-time_dm #> 7-text-group_survey.Intro01 #> 8-text-group_survey.Intro02 #> 9-integer-group_survey.number #> 10-integer-group_survey.call_attempt #> 11-select_one-group_survey.attempt1 #> 12-select_one-group_survey.attempt2 #> 13-select_one-group_survey.attempt3 #> 14-acknowledge-group_survey.next_attempt #> 15-date-group_intro.interviewdate #> 16-select_one-group_intro.Bureau #> 17-select_one-group_intro.Country #> 18-calculate-group_intro.countryname #> 19-select_one-group_intro.pop_groups #> 20-acknowledge-group_consent.consent_form #> 21-select_one-group_consent.Intro04 #> 22-integer-group_Part1.HH01 #> 23-calculate-group_Part1.Relation_Count #> 24-calculate-group_Part1.namechild2less #> 25-calculate-group_Part1.nochild2less #> 26-calculate-group_Part1.women_name_b_total #> 27-calculate-group_Part1.women_name_b #> 28-calculate-group_Part1.father_name_b #> 29-calculate-group_Part1.women_name #> 30-calculate-group_Part1.father_name #> 31-calculate-group_Part1.adult_name #> 32-calculate-group_Part1.woman1 #> 33-calculate-group_Part1.woman2 #> 34-calculate-group_Part1.woman3 #> 35-calculate-group_Part1.woman4 #> 36-calculate-group_Part1.woman5 #> 37-calculate-group_Part1.woman6 #> 38-calculate-group_Part1.fam_name1 #> 39-calculate-group_Part1.fam_name2 #> 40-calculate-group_Part1.fam_name3 #> 41-calculate-group_Part1.fam_name4 #> 42-calculate-group_Part1.fam_name5 #> 43-calculate-group_Part1.fam_name6 #> 44-calculate-group_Part1.fam_name7 #> 45-calculate-group_Part1.fam_name8 #> 46-calculate-group_Part1.fam_name9 #> 47-calculate-group_Part1.fam_name10 #> 48-calculate-group_Part1.fam_name11 #> 49-calculate-group_Part1.fam_name12 #> 50-calculate-group_Part1.fam_name13 #> 51-calculate-group_Part1.fam_name14 #> 52-calculate-group_Part1.fam_name15 #> 53-calculate-group_Part1.fam_name16 #> 54-calculate-group_Part1.fam_name17 #> 55-calculate-group_Part1.fam_name18 #> 56-calculate-group_Part1.fam_name19 #> 57-calculate-group_Part1.fam_name20 #> 58-calculate-group_Part1.age1 #> 59-calculate-group_Part1.age2 #> 60-calculate-group_Part1.age3 #> 61-calculate-group_Part1.age4 #> 62-calculate-group_Part1.age5 #> 63-calculate-group_Part1.age6 #> 64-calculate-group_Part1.age7 #> 65-calculate-group_Part1.age8 #> 66-calculate-group_Part1.age9 #> 67-calculate-group_Part1.age10 #> 68-calculate-group_Part1.age11 #> 69-calculate-group_Part1.age12 #> 70-calculate-group_Part1.age13 #> 71-calculate-group_Part1.age14 #> 72-calculate-group_Part1.age15 #> 73-calculate-group_Part1.age16 #> 74-calculate-group_Part1.age17 #> 75-calculate-group_Part1.age18 #> 76-calculate-group_Part1.age19 #> 77-calculate-group_Part1.age20 #> 78-calculate-group_Part1.sex1 #> 79-calculate-group_Part1.sex2 #> 80-calculate-group_Part1.sex3 #> 81-calculate-group_Part1.sex4 #> 82-calculate-group_Part1.sex5 #> 83-calculate-group_Part1.sex6 #> 84-calculate-group_Part1.sex7 #> 85-calculate-group_Part1.sex8 #> 86-calculate-group_Part1.sex9 #> 87-calculate-group_Part1.sex10 #> 88-calculate-group_Part1.sex11 #> 89-calculate-group_Part1.sex12 #> 90-calculate-group_Part1.sex13 #> 91-calculate-group_Part1.sex14 #> 92-calculate-group_Part1.sex15 #> 93-calculate-group_Part1.sex16 #> 94-calculate-group_Part1.sex17 #> 95-calculate-group_Part1.sex18 #> 96-calculate-group_Part1.sex19 #> 97-calculate-group_Part1.sex20 #> 98-calculate-group_Part1.name_individual #> 99-calculate-group_Part1.ind_age_year #> 100-calculate-group_Part1.ind_age_month #> 101-calculate-group_Part1.sumbelow5 #> 102-calculate-group_Part1.sumbelow18 #> 103-calculate-group_Part1.sumage_vaccine #> 104-calculate-group_Part1.sumchild_edu_calcul #> 105-calculate-group_Part1.nobelow5 #> 106-calculate-group_Part1.nobelow18 #> 107-calculate-group_Part1.noage_vaccine #> 108-calculate-group_Part1.nochild_edu_calcul #> 109-select_one-group_Part1.S2.REF01 #> 110-calculate-group_Part1.S2.citizenship #> 111-select_one-group_Part1.S2.REF02 #> 112-calculate-group_Part1.S2.citizenship2 #> 113-select_one-group_Part1.S2.REF03 #> 114-select_one-group_Part1.S2.REF04 #> 115-select_one-group_Part1.S2.REF05 #> 116-calculate-group_Part1.S2.countrybirth #> 117-select_one-group_Part1.S2.REF07a #> 118-select_one-group_Part1.S2.REF07b #> 119-select_one-group_Part1.S2.REF07c #> 120-select_one-group_Part1.S2.REF07d #> 121-select_one-group_Part1.S2.REF08a #> 122-select_one-group_Part1.S2.REF08b #> 123-select_one-group_Part1.S2.REF08c #> 124-select_one-group_Part1.S2.REF08d #> 125-select_one-group_Part1.S2.REF09 #> 126-date-group_Part1.S2.REF10a #> 127-text-group_Part1.S2.REF10b #> 128-select_one-group_Part1.S2.REF11 #> 129-select_one-group_Part1.S2.REF12 #> 130-date-group_Part1.S2.REF12a #> 131-text-group_Part1.S2.REF12b #> 132-select_one-group_Part1.S2.REF13 #> 133-select_one-group_Part1.S2.REF14 #> 134-select_one-group_Part1.S2.REF15 #> 135-select_one-group_Part1.S2.REF16 #> 136-text-group_Part1.S2.REF16_other #> 137-select_one-group_Part1.S2.REF16a #> 138-text-group_Part1.S2.REF16a_other #> 139-select_multiple-group_Part1.S3.IDP01 #> 140-text-group_Part1.S3.IDP01a #> 141-select_one-group_Part1.S3.IDP02 #> 142-date-group_Part1.S3.IDP02a #> 143-text-group_Part1.S3.IDP02b #> 144-select_one_from_file-group_Part1.S3.IDP03 #> 145-select_one_from_file-group_Part1.S3.IDP04 #> 146-select_one-group_Part1.S4.S4_above5.REG01 #> 147-select_one-group_Part1.S4.S4_above5.REG01a #> 148-select_one-group_Part1.S4.S4_above5.REG01b #> 149-select_one-group_Part1.S4.S4_above5.REG01c #> 150-select_one-group_Part1.S4.S4_above5.REG01d #> 151-select_one-group_Part1.S4.S4_above5.REG01e #> 152-select_one-group_Part1.S4.S4_above5.REG01f #> 153-select_one-group_Part1.S4.S4_above5.REG01g #> 154-select_one-group_Part1.S4.REG02 #> 155-select_one-group_Part1.S6.DIS01a #> 156-select_one-group_Part1.S6.DIS01 #> 157-select_one-group_Part1.S6.DIS02 #> 158-select_one-group_Part1.S6.DIS03 #> 159-select_one-group_Part1.S6.DIS04 #> 160-select_one-group_Part1.S6.DIS05 #> 161-select_one-group_Part1.S6.DIS06 #> 162-select_one-group_Part1.S7.HACC01 #> 163-select_multiple-group_Part1.S7.HACC02 #> 164-text-group_Part1.S7.HACC02_other #> 165-select_one-group_Part1.S7.HACC03 #> 166-select_multiple-group_Part1.S7.HACC04 #> 167-text-group_Part1.S7.HACC04_other #> 168-select_one-group_Part2.P2.S1.S1_Dwelling.DWE01 #> 169-text-group_Part2.P2.S1.S1_Dwelling.DWE01_other #> 170-select_one-group_Part2.P2.S1.S1_Dwelling.DWE02 #> 171-text-group_Part2.P2.S1.S1_Dwelling.DWE02_other #> 172-select_one-group_Part2.P2.S1.S1_Dwelling.DWE03 #> 173-text-group_Part2.P2.S1.S1_Dwelling.DWE03_other #> 174-select_one-group_Part2.P2.S1.S1_Dwelling.DWE04 #> 175-text-group_Part2.P2.S1.S1_Dwelling.DWE04_other #> 176-integer-group_Part2.P2.S1.S1_Dwelling.DWE05 #> 177-select_one-group_Part2.P2.S1.S1_Dwelling.filter_camp #> 178-select_one-group_Part2.P2.S1.S1_Dwelling.DWE06 #> 179-text-group_Part2.P2.S1.S1_Dwelling.DWE06_other #> 180-select_one-group_Part2.P2.S1.S1_Dwelling.DWE07 #> 181-text-group_Part2.P2.S1.S1_Dwelling.DWE07_other #> 182-select_one-group_Part2.P2.S1.S1_Dwelling.DWE08 #> 183-select_one-group_Part2.P2.S1.S1_Dwelling.DWE09 #> 184-select_one-group_Part2.P2.S1.S1_Dwelling.DWE10 #> 185-text-group_Part2.P2.S1.S1_Dwelling.DWE10_other #> 186-select_one-group_Part2.P2.S1.S1_Dwelling.DWE11 #> 187-select_one-group_Part2.P2.S1.S2_Habitable_housing.COOK01 #> 188-select_one-group_Part2.P2.S1.S2_Habitable_housing.COOK02 #> 189-text-group_Part2.P2.S1.S2_Habitable_housing.COOK02_other #> 190-select_one-group_Part2.P2.S1.S2_Habitable_housing.COOK03 #> 191-text-group_Part2.P2.S1.S2_Habitable_housing.COOK03_other #> 192-select_one-group_Part2.P2.S1.S2_Habitable_housing.LIGHT01 #> 193-select_one-group_Part2.P2.S1.S2_Habitable_housing.LIGHT02 #> 194-text-group_Part2.P2.S1.S2_Habitable_housing.LIGHT02b #> 195-select_one-group_Part2.P2.S1.S2_Habitable_housing.LIGHT03 #> 196-text-group_Part2.P2.S1.S2_Habitable_housing.LIGHT03b #> 197-select_one-group_Part2.P2.S1.S2_Habitable_housing.DWA01 #> 198-text-group_Part2.P2.S1.S2_Habitable_housing.DWA01_other #> 199-calculate-group_Part2.P2.S1.S2_Habitable_housing.source #> 200-calculate-group_Part2.P2.S1.S2_Habitable_housing.source2 #> 201-select_one-group_Part2.P2.S1.S2_Habitable_housing.DWA02 #> 202-text-group_Part2.P2.S1.S2_Habitable_housing.DWA02_other #> 203-select_one-group_Part2.P2.S1.S2_Habitable_housing.time_toi.DWA03a #> 204-integer-group_Part2.P2.S1.S2_Habitable_housing.time_toi.DWA03b #> 205-select_one-group_Part2.P2.S1.S2_Habitable_housing.DWA04 #> 206-select_one-group_Part2.P2.S1.S2_Habitable_housing.TOI01 #> 207-text-group_Part2.P2.S1.S2_Habitable_housing.TOI01_other #> 208-select_one-group_Part2.P2.S1.S2_Habitable_housing.TOI02 #> 209-select_one-group_Part2.P2.S1.S2_Habitable_housing.TOI03 #> 210-text-group_Part2.P2.S1.S2_Habitable_housing.TOI03_other #> 211-select_one-group_Part2.P2.S1.S2_Habitable_housing.TOI04 #> 212-text-group_Part2.P2.S1.S2_Habitable_housing.TOI04_other #> 213-select_one-group_Part2.P2.S1.S2_Habitable_housing.TOI05 #> 214-calculate-group_Part2.P2.S2.latestson #> 215-select_one-group_Part2.P2.S2.BIR01 #> 216-select_one-group_Part2.P2.S2.BIR02 #> 217-select_multiple-group_Part2.P2.S2.BIR03 #> 218-text-group_Part2.P2.S2.BIR03_other #> 219-select_one-group_Part2.P2.S2.BIR04 #> 220-text-group_Part2.P2.S2.BIR04_other #> 221-select_one-group_Part2.P2.S2.HEA01 #> 222-text-group_Part2.P2.S2.HEA01_other #> 223-select_one-group_Part2.P2.S2.HEA02 #> 224-text-group_Part2.P2.S2.HEA02_other #> 225-integer-group_Part2.P2.S2.HEA03 #> 226-select_one-group_Part2.P2.S2.SPF.SPF01_op #> 227-select_one-group_Part2.P2.S2.SPF.SPF01a #> 228-select_one-group_Part2.P2.S2.SPF.SPF01b #> 229-select_one-group_Part2.P2.S2.SPF.SPF01c #> 230-select_one-group_Part2.P2.S2.SPF.SPF01d #> 231-select_one-group_Part2.P2.S2.SPF.SPF01e #> 232-select_one-group_Part2.P2.S2.SPF.SPF01f #> 233-select_one-group_Part2.P2.S2.SPF.SPF01g #> 234-select_one-group_Part2.P2.S2.SPF.SPF01h #> 235-select_one-group_Part3.P3.S1.filter_elderly #> 236-select_one-group_Part3.P3.S1.UNEM01 #> 237-select_one-group_Part3.P3.S1.UNEM02 #> 238-select_one-group_Part3.P3.S1.UNEM03 #> 239-select_one-group_Part3.P3.S1.UNEM04 #> 240-select_one-group_Part3.P3.S1.UNEM05 #> 241-select_one-group_Part3.P3.S1.UNEM06 #> 242-select_one-group_Part3.P3.S1.UNEM07 #> 243-select_one-group_Part3.P3.S1.UNEM08 #> 244-select_one-group_Part3.P3.S1.UNEM09 #> 245-select_one-group_Part3.P3.S1.UNEM10 #> 246-select_one-group_Part3.P3.S1.INC01 #> 247-select_one-group_Part3.P3.S1.BANK01 #> 248-select_one-group_Part3.P3.S1.BANK02 #> 249-select_one-group_Part3.P3.S1.BANK03 #> 250-select_one-group_Part3.P3.S1.BANK04 #> 251-select_one-group_Part3.P3.S1.BANK05 #> 252-select_one-group_Part3.P3.S2.SAF01 #> 253-select_one-group_Part3.P3.S2.GBV01.GBV01_001 #> 254-select_one-group_Part3.P3.S2.GBV01.GBV01a #> 255-select_one-group_Part3.P3.S2.GBV01.GBV01b #> 256-select_one-group_Part3.P3.S2.GBV01.GBV01c #> 257-select_one-group_Part3.P3.S2.GBV01.GBV01d #> 258-calculate-group_Part4.child_edu_group.listchild_edu_calcul_nc #> 259-calculate-group_Part4.child_edu_group.n_selected_child_edu_calcul_nc #> 260-calculate-group_Part4.child_edu_group.selected_child_edu_calcul_nc #> 261-calculate-group_Part4.child_edu_group.name_selectedchild_edu_calcul_nc_age #> 262-calculate-group_Part4.child_edu_group.name_selectedchild_edu #> 263-select_one-group_Part4.child_edu_group.EDU01 #> 264-select_one-group_Part4.child_edu_group.EDU02 #> 265-select_one-group_Part4.child_edu_group.EDU03 #> 266-select_one-group_Part4.child_edu_group.EDU04 #> 267-text-group_Part4.child_edu_group.EDU04_other #> 268-calculate-group_Part4.comm_act.listbelow18 #> 269-calculate-group_Part4.comm_act.n_selected_below18 #> 270-calculate-group_Part4.comm_act.selected_below18 #> 271-calculate-group_Part4.comm_act.name_selectedbelow18_age #> 272-calculate-group_Part4.comm_act.name_selectedbelow18 #> 273-select_one-group_Part4.comm_act.COMM01 #> 274-integer-group_Part4.comm_act.COMM02 #> 275-select_one-group_Part4.comm_act.COMM03 #> 276-select_one-group_Part4.comm_act.COMM04 #> 277-calculate-group_Part4.P4_below5.P4_registration.listbelow5 #> 278-calculate-group_Part4.P4_below5.P4_registration.n_selected_below5 #> 279-calculate-group_Part4.P4_below5.P4_registration.selected_below5 #> 280-calculate-group_Part4.P4_below5.P4_registration.name_selectedbelow5_age #> 281-calculate-group_Part4.P4_below5.P4_registration.name_selectedbelow5 #> 282-select_one-group_Part4.P4_below5.P4_registration.REG03 #> 283-select_one-group_Part4.P4_below5.P4_registration.REG04 #> 284-select_one-group_Part4.P4_below5.P4_registration.S4_below5.REG05 #> 285-select_one-group_Part4.P4_below5.P4_registration.S4_below5.REG05a #> 286-select_one-group_Part4.P4_below5.P4_registration.S4_below5.REG05b #> 287-select_one-group_Part4.P4_below5.P4_registration.S4_below5.REG05c #> 288-select_one-group_Part4.P4_below5.P4_registration.S4_below5.REG05d #> 289-select_one-group_Part4.P4_below5.P4_registration.S4_below5.REG05e #> 290-select_one-group_Part4.P4_below5.P4_registration.S4_below5.REG05f #> 291-select_one-group_Part4.P4_below5.P4_registration.REG06 #> 292-select_one-group_Part4.P4_below5.P4_vaccination.MMR01 #> 293-select_one-group_Part4.P4_below5.P4_vaccination.MMR02 #> 294-select_one-group_Part4.P4_below5.P4_vaccination.MMR03 #> 295-integer-group_Part4.P4_below5.P4_vaccination.MMR04 #> 296-select_one-end_survey.end_result #> 297-select_one-end_survey.name_respondent #> 298-text-end_survey.number_respondent #> 299-select_one-end_survey.final_notes #> 300-text-end_survey.final_notes_entry #> 1 in repeat -S1 ///calculate-group_Part1.S1.personId #> 2 in repeat -S1 ///text-group_Part1.S1.S1_Household.HH02 #> 3 in repeat -S1 ///select_one-group_Part1.S1.S1_Household.HH03 #> 4 in repeat -S1 ///select_one-group_Part1.S1.S1_Household.HH04 #> 5 in repeat -S1 ///select_one-group_Part1.S1.S1_Household.HH05 #> 6 in repeat -S1 ///date-group_Part1.S1.S1_Household.HH06 #> 7 in repeat -S1 ///calculate-group_Part1.S1.S1_Household.calcul1 #> 8 in repeat -S1 ///integer-group_Part1.S1.S1_Household.age #> 9 in repeat -S1 ///integer-group_Part1.S1.S1_Household.AgeMonths #> 10 in repeat -S1 ///calculate-group_Part1.S1.S1_Household.ageMD #> 11 in repeat -S1 ///integer-group_Part1.S1.S1_Household.HH07 #> 12 in repeat -S1 ///integer-group_Part1.S1.S1_Household.HH07_months #> 13 in repeat -S1 ///select_one-group_Part1.S1.S1_Household.HH08 #> 14 in repeat -S1 ///calculate-group_Part1.S1.Relation_R #> 15 in repeat -S1 ///calculate-group_Part1.S1.below5 #> 16 in repeat -S1 ///calculate-group_Part1.S1.below18 #> 17 in repeat -S1 ///calculate-group_Part1.S1.age_vaccine #> 18 in repeat -S1 ///calculate-group_Part1.S1.child_edu_calcul #> 19 in repeat -S1 ///calculate-group_Part1.S1.below5_r #> 20 in repeat -S1 ///calculate-group_Part1.S1.below18_r #> 21 in repeat -S1 ///calculate-group_Part1.S1.age_vaccine_r #> 22 in repeat -S1 ///calculate-group_Part1.S1.child_edu_calcul_r #> 23 in repeat -S1 ///calculate-group_Part1.S1.positionbelow5 #> 24 in repeat -S1 ///calculate-group_Part1.S1.positionbelow18 #> 25 in repeat -S1 ///calculate-group_Part1.S1.positionage_vaccine #> 26 in repeat -S1 ///calculate-group_Part1.S1.positionchild_edu_calcul #> 27 in repeat -S1 ///calculate-group_Part1.S1.below5_nc #> 28 in repeat -S1 ///calculate-group_Part1.S1.below18_nc #> 29 in repeat -S1 ///calculate-group_Part1.S1.age_vaccine_nc #> 30 in repeat -S1 ///calculate-group_Part1.S1.child_edu_calcul_nc #> 31 in repeat -S1 ///calculate-group_Part1.S1.women_b #> 32 in repeat -S1 ///calculate-group_Part1.S1.father_b #> 33 in repeat -S1 ///calculate-group_Part1.S1.childLess2 #> 34 in repeat -S1 ///calculate-group_Part1.S1.childLess2name #> 35 in repeat -S1 ///calculate-group_Part1.S1.women #> 36 in repeat -S1 ///calculate-group_Part1.S1.father #> 37 in repeat -S1 ///calculate-group_Part1.S1.adult #> 38 in repeat -S1 ///calculate-group_Part1.S1.women_b_count # openxlsx::write.xlsx(datalist, here::here(\"inst\", \"dummy_RMS_CATI_v0.xlsx\")) form <- system.file(\"RMS_CATI_v3.xlsx\", package = \"IndicatorCalc\") datalist <- fct_kobo_dummy(form, n = 384, file = NULL) #> Warning: Expected 2 pieces. Additional pieces discarded in 1 rows [326]. #> 1-start-start #> 2-end-end #> 3-calculate-start_time_1 #> 4-date-intro.interviewdate #> 5-text-intro.name_enumerator #> 6-text-intro.Intro01 #> 7-text-intro.Intro02 #> 8-integer-intro.number #> 9-integer-intro.call_attempt #> 10-select_one-intro.attempt1 #> 11-select_one-intro.attempt2 #> 12-select_one-intro.attempt3 #> 13-acknowledge-intro.next_attempt #> 14-calculate-intro.start_time_2 #> 15-acknowledge-group_consent.consent_form #> 16-select_one-group_consent.Intro04 #> 17-select_one-intro2.Bureau #> 18-select_one-intro2.Country #> 19-calculate-intro2.countryname #> 20-select_one-intro2.pop_groups #> 21-text-Part1.HHH01_aux #> 22-integer-Part1.HHH01_age #> 23-select_one-Part1.respondent #> 24-calculate-Part1.quality_check.adult_sum_001 #> 25-calculate-Part1.quality_check.hh_size_001 #> 26-acknowledge-Part1.quality_check.confirm_hhsize #> 27-calculate-namechild2less #> 28-calculate-nochild2less #> 29-calculate-women_name_b_total #> 30-calculate-women_name_b #> 31-calculate-father_name_b #> 32-calculate-women_name #> 33-calculate-father_name #> 34-calculate-adult_name #> 35-calculate-sumbelow5 #> 36-calculate-sumbelow18 #> 37-calculate-sumage_vaccine #> 38-calculate-sumchild_edu_calcul #> 39-calculate-nobelow5 #> 40-calculate-nobelow18 #> 41-calculate-noage_vaccine #> 42-calculate-nochild_edu_calcul #> 43-select_one-S2_respondent.P1_S2.REF01 #> 44-calculate-S2_respondent.P1_S2.citizenship #> 45-select_one-S2_respondent.P1_S2.REF02 #> 46-calculate-S2_respondent.P1_S2.citizenship2 #> 47-select_one-S2_respondent.P1_S2.REF03 #> 48-select_one-S2_respondent.P1_S2.REF04 #> 49-select_one-S2_respondent.P1_S2.REF05 #> 50-calculate-S2_respondent.P1_S2.countrybirth #> 51-select_one-S2_respondent.P1_S2.REF07 #> 52-select_one-S2_respondent.P1_S2.REF08 #> 53-select_one-S2_respondent.P1_S2.REF09 #> 54-date-S2_respondent.P1_S2.REF10a #> 55-text-S2_respondent.P1_S2.REF10b #> 56-select_one-S2_respondent.P1_S2.REF11 #> 57-select_one-S2_respondent.P1_S2.REF12 #> 58-date-S2_respondent.P1_S2.REF12a #> 59-text-S2_respondent.P1_S2.REF12b #> 60-select_one-S2_respondent.P1_S2.REF13 #> 61-select_one-S2_respondent.P1_S2.REF14 #> 62-select_one-S2_respondent.P1_S2.REF15 #> 63-select_one-S2_respondent.P1_S2.REF16 #> 64-text-S2_respondent.P1_S2.REF16_other #> 65-select_one-S2_respondent.P1_S2.REF16a #> 66-text-S2_respondent.P1_S2.REF16a_other #> 67-select_multiple-S2_respondent.P1_S3.IDP01 #> 68-text-S2_respondent.P1_S3.IDP01a #> 69-select_one-S2_respondent.P1_S3.IDP02 #> 70-date-S2_respondent.P1_S3.IDP02a #> 71-text-S2_respondent.P1_S3.IDP02b #> 72-select_one_from_file-S2_respondent.P1_S3.IDP03 #> 73-select_one_from_file-S2_respondent.P1_S3.IDP04 #> 74-select_one-S2_respondent.P1_S4.S4_above5.REG01 #> 75-select_one-S2_respondent.P1_S4.S4_above5.REG01a #> 76-select_one-S2_respondent.P1_S4.S4_above5.REG01b #> 77-select_one-S2_respondent.P1_S4.S4_above5.REG01c #> 78-select_one-S2_respondent.P1_S4.S4_above5.REG01d #> 79-select_one-S2_respondent.P1_S4.S4_above5.REG01e #> 80-select_one-S2_respondent.P1_S4.S4_above5.REG01f #> 81-select_one-S2_respondent.P1_S4.S4_above5.REG01g #> 82-select_one-S2_respondent.P1_S4.REG02 #> 83-select_one-S2_respondent.P1_S6.DIS01a #> 84-select_one-S2_respondent.P1_S6.DIS01 #> 85-select_one-S2_respondent.P1_S6.DIS02 #> 86-select_one-S2_respondent.P1_S6.DIS03 #> 87-select_one-S2_respondent.P1_S6.DIS04 #> 88-select_one-S2_respondent.P1_S6.DIS05 #> 89-select_one-S2_respondent.P1_S6.DIS06 #> 90-select_one-S2_respondent.P1_S7.HACC01 #> 91-select_one-S2_respondent.P1_S7.HACC02 #> 92-text-S2_respondent.P1_S7.HACC02_other #> 93-calculate-S2_respondent.P1_S7.reason_care #> 94-select_one-S2_respondent.P1_S7.HACC03 #> 95-select_multiple-S2_respondent.P1_S7.HACC04 #> 96-text-S2_respondent.P1_S7.HACC04_other #> 97-select_one-Part2.P2_S1.DWE01 #> 98-text-Part2.P2_S1.DWE01_other #> 99-select_one-Part2.P2_S1.SHEL01 #> 100-select_one-Part2.P2_S1.SHEL02 #> 101-select_one-Part2.P2_S1.SHEL03 #> 102-select_one-Part2.P2_S1.SHEL04 #> 103-select_one-Part2.P2_S1.SHEL05 #> 104-select_one-Part2.P2_S1.SHEL06 #> 105-select_one-Part2.P2_S1.RISK01 #> 106-select_one-Part2.P2_S1.RISK02 #> 107-integer-Part2.P2_S1.DWE05 #> 108-select_one-Part2.P2_S2.filter_camp #> 109-select_one-Part2.P2_S2.DWE06_land #> 110-text-Part2.P2_S2.DWE06_other_land #> 111-select_one-Part2.P2_S2.DWE06a_land #> 112-select_one-Part2.P2_S2.DWE07_land #> 113-text-Part2.P2_S2.DWE07_other_land #> 114-select_one-Part2.P2_S2.DWE06_housing #> 115-text-Part2.P2_S2.DWE06_other_housing #> 116-select_one-Part2.P2_S2.DWE06a_housing #> 117-select_one-Part2.P2_S2.DWE07_housing #> 118-text-Part2.P2_S2.DWE07_other_housing #> 119-select_one-Part2.P2_S2.DWE08 #> 120-select_one-Part2.P2_S2.DWE09 #> 121-text-Part2.P2_S2.DWE09_other #> 122-select_one-Part2.P2_S2.DWE10 #> 123-select_one-Part2.P2_S3.COOK01 #> 124-select_one-Part2.P2_S3.COOK02 #> 125-text-Part2.P2_S3.COOK02_other #> 126-select_one-Part2.P2_S3.COOK03 #> 127-text-Part2.P2_S3.COOK03_other #> 128-select_one-Part2.P2_S3.LIGHT01 #> 129-select_one-Part2.P2_S3.LIGHT02 #> 130-text-Part2.P2_S3.LIGHT02_other #> 131-select_one-Part2.P2_S3.LIGHT03 #> 132-text-Part2.P2_S3.LIGHT03_other #> 133-calculate-Part2.P2_S3.electricity_source #> 134-select_multiple-Part2.P2_S3.LIGHT04 #> 135-text-Part2.P2_S3.LIGHT04_other #> 136-select_one-Part2.P2_S3.LIGHT05 #> 137-integer-Part2.P2_S3.LIGHT05_11 #> 138-integer-Part2.P2_S3.LIGHT05_22 #> 139-select_one-Part2.P2_S3.LIGHT06 #> 140-integer-Part2.P2_S3.LIGHT06_11 #> 141-integer-Part2.P2_S3.LIGHT06_22 #> 142-select_one-Part2.P2_S3.DWA01 #> 143-text-Part2.P2_S3.DWA01_other #> 144-calculate-Part2.P2_S3.source #> 145-calculate-Part2.P2_S3.source2 #> 146-select_one-Part2.P2_S3.DWA02 #> 147-text-Part2.P2_S3.DWA02_other #> 148-select_one-Part2.P2_S3.time_toi.DWA03a #> 149-integer-Part2.P2_S3.time_toi.DWA03b #> 150-select_one-Part2.P2_S3.DWA04 #> 151-select_one-Part2.P2_S3.TOI01 #> 152-text-Part2.P2_S3.TOI01_other #> 153-select_one-Part2.P2_S3.TOI02 #> 154-select_one-Part2.P2_S3.TOI03 #> 155-text-Part2.P2_S3.TOI03_other #> 156-select_one-Part2.P2_S3.TOI04 #> 157-text-Part2.P2_S3.TOI04_other #> 158-select_one-Part2.P2_S3.TOI05 #> 159-calculate-Part2.P2_S4.latestson #> 160-select_one-Part2.P2_S4.BIR01 #> 161-select_one-Part2.P2_S4.BIR02 #> 162-select_multiple-Part2.P2_S4.BIR03 #> 163-text-Part2.P2_S4.BIR03_other #> 164-select_one-Part2.P2_S4.BIR04 #> 165-text-Part2.P2_S4.BIR04_other #> 166-select_one-Part2.P2_S4.HEA01 #> 167-text-Part2.P2_S4.HEA01_other #> 168-select_one-Part2.P2_S4.HEA02 #> 169-text-Part2.P2_S4.HEA02_other #> 170-integer-Part2.P2_S4.HEA03 #> 171-select_one-Part2.P2_S5.SPF01_op #> 172-select_one-Part2.P2_S5.SPF01a #> 173-select_one-Part2.P2_S5.SPF01b #> 174-select_one-Part2.P2_S5.SPF01c #> 175-select_one-Part2.P2_S5.SPF01d #> 176-select_one-Part2.P2_S5.SPF01e #> 177-select_one-Part2.P2_S5.SPF01f #> 178-select_one-Part2.P2_S5.SPF01g #> 179-select_one-Part2.P2_S5.SPF01h #> 180-select_one-Part2.P2_S5.SPF01j #> 181-select_one-Part2.P2_S5.SPF01k #> 182-select_one-Part2.P2_S5.SPF01l #> 183-select_one-Part2.P2_S5.SPF01m #> 184-select_one-Part2.P2_S5.SPF01n #> 185-select_one-Part2.P2_S5.SPF01o #> 186-select_one-Part2.P2_S5.SPF01p #> 187-select_one-Part3.P3_S1.EDU01_random #> 188-select_one-Part3.P3_S1.UNEM01 #> 189-select_one-Part3.P3_S1.UNEM02 #> 190-select_one-Part3.P3_S1.UNEM03 #> 191-select_one-Part3.P3_S1.UNEM04 #> 192-select_one-Part3.P3_S1.UNEM05 #> 193-select_one-Part3.P3_S1.UNEM06 #> 194-select_one-Part3.P3_S1.UNEM07 #> 195-select_one-Part3.P3_S1.UNEM08 #> 196-select_one-Part3.P3_S1.UNEM09 #> 197-select_one-Part3.P3_S1.UNEM10 #> 198-select_one-Part3.P3_S1.INC01 #> 199-select_one-Part3.P3_S1.INC02 #> 200-select_one-Part3.P3_S1.BANK01 #> 201-select_one-Part3.P3_S1.BANK02 #> 202-select_one-Part3.P3_S1.BANK03 #> 203-select_one-Part3.P3_S1.BANK04 #> 204-select_one-Part3.P3_S1.BANK05 #> 205-select_one-Part3.P3_S3.FRM01 #> 206-select_one-Part3.P3_S3.FRM02 #> 207-select-Part3.P3_S3.FRM03 #> 208-text-Part3.P3_S3.FRM03_other #> 209-select_one-Part3.P3_S2.SAF01 #> 210-select_one-Part3.P3_S2.GBV01.GBV01_001 #> 211-select_one-Part3.P3_S2.GBV01.GBV01a #> 212-select_one-Part3.P3_S2.GBV01.GBV01b #> 213-select_one-Part3.P3_S2.GBV01.GBV01c #> 214-select_one-Part3.P3_S2.GBV01.GBV01d #> 215-calculate-group_Part4.S1.child_edu_group.listchild_edu_calcul_nc #> 216-calculate-group_Part4.S1.child_edu_group.n_selected_child_edu_calcul_nc #> 217-calculate-group_Part4.S1.child_edu_group.selected_child_edu_calcul_nc #> 218-calculate-group_Part4.S1.child_edu_group.name_selectedchild_edu_calcul_nc_age #> 219-calculate-group_Part4.S1.child_edu_group.name_selectedchild_edu #> 220-select_one-group_Part4.S1.child_edu_group.EDU01 #> 221-select_one-group_Part4.S1.child_edu_group.EDU02 #> 222-select_one-group_Part4.S1.child_edu_group.EDU03 #> 223-select_one-group_Part4.S1.child_edu_group.EDU04 #> 224-text-group_Part4.S1.child_edu_group.EDU04_other #> 225-select_one-group_Part4.S1.child_edu_group.EDU05 #> 226-text-group_Part4.S1.child_edu_group.EDU05_other #> 227-calculate-group_Part4.S2.comm_act.listbelow18 #> 228-calculate-group_Part4.S2.comm_act.n_selected_below18 #> 229-calculate-group_Part4.S2.comm_act.selected_below18 #> 230-calculate-group_Part4.S2.comm_act.name_selectedbelow18_age #> 231-calculate-group_Part4.S2.comm_act.name_selectedbelow18 #> 232-select_one-group_Part4.S2.comm_act.COMM01 #> 233-integer-group_Part4.S2.comm_act.COMM02 #> 234-select_one-group_Part4.S2.comm_act.COMM03 #> 235-select_one-group_Part4.S2.comm_act.COMM04 #> 236-calculate-group_Part4.S3. Reg below5.listbelow5 #> 237-calculate-group_Part4.S3. Reg below5.n_selected_below5 #> 238-calculate-group_Part4.S3. Reg below5.selected_below5 #> 239-calculate-group_Part4.S3. Reg below5.name_selectedbelow5_age #> 240-calculate-group_Part4.S3. Reg below5.name_selectedbelow5 #> 241-select_one-group_Part4.S3. Reg below5.REG03 #> 242-select_one-group_Part4.S3. Reg below5.REG04 #> 243-select_one-group_Part4.S3. Reg below5.S3_below5.REG05 #> 244-select_one-group_Part4.S3. Reg below5.S3_below5.REG05a #> 245-select_one-group_Part4.S3. Reg below5.S3_below5.REG05b #> 246-select_one-group_Part4.S3. Reg below5.S3_below5.REG05c #> 247-select_one-group_Part4.S3. Reg below5.S3_below5.REG05d #> 248-select_one-group_Part4.S3. Reg below5.S3_below5.REG05e #> 249-select_one-group_Part4.S3. Reg below5.S3_below5.REG05f #> 250-select_one-group_Part4.S3. Reg below5.REG06 #> 251-select_one-group_Part4.S4_vaccination.MMR01 #> 252-select_one-group_Part4.S4_vaccination.MMR02 #> 253-select_one-group_Part4.S4_vaccination.MMR03 #> 254-integer-group_Part4.S4_vaccination.MMR04 #> 255-select_one-complete_survey.contact_number #> 256-text-complete_survey.number_respondent #> 257-select_one-complete_survey.end_result #> 258-select_one-complete_survey.name_respondent #> 259-select_one-complete_survey.final_notes #> 260-text-complete_survey.final_notes_entry #> 261-calculate-end_time_1 #> 1 in repeat -rpt_hhmnames ///calculate-Part1.rpt_hhmnames.hhmnames_pos #> 2 in repeat -rpt_hhmnames ///calculate-Part1.rpt_hhmnames.HHH01_2_aux #> 3 in repeat -rpt_hhmnames ///text-Part1.rpt_hhmnames.HH01_aux #> 4 in repeat -rpt_hhmnames ///select_one-Part1.rpt_hhmnames.HH03_aux #> 5 in repeat -rpt_hhmnames ///calculate-Part1.rpt_hhmnames.HH01_2_aux #> 6 in repeat -rpt_hhmnames ///calculate-Part1.rpt_hhmnames.HH03_2_aux #> 1 in repeat -S1 ///calculate-Part1.S1.personId #> 2 in repeat -S1 ///calculate-Part1.S1.hhroster_pos_aux #> 3 in repeat -S1 ///calculate-Part1.S1.hhmnames_pos_match #> 4 in repeat -S1 ///calculate-Part1.S1.HH01 #> 5 in repeat -S1 ///calculate-Part1.S1.HH03 #> 6 in repeat -S1 ///select_one-Part1.S1.HH04 #> 7 in repeat -S1 ///select_one-Part1.S1.HH05 #> 8 in repeat -S1 ///date-Part1.S1.HH06 #> 9 in repeat -S1 ///calculate-Part1.S1.calcul1 #> 10 in repeat -S1 ///calculate-Part1.S1.age #> 11 in repeat -S1 ///calculate-Part1.S1.AgeMonths #> 12 in repeat -S1 ///calculate-Part1.S1.ageMD #> 13 in repeat -S1 ///integer-Part1.S1.age_est #> 14 in repeat -S1 ///integer-Part1.S1.months_est #> 15 in repeat -S1 ///calculate-Part1.S1.HH07 #> 16 in repeat -S1 ///calculate-Part1.S1.HH07_months #> 17 in repeat -S1 ///select_one-Part1.S1.HH08 #> 18 in repeat -S1 ///calculate-Part1.S1.start_time_2 #> 19 in repeat -S1 ///calculate-Part1.S1.position #> 20 in repeat -S1 ///calculate-Part1.S1.Relation_R #> 21 in repeat -S1 ///calculate-Part1.S1.adult18 #> 22 in repeat -S1 ///calculate-Part1.S1.women_b #> 23 in repeat -S1 ///calculate-Part1.S1.father_b #> 24 in repeat -S1 ///calculate-Part1.S1.childLess2 #> 25 in repeat -S1 ///calculate-Part1.S1.childLess2name #> 26 in repeat -S1 ///calculate-Part1.S1.women #> 27 in repeat -S1 ///calculate-Part1.S1.father #> 28 in repeat -S1 ///calculate-Part1.S1.adult #> 29 in repeat -S1 ///calculate-Part1.S1.women_b_count #> 30 in repeat -S1 ///calculate-Part1.S1.hh_size #> 31 in repeat -S1 ///calculate-Part1.S1.hhhead_age_ab18 #> 32 in repeat -S1 ///calculate-Part1.S1.adult_sum #> 33 in repeat -S1 ///calculate-Part1.S1.hhhead_age #> 34 in repeat -S1 ///calculate-Part1.S1.position18 #> 35 in repeat -S1 ///calculate-Part1.S1.adult01 #> 36 in repeat -S1 ///calculate-Part1.S1.age18above #> 37 in repeat -S1 ///calculate-Part1.S1.below5 #> 38 in repeat -S1 ///calculate-Part1.S1.below18 #> 39 in repeat -S1 ///calculate-Part1.S1.age_vaccine #> 40 in repeat -S1 ///calculate-Part1.S1.child_edu_calcul #> 41 in repeat -S1 ///calculate-Part1.S1.below5_r #> 42 in repeat -S1 ///calculate-Part1.S1.below18_r #> 43 in repeat -S1 ///calculate-Part1.S1.age_vaccine_r #> 44 in repeat -S1 ///calculate-Part1.S1.child_edu_calcul_r #> 45 in repeat -S1 ///calculate-Part1.S1.positionbelow5 #> 46 in repeat -S1 ///calculate-Part1.S1.positionbelow18 #> 47 in repeat -S1 ///calculate-Part1.S1.positionage_vaccine #> 48 in repeat -S1 ///calculate-Part1.S1.positionchild_edu_calcul #> 49 in repeat -S1 ///calculate-Part1.S1.below5_nc #> 50 in repeat -S1 ///calculate-Part1.S1.below18_nc #> 51 in repeat -S1 ///calculate-Part1.S1.age_vaccine_nc #> 52 in repeat -S1 ///calculate-Part1.S1.child_edu_calcul_nc # openxlsx::write.xlsx(datalist, here::here(\"inst\", \"dummy_RMS_CATI_v3.xlsx\"))"},{"path":"/articles/utilities.html","id":"data-wrangling","dir":"Articles","previous_headings":"","what":"Data Wrangling","title":"Utilities","text":"indicator calculation based predefined frame, variable name variable value. data wrangling therefore required performing calculations. packages comes tool support task. original data can transformed function fct_re_map(). mapper object build fct_build_map() function, require 2 files: IndicatorRequirementFile thi files created orginal template indicator scripts. creates mapping question variables indicator variables. mappingfile one created designed double check mapping can actually performed. obtain file, Apply fuzzy matching fct_var_mapping() map within specified XlsForm expected variables indicator calculation. output convenient excel file need manually revised. process similar data cleaning cleaning log implemented within {cleaningtools} data wrangling done function fct_re_map() obtain data exact format expected indicator calculation functions indicator calculation, fct_check_map() checks standard frame/variable/modalities present dataset.","code":""},{"path":"/articles/utilities.html","id":"fct_var_mapping","dir":"Articles","previous_headings":"Data Wrangling","what":"fct_var_mapping","title":"Utilities","text":"","code":"# Test the function form <- system.file(\"RMS_CAPI_v2.xlsx\", package = \"IndicatorCalc\") IndicatorRequirementFile <- system.file(\"RMS_CAPI_v2_mapper.xlsx\", package = \"IndicatorCalc\") # Get the map to revise mapper <- fct_var_mapping(xlsformpath = form, IndicatorRequirementFile = IndicatorRequirementFile, mappingfile_out = tempfile()) # here::here(\"inst\", \"RMS_CAPI_v2_mapping.xlsx\"))"},{"path":"/articles/utilities.html","id":"fct_build_map","dir":"Articles","previous_headings":"Data Wrangling","what":"fct_build_map","title":"Utilities","text":"","code":"mappingfile <- system.file(\"RMS_CAPI_v2_mapping.xlsx\", package = \"IndicatorCalc\") IndicatorRequirementFile <- system.file(\"RMS_CAPI_v2_mapper.xlsx\", package = \"IndicatorCalc\") mappermain <- fct_build_map(mappingfile = mappingfile, IndicatorRequirementFile = IndicatorRequirementFile, thisMeasureLevel = \"main\") mapperind <- fct_build_map(mappingfile = mappingfile, IndicatorRequirementFile = IndicatorRequirementFile, thisMeasureLevel = \"ind\")"},{"path":"/articles/utilities.html","id":"fct_get_all_variable_names","dir":"Articles","previous_headings":"Data Wrangling","what":"fct_get_all_variable_names","title":"Utilities","text":"","code":"datalist <- kobocruncher::kobo_data( system.file(\"demo_data.xlsx\", #\"test.xlsx\", package = \"IndicatorCalc\")) varname <- fct_get_all_variable_names(datalist = datalist) head(varname, 10) #> # A tibble: 10 × 2 #> df value #> #> 1 main _index #> 2 main start #> 3 main end #> 4 main start_time_1 #> 5 main intro.intro #> 6 main intro.interviewdate #> 7 main intro.Bureau #> 8 main intro.Country #> 9 main intro.countryname #> 10 main intro.geopoint"},{"path":"/articles/utilities.html","id":"fct_re_map","dir":"Articles","previous_headings":"Data Wrangling","what":"fct_re_map","title":"Utilities","text":"","code":"mapper = list( hierarchy = \"main\", variablemap = data.frame( label = c(\"Does this household use anything for lighting?\", \"What source of electricity is used most of the time in this household?\"), variable = c(\"LIGHT01\", \"LIGHT03\"), mappattern = c(\"LIGHT01\", \"LIGHT03\") ), modalitymap = data.frame( variable = c( \"LIGHT01\", \"LIGHT03\", \"LIGHT03\", \"LIGHT03\"), label = c( \"yes\", \"No electricity in household\", \"Other, specify\", \"Don't know\"), standard = c( \"1\", \"1\", \"96\", \"98\"), map = c(\"yes\", \"Noelec\", \"Other\", \"Dontknow\") ) ) ## One variable is not correctly datalist <- list(mainhousehold = data.frame( group.LIGHT01 = c(\"yes\", \"yes\", \"no\", \"yes\", \"yes\", \"no\", \"yes\", \"yes\", \"yes\"), group.LIGHT03 = c(\"Noelec\", \"Other\", \"Dontknow\", \"Noelec\", \"Other\", \"Dontknow\", \"Nuclear\", \"Other\", \"Dontknow\")) ) datalist <- fct_re_map(datalist = datalist, mapper = mapper ) #> Mapped levels for LIGHT01 are now: 1, no #> Mapped levels for LIGHT03 are now: 1, 96, 98, Nuclear #fct_check_map(datalist = datalist, mapper = mapper ) ## Now testing on a full remap... ## Dummy data created with fct_kobo_dummy datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2.xlsx\", package = \"IndicatorCalc\")) ## Mapping file created from Dummy data mappingfile <- system.file(\"RMS_CAPI_v2_mapping.xlsx\", package = \"IndicatorCalc\") IndicatorRequirementFile <- system.file(\"RMS_CAPI_v2_mapper.xlsx\", package = \"IndicatorCalc\") ## and now we remap both required variables for main and ind mappermain <- fct_build_map(mappingfile = mappingfile, IndicatorRequirementFile = IndicatorRequirementFile, thisMeasureLevel = \"main\") datalist <- fct_re_map(datalist = datalist, mapper = mappermain ) #> ℹ HEA01 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for HEA01 are now: 1, 2, 3, 4, 5, 96, 98 #> ℹ HEA02 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for HEA02 are now: 1, 2, 3, 96 #> The following `from` values were not present in `x`: 1 #> Mapped levels for HEA03 are now: 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95 #> Mapped levels for LIGHT01 are now: 0, 1 #> ℹ LIGHT02 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for LIGHT02 are now: 1, 10, 11, 12, 13, 2, 3, 4, 5, 6, 7, 8, 9, 96 #> ℹ LIGHT03 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for LIGHT03 are now: 1, 2, 3, 4, 5, 6, 7, 8, 96, 98 #> ℹ DWA01 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWA01 are now: 1, 10, 11, 12, 13, 14, 15, 16, 2, 3, 4, 5, 6, 7, 8, 9, 96, 98 #> ℹ DWA02 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWA02 are now: 1, 2, 3 #> Mapped levels for DWA03a are now: 1, 2 #> The following `from` values were not present in `x`: 1 #> Mapped levels for DWA03b are now: 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95 #> Mapped levels for DWA04 are now: 0, 1 #> ℹ DWE01 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE01 are now: 1, 2, 3, 4, 5, 6, 7, 8, 9, 96 #> ℹ DWE02 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE02 are now: 1, 2, 3, 4, 5, 6, 7, 8, 9, 96 #> ℹ DWE03 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE03 are now: 1, 10, 11, 12, 13, 2, 3, 4, 5, 6, 7, 8, 9, 96 #> ℹ DWE04 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE04 are now: 1, 10, 11, 12, 13, 14, 15, 2, 3, 4, 5, 6, 7, 8, 9, 96 #> The following `from` values were not present in `x`: 1 #> Mapped levels for DWE05 are now: 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95 #> Mapped levels for DWE08 are now: 0, 1 #> Mapped levels for DWE09 are now: 1, 2, 3, 4 #> The following `from` values were not present in `x`: 1 #> Mapped levels for HH01 are now: 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95 #> Mapped levels for SAF01 are now: 1, 2, 3, 4, 98, 99 #> Mapped levels for GBV01a are now: 0, 1, 98 #> Mapped levels for GBV01b are now: 0, 1, 98 #> Mapped levels for GBV01c are now: 0, 1, 98 #> Mapped levels for GBV01d are now: 0, 1, 98 #> Mapped levels for VAW01a are now: 0, 1, 99 #> Mapped levels for VAW01b are now: 0, 1, 99 #> Mapped levels for VAW01c are now: 0, 1, 99 #> Mapped levels for VAW01d are now: 0, 1, 99 #> Mapped levels for VAW01e are now: 0, 1, 99 #> Mapped levels for BIR01 are now: 0, 1 #> Mapped levels for BIR02 are now: 0, 1 #> ℹ BIR03 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> The following `from` values were not present in `x`: 2, 3, 4, 5, 6, 96, 98 #> Mapped levels for BIR03 are now: 0, 1 #> ℹ BIR04 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for BIR04 are now: 1, 2, 3, 96 #> ℹ TOI01 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for TOI01 are now: 1, 10, 11, 12, 2, 3, 4, 5, 6, 7, 8, 9, 96 #> Mapped levels for TOI02 are now: 1, 2, 98 #> ℹ COOK02 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for COOK02 are now: 1, 10, 2, 3, 4, 5, 6, 7, 8, 9, 96 #> ℹ COOK03 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for COOK03 are now: 1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2, 20, 21, 3, 4, 5, 6, 7, 8, 9, 96 #> Mapped levels for BANK01 are now: 0, 1 #> Mapped levels for BANK02 are now: 0, 1 #> Mapped levels for BANK03 are now: 0, 1 #> Mapped levels for BANK04 are now: 0, 1 #> Mapped levels for BANK05 are now: 0, 1 #> Mapped levels for INC01 are now: 1, 2, 3, 98 #> Mapped levels for UNEM01 are now: 0, 1 #> Mapped levels for UNEM02 are now: 0, 1 #> Mapped levels for UNEM03 are now: 0, 1 #> Mapped levels for UNEM04 are now: 0, 1 #> Mapped levels for UNEM05 are now: 0, 1 #> Mapped levels for UNEM06 are now: 1, 2, 3 #> Mapped levels for UNEM07 are now: 1, 2, 3 #> Mapped levels for UNEM08 are now: 1, 2, 3, 4 #> Mapped levels for UNEM09 are now: 0, 1 #> Mapped levels for UNEM10 are now: 0, 1 #> ℹ DWE06 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE06 are now: 1, 2, 3, 4, 5, 6, 7, 8, 9, 96, 98, 99 #> ℹ DWE07 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE07 are now: 1, 10, 11, 2, 3, 4, 5, 6, 7, 8, 9, 96, 98, 99 #> ℹ DWE10 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE10 are now: 1, 2, 3, 4, 5, 6, 96 #> Mapped levels for DWE11 are now: 1, 2, 3, 4, 99 #> Mapped levels for SPF01a are now: 0, 1, 98 #> Mapped levels for SPF01b are now: 0, 1, 98 #> Mapped levels for SPF01c are now: 0, 1, 98 #> Mapped levels for SPF01d are now: 0, 1, 98 #> Mapped levels for SPF01e are now: 0, 1, 98 #> Mapped levels for SPF01f are now: 0, 1, 98 #> Mapped levels for SPF01g are now: 0, 1, 98 #> Mapped levels for SPF01h are now: 0, 1, 98 mapperind <- fct_build_map(mappingfile = mappingfile, IndicatorRequirementFile = IndicatorRequirementFile, thisMeasureLevel = \"ind\") datalist <- fct_re_map(datalist = datalist, mapper = mapperind ) #> Mapped levels for HACC01 are now: 0, 1 #> ℹ HACC02 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> The following `from` values were not present in `x`: 2, 3, 4, 5, 96 #> Mapped levels for HACC02 are now: 0, 1 #> Mapped levels for HACC03 are now: 0, 1 #> ℹ HACC04 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> The following `from` values were not present in `x`: 2, 3, 4, 5, 6, 7, 8, 9, 10, 96 #> Mapped levels for HACC04 are now: 0, 1 #> Mapped levels for EDU01 are now: 0, 1 #> Mapped levels for EDU02 are now: 0, 1 #> Mapped levels for EDU03 are now: 1, 2, 3, 4, 5, 6, 98 #> ℹ EDU04 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for EDU04 are now: 1, 2, 3, 4, 5, 96, 98 #> ℹ HH07 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> The following `from` values were not present in `x`: 1 #> Mapped levels for HH07 are now: 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95 #> Mapped levels for REG03 are now: 0, 1, 98 #> Mapped levels for REG04 are now: 0, 1, 98, 99 #> Mapped levels for REG01a are now: 0, 1, 99 #> Mapped levels for REG01b are now: 0, 1, 99 #> Mapped levels for REG01c are now: 0, 1, 99 #> Mapped levels for REG01d are now: 0, 1, 99 #> Mapped levels for REG01e are now: 0, 1, 99 #> Mapped levels for REG01f are now: 0, 1, 99 #> Mapped levels for REG01g are now: 0, 1, 99 #> Mapped levels for REG02 are now: 0, 1, 99 #> Mapped levels for REG05a are now: 0, 1, 99 #> Mapped levels for REG05b are now: 0, 1, 99 #> Mapped levels for REG05c are now: 0, 1, 99 #> Mapped levels for REG05d are now: 0, 1, 99 #> Mapped levels for REG05e are now: 0, 1, 99 #> Mapped levels for REG05f are now: 0, 1, 99 #> Mapped levels for REG06 are now: 0, 1, 99 #> Mapped levels for COMM01 are now: 0, 1 #> The following `from` values were not present in `x`: 1 #> Mapped levels for COMM02 are now: 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95 #> Mapped levels for COMM03 are now: 0, 1, 98 #> Mapped levels for COMM04 are now: 0, 1, 98 #> Mapped levels for MMR03 are now: 0, 1, 98 #> ℹ TOI03 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for TOI03 are now: 1, 2, 3, 4, 5, 96, 98 #> ℹ TOI04 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for TOI04 are now: 1, 2, 3 #> Mapped levels for TOI05 are now: 0, 1 #> Mapped levels for COOK01 are now: 0, 1 ## Writing this in the installation folder of the packages to run all examples # openxlsx::write.xlsx( list ( main = as.data.frame(datalist[[\"main\"]]), # ind = as.data.frame(datalist[[\"ind\"]]) ), # here::here(\"inst\",\"dummy_RMS_CAPI_v2_mapped.xlsx\"))"},{"path":"/articles/utilities.html","id":"fct_check_map","dir":"Articles","previous_headings":"Data Wrangling","what":"fct_check_map","title":"Utilities","text":"","code":"## below is the mapper to chck if we have the variables to calculate the # electricity subindicators within impact 2.2 mapper = list( hierarchy = \"main\", variablemap = data.frame( label = c( \"Does this household use anything for lighting?\", \"What source of electricity is used most of the time in this household?\"), variable = c(\"LIGHT01\", \"LIGHT03\") ), modalitymap = data.frame( variable = c( \"LIGHT01\", \"LIGHT03\", \"LIGHT03\", \"LIGHT03\"), label = c( \"yes\", \"No electricity in household\", \"Other, specify\", \"Don't know\"), standard = c( \"1\", \"1\", \"96\", \"98\") ) ) ## Correct format data <- list(main = data.frame( LIGHT01 = c(\"1\", \"1\", \"0\", \"1\", \"1\", \"0\", \"1\", \"1\", \"1\"), LIGHT03 = c(\"1\", \"96\", \"98\", \"1\", \"96\", \"98\", \"0\", \"96\", \"98\")) ) check <- fct_check_map(datalist = data, mapper = mapper ) #> ✔ LIGHT01 #> ✔ LIGHT03 check #> [1] \"TRUE\" ## One variable is not correctly data <- list(main = data.frame( LIGHT01 = c(\"1\", \"1\", \"0\", \"1\", \"1\", \"0\", \"1\", \"1\", \"1\"), LIGH03 = c(\"1\", \"96\", \"98\", \"1\", \"96\", \"98\", \"0\", \"96\", \"98\")) ) check <- fct_check_map(datalist = data, mapper = mapper ) #> ✔ LIGHT01 #> ✖ LIGHT03 not found in the dataset. check #> [1] \"FALSE\" ## The first variable does not include a single 1... data <- list(main = data.frame( LIGHT01 = c(\"0\", \"0\", \"0\", \"0\", \"0\", \"0\", \"0\", \"0\", \"0\"), LIGHT03 = c(\"1\", \"96\", \"98\", \"1\", \"96\", \"98\", \"0\", \"96\", \"98\")) ) check <- fct_check_map(datalist = data, mapper = mapper ) #> ℹ LIGHT01 misses responses options among : 1 #> ✔ LIGHT03 check #> [1] \"FALSE\""},{"path":[]},{"path":"/articles/utilities.html","id":"fct_plot_indic_donut","dir":"Articles","previous_headings":"Plot","what":"fct_plot_indic_donut","title":"Utilities","text":"","code":"test <- data.frame( shelter = rbinom(20, 1, 0.5)) |> dplyr::mutate( shelter = labelled::labelled( shelter, labels = c( \"Yes\" = 1, \"No\" = 0), label = \"Access to adequate shelter also testing a long title to see if it wraps well\")) fct_plot_indic_donut(indicator = test$shelter, subtitle_chart = NULL, caption_chart = NULL, ordered_threhold = NULL, iconunicode = \"e54f\") ## test no value test2 <- NULL fct_plot_indic_donut(indicator = test2, subtitle_chart = NULL, caption_chart = NULL, ordered_threhold = NULL, iconunicode = \"e54f\") #> No value was supplied for plotting..."},{"path":"/articles/utilities.html","id":"fct_plot_rbm_sdg---sdg-comparison","dir":"Articles","previous_headings":"Plot","what":"fct_plot_rbm_sdg - SDG Comparison","title":"Utilities","text":"","code":"# fct_plot_rbm_sdg( country = \"BRA\", # rbm = \"impact2_2\", # years = c(2000, 2022)) + # unhcrthemes::theme_unhcr(font_size = 10)"},{"path":[]},{"path":"/articles/utilities.html","id":"fct_compass_table","dir":"Articles","previous_headings":"Export Indicator table","what":"fct_compass_table","title":"Utilities","text":"","code":"# compass <- export_compass_fill( country = \"ECU\", # operation = \"Ecuador ABC\", # year = 2022, # population_type = c(\"REF\",\"ASY\", \"OIP\"), # population_rms = \"Refugees and Asylum-seekers\", # rms_indicator = rbind( # c(\"main\", \"impact2_2\", \"2.2 Proportion of PoCs residing in physically safe and # secure settlements with access to basic facilities\"), # c(\"main\", \"impact2_3\", \"2.3 Proportion of PoC with access to health services\"), # c(\"P2.S3\", \"impact3_2a\", \"3.2a Proportion of PoC enrolled in primary education\" ), # c(\"P2.S3\", \"impact3_2b\", \"3.2b Proportion of PoC enrolled in secondary education\" ), # c(\"main\", \"impact3_3\", \"3.3 Proportion of PoC feeling safe walking alone in their neighborhood (related SDG 16.1.4).\" ), # c(\"S2\", \"outcome1_2\", \"1.2 Proportion of children under 5 years of age whose births # have been registered with a civil authority. [SDG 16.9.1 - Tier 1]\" ), # c(\"S2\", \"outcome1_3\", \"1.3 Proportion of PoC with legally recognized identity documents or credentials [GCR 4.2.2].\" ), # c(\"main\", \"outcome4_1\", \"4.1 Proportion of PoC who know where to access available GBV services.\" ), # c(\"main\", \"outcome4_2\", \"4.2 Proportion of POCs who do not accept violence against women.\" ), # c(\"main\", \"outcome8_2\", \"8.2 Proportion of PoC with primary reliance on clean (cooking) fuels and technology [SDG 7.1.2 Tier 1]\" ), # c(\"main\", \"outcome9_1\", \"9.1 Proportion of PoCs living in habitable and affordable housing.\" ), # c(\"main\", \"outcome9_2\", \"9.2 Proportion of PoC that have energy to ensure lighting (close to Sphere).\" ), # c(\"main\",\"outcome12_1\", \"12.1 Proportion of PoC using at least basic drinking water services (SDG).\" ), # # c(\"main\" , \"outcome12_2\", \"12.2 Proportion of PoC with access to a safe household toilet (SDG).\" ), # c(\"main\", \"outcome13_1\", \"13.1. Proportion of PoC with an account at a bank or other # financial institution or with a mobile-money-service provider [SDG 8.10.2 Tier 1].\" ), # c(\"main\", \"outcome13_2\", \"13.2. Proportion of PoC who self-report positive changes in their income compared to previous year.\" ), # c(\"main\", \"outcome13_3\", \"13.3 Proportion of PoC (working age) who are unemployed.\" ), # c(\"main\", \"outcome16_1\", \"16.1. Proportion of PoC with secure tenure rights and/or # property rights to housing and/or land [revised SDG indicator 1.4.2].\" )#, # # c(\"main\", \"outcome16_2\", \"16.2. Proportion of PoC covered by social protection floors/systems [SDG 1.3.1].\" ) # ), # ridl = params$ridl, # publish = params$publish )"},{"path":[]},{"path":"/articles/utilities.html","id":"fct_build_requirement","dir":"Articles","previous_headings":"Utilities","what":"fct_build_requirement","title":"Utilities","text":"","code":"## Write in dev/mapper.R each of the function parameters - as recorded in system.file(\"IndicMap.xlsx\", package = \"IndicatorCalc\") xlsformpath <- system.file(\"RMS_CAPI_v2.xlsx\", package = \"IndicatorCalc\") RMS_CAPI_v2_mapper <- fct_build_requirement(xlsformpath ) #> /tmp/Rtmp9ZtHUi/file1bc9658faf0b6 # openxlsx::write.xlsx(RMS_CAPI_v2_mapper, here::here(\"inst\", \"RMS_CAPI_v2_mapper.xlsx\")) xlsformpath <- system.file(\"RMS_CAPI_v3.xlsx\", package = \"IndicatorCalc\") RMS_CAPI_v3_mapper <- fct_build_requirement(xlsformpath ) #> Warning: Expected 2 pieces. Additional pieces discarded in 1 rows [376]. #> /tmp/Rtmp9ZtHUi/file1bc966ec1a9ee # openxlsx::write.xlsx(RMS_CAPI_v3_mapper, here::here(\"inst\", \"RMS_CAPI_v3_mapper.xlsx\")) ## CATI xlsformpath <- system.file(\"RMS_CATI_v0.xlsx\", package = \"IndicatorCalc\") RMS_CATI_v0_mapper <- fct_build_requirement(xlsformpath ) #> /tmp/Rtmp9ZtHUi/file1bc96497a5958 # openxlsx::write.xlsx(RMS_CATI_v0_mapper, here::here(\"inst\", \"RMS_CATI_v0_mapper.xlsx\")) xlsformpath <- system.file(\"RMS_CATI_v3.xlsx\", package = \"IndicatorCalc\") RMS_CATI_v3_mapper <- fct_build_requirement(xlsformpath ) #> Warning: Expected 2 pieces. Additional pieces discarded in 1 rows [326]. #> /tmp/Rtmp9ZtHUi/file1bc969da8e01 # openxlsx::write.xlsx(RMS_CATI_v3_mapper, here::here(\"inst\", \"RMS_CATI_v3_mapper.xlsx\"))"},{"path":"/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Edouard Legoupil. Author, maintainer. Ilgi Bozdag. Contributor. UNHCR. Copyright holder.","code":""},{"path":"/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Legoupil E (2023). IndicatorCalc: Calculate Standard Survey Indicators Forcibly Displaced Population. R package version 0.0.0.9000, https://github.com/unhcr-americas/IndicatorCalc.","code":"@Manual{, title = {IndicatorCalc: Calculate Standard Survey Indicators for Forcibly Displaced Population}, author = {Edouard Legoupil}, year = {2023}, note = {R package version 0.0.0.9000}, url = {https://github.com/unhcr-americas/IndicatorCalc}, }"},{"path":"/index.html","id":"indicatorcalc-","dir":"","previous_headings":"","what":"Calculate Standard Survey Indicators for Forcibly Displaced\n Population","title":"Calculate Standard Survey Indicators for Forcibly Displaced\n Population","text":"broad consensus around key indicators used measure, inform monitor progress towards global development objectives, exemplified Sustainable Development Goals related efforts MICS, DHS, IHSN, together national governments. UNHCR’s objectives largely aligned frameworks. UNHCR Results Monitoring Surveys (RMS) household-level surveys standard questionnaires following context-appropriate methodological approaches. can implemented across UNHCR operations monitor changes lives relevant groups persons concern (impacts) UNHCR’s key areas engagement (outcomes). RMS help us calculate impact outcome indicators standardized way global understanding results. indicators questionnaire also largely aligned MICS, DHS, IHSN, national household surveys UNHCR standardized surveys. goal IndicatorCalc ease implementation standard calculations survey indicators related Forcibly Displaced Population. Among objectives also avoid duplication documentation efforts around information include technical report information already expected gathered recorded within UNHCR Internal Data Repository following Data Documentation Initiative standards. package designed work based dataset standard backup format exported kobotoolbox within UNHCR internal data repository. adapted initial indicator script version. calculation implemented function -built check identify whether expected variables modalities within dataset mapper transform data expected format case divergence data structure collected expected. can check function reference see details documented calculations Please check tutorial ","code":""},{"path":"/index.html","id":"usage","dir":"","previous_headings":"","what":"Usage","title":"Calculate Standard Survey Indicators for Forcibly Displaced\n Population","text":"easiest way use package shiny Companion App follow instruction . workflow described : Run function var_mapping( “path//myxlsform.xlsx”) order create variable mapping. variable mapping designed check expected variables modalities present dataset. Review manually variable mapping recode data manually variables automatic match applied upload back either generate dummy dataset connect project RIDL apply calculation get summary report download expanded XlsForm include within Kobocruncher automatic data exploration","code":""},{"path":"/index.html","id":"console-user--developpers","dir":"","previous_headings":"","what":"Console user / Developpers","title":"Calculate Standard Survey Indicators for Forcibly Displaced\n Population","text":"can install development version {IndicatorCalc} GitHub : riddle package used ensure integration UNHCR Data Repository. requires add API token store use. easiest way store API token .Renviron file automatically read R startup. can retrieve API TOKEN user page. api_token_img use package, ’ll need store RIDL API token RIDL_API_TOKEN environment variable. easiest way calling usethis::edit_r_environ() adding line RIDL_API_TOKEN=xxxxx file saving restarting R session.","code":"install.packages(\"pak\") pak::pkg_install(\"unhcr-americas/IndicatorCalc\")"},{"path":"/index.html","id":"contributing","dir":"","previous_headings":"","what":"Contributing","title":"Calculate Standard Survey Indicators for Forcibly Displaced\n Population","text":"Contributions packages welcome. Please, follow code conduct. encounter bug idea new feature check, please fill ticket github.","code":""},{"path":"/reference/fct_build_map.html","id":null,"dir":"Reference","previous_headings":"","what":"fct_build_map — fct_build_map","title":"fct_build_map — fct_build_map","text":"Quick helper reformat data mapping file mapping file use indicator calculation. T","code":""},{"path":"/reference/fct_build_map.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"fct_build_map — fct_build_map","text":"","code":"fct_build_map(mappingfile, IndicatorRequirementFile, thisMeasureLevel)"},{"path":"/reference/fct_build_map.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"fct_build_map — fct_build_map","text":"mappingfile full path xlsx file revise variable mapping generated fct_var_mapping() IndicatorRequirementFile path file standard mapping depending form version thisMeasureLevel can ind individual level main household level","code":""},{"path":"/reference/fct_build_map.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"fct_build_map — fct_build_map","text":"list","code":""},{"path":"/reference/fct_build_map.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"fct_build_map — fct_build_map","text":"needs done two steps: one ind individual level one main household level","code":""},{"path":"/reference/fct_build_map.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"fct_build_map — fct_build_map","text":"","code":"mappingfile <- system.file(\"RMS_CAPI_v2_mapping.xlsx\", package = \"IndicatorCalc\") IndicatorRequirementFile <- system.file(\"RMS_CAPI_v2_mapper.xlsx\", package = \"IndicatorCalc\") mappermain <- fct_build_map(mappingfile = mappingfile, IndicatorRequirementFile = IndicatorRequirementFile, thisMeasureLevel = \"main\") mapperind <- fct_build_map(mappingfile = mappingfile, IndicatorRequirementFile = IndicatorRequirementFile, thisMeasureLevel = \"ind\")"},{"path":"/reference/fct_build_requirement.html","id":null,"dir":"Reference","previous_headings":"","what":"fct_build_requirement — fct_build_requirement","title":"fct_build_requirement — fct_build_requirement","text":"Write file variable requirement single indicator functions","code":""},{"path":"/reference/fct_build_requirement.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"fct_build_requirement — fct_build_requirement","text":"","code":"fct_build_requirement(xlsformpath)"},{"path":"/reference/fct_build_requirement.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"fct_build_requirement — fct_build_requirement","text":"xlsformpath path xlsform","code":""},{"path":"/reference/fct_build_requirement.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"fct_build_requirement — fct_build_requirement","text":"print console","code":""},{"path":"/reference/fct_build_requirement.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"fct_build_requirement — fct_build_requirement","text":"function used conveniently keep mapping excel tables used show variable requirements indicator calculation expects specific table within xlsform called Indicator_to_question","code":""},{"path":"/reference/fct_build_requirement.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"fct_build_requirement — fct_build_requirement","text":"","code":"## Write in dev/mapper.R each of the function parameters - as recorded in system.file(\"IndicMap.xlsx\", package = \"IndicatorCalc\") xlsformpath <- system.file(\"RMS_CAPI_v2.xlsx\", package = \"IndicatorCalc\") RMS_CAPI_v2_mapper <- fct_build_requirement(xlsformpath ) #> /tmp/RtmpPERPC7/file1b4ac4a98da26 # openxlsx::write.xlsx(RMS_CAPI_v2_mapper, here::here(\"inst\", \"RMS_CAPI_v2_mapper.xlsx\")) xlsformpath <- system.file(\"RMS_CAPI_v3.xlsx\", package = \"IndicatorCalc\") RMS_CAPI_v3_mapper <- fct_build_requirement(xlsformpath ) #> Warning: Expected 2 pieces. Additional pieces discarded in 1 rows [376]. #> /tmp/RtmpPERPC7/file1b4aca6745dd # openxlsx::write.xlsx(RMS_CAPI_v3_mapper, here::here(\"inst\", \"RMS_CAPI_v3_mapper.xlsx\")) ## CATI xlsformpath <- system.file(\"RMS_CATI_v0.xlsx\", package = \"IndicatorCalc\") RMS_CATI_v0_mapper <- fct_build_requirement(xlsformpath ) #> /tmp/RtmpPERPC7/file1b4ac68285ae1 # openxlsx::write.xlsx(RMS_CATI_v0_mapper, here::here(\"inst\", \"RMS_CATI_v0_mapper.xlsx\")) xlsformpath <- system.file(\"RMS_CATI_v3.xlsx\", package = \"IndicatorCalc\") RMS_CATI_v3_mapper <- fct_build_requirement(xlsformpath ) #> Warning: Expected 2 pieces. Additional pieces discarded in 1 rows [326]. #> /tmp/RtmpPERPC7/file1b4ac51ce3954 # openxlsx::write.xlsx(RMS_CATI_v3_mapper, here::here(\"inst\", \"RMS_CATI_v3_mapper.xlsx\"))"},{"path":"/reference/fct_check_map.html","id":null,"dir":"Reference","previous_headings":"","what":"fct_check_map — fct_check_map","title":"fct_check_map — fct_check_map","text":"functions checks standard variables modalities included mapper actually present datalist exact name - actually usually case standard format save kobo dataset xlsx includes group variable name. function used internally indicator function eror catcher performing calculations...","code":""},{"path":"/reference/fct_check_map.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"fct_check_map — fct_check_map","text":"","code":"fct_check_map(datalist, mapper)"},{"path":"/reference/fct_check_map.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"fct_check_map — fct_check_map","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data() mapper list providing mapping variables used calculation - mapper potentially adjusted relation deviation standard XlsForm contextualized dataset","code":""},{"path":"/reference/fct_check_map.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"fct_check_map — fct_check_map","text":"boolean flag TRUE FALSE indicating can go forward indicator calculation","code":""},{"path":"/reference/fct_check_map.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"fct_check_map — fct_check_map","text":"","code":"## below is the mapper to chck if we have the variables to calculate the # electricity subindicators within impact 2.2 mapper = list( hierarchy = \"main\", variablemap = data.frame( label = c( \"Does this household use anything for lighting?\", \"What source of electricity is used most of the time in this household?\"), variable = c(\"LIGHT01\", \"LIGHT03\") ), modalitymap = data.frame( variable = c( \"LIGHT01\", \"LIGHT03\", \"LIGHT03\", \"LIGHT03\"), label = c( \"yes\", \"No electricity in household\", \"Other, specify\", \"Don't know\"), standard = c( \"1\", \"1\", \"96\", \"98\") ) ) ## Correct format data <- list(main = data.frame( LIGHT01 = c(\"1\", \"1\", \"0\", \"1\", \"1\", \"0\", \"1\", \"1\", \"1\"), LIGHT03 = c(\"1\", \"96\", \"98\", \"1\", \"96\", \"98\", \"0\", \"96\", \"98\")) ) check <- fct_check_map(datalist = data, mapper = mapper ) #> ✔ LIGHT01 #> ✔ LIGHT03 check #> [1] \"TRUE\" ## One variable is not correctly data <- list(main = data.frame( LIGHT01 = c(\"1\", \"1\", \"0\", \"1\", \"1\", \"0\", \"1\", \"1\", \"1\"), LIGH03 = c(\"1\", \"96\", \"98\", \"1\", \"96\", \"98\", \"0\", \"96\", \"98\")) ) check <- fct_check_map(datalist = data, mapper = mapper ) #> ✔ LIGHT01 #> ✖ LIGHT03 not found in the dataset. check #> [1] \"FALSE\" ## The first variable does not include a single 1... data <- list(main = data.frame( LIGHT01 = c(\"0\", \"0\", \"0\", \"0\", \"0\", \"0\", \"0\", \"0\", \"0\"), LIGHT03 = c(\"1\", \"96\", \"98\", \"1\", \"96\", \"98\", \"0\", \"96\", \"98\")) ) check <- fct_check_map(datalist = data, mapper = mapper ) #> ℹ LIGHT01 misses responses options among : 1 #> ✔ LIGHT03 check #> [1] \"FALSE\""},{"path":"/reference/fct_compass_table.html","id":null,"dir":"Reference","previous_headings":"","what":"Write simple compass indicator table — fct_compass_table","title":"Write simple compass indicator table — fct_compass_table","text":"function take list calculated variables RMS output excel document folder correct format import COMPASS.","code":"The function assumes you have already calculated the indicators and have a datalist object with all the correct calculation inside. The output can conveniently be upoaded as an indicator ressource in ridl"},{"path":"/reference/fct_compass_table.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Write simple compass indicator table — fct_compass_table","text":"","code":"fct_compass_table( country, operation, year, population_type, population_rms, rms_indicator, ridl, publish )"},{"path":"/reference/fct_compass_table.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Write simple compass indicator table — fct_compass_table","text":"country iso3 code country (easier recall M49 used API) operation operation name year year use extract baseline Population Statistics population_type list population type baseline calculation population_rms list population type covered RMS rms_indicator list indicators related frame pull value ridl name ridl data container push data publish yes / ","code":""},{"path":"/reference/fct_compass_table.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Write simple compass indicator table — fct_compass_table","text":"frame compass indicators","code":""},{"path":"/reference/fct_compass_table.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Write simple compass indicator table — fct_compass_table","text":"","code":"# compass <- export_compass_fill( country = \"ECU\", # operation = \"Ecuador ABC\", # year = 2022, # population_type = c(\"REF\",\"ASY\", \"OIP\"), # population_rms = \"Refugees and Asylum-seekers\", # rms_indicator = rbind( # c(\"main\", \"impact2_2\", \"2.2 Proportion of PoCs residing in physically safe and # secure settlements with access to basic facilities\"), # c(\"main\", \"impact2_3\", \"2.3 Proportion of PoC with access to health services\"), # c(\"P2.S3\", \"impact3_2a\", \"3.2a Proportion of PoC enrolled in primary education\" ), # c(\"P2.S3\", \"impact3_2b\", \"3.2b Proportion of PoC enrolled in secondary education\" ), # c(\"main\", \"impact3_3\", \"3.3 Proportion of PoC feeling safe walking alone in their neighborhood (related SDG 16.1.4).\" ), # c(\"S2\", \"outcome1_2\", \"1.2 Proportion of children under 5 years of age whose births # have been registered with a civil authority. [SDG 16.9.1 - Tier 1]\" ), # c(\"S2\", \"outcome1_3\", \"1.3 Proportion of PoC with legally recognized identity documents or credentials [GCR 4.2.2].\" ), # c(\"main\", \"outcome4_1\", \"4.1 Proportion of PoC who know where to access available GBV services.\" ), # c(\"main\", \"outcome4_2\", \"4.2 Proportion of POCs who do not accept violence against women.\" ), # c(\"main\", \"outcome8_2\", \"8.2 Proportion of PoC with primary reliance on clean (cooking) fuels and technology [SDG 7.1.2 Tier 1]\" ), # c(\"main\", \"outcome9_1\", \"9.1 Proportion of PoCs living in habitable and affordable housing.\" ), # c(\"main\", \"outcome9_2\", \"9.2 Proportion of PoC that have energy to ensure lighting (close to Sphere).\" ), # c(\"main\",\"outcome12_1\", \"12.1 Proportion of PoC using at least basic drinking water services (SDG).\" ), # # c(\"main\" , \"outcome12_2\", \"12.2 Proportion of PoC with access to a safe household toilet (SDG).\" ), # c(\"main\", \"outcome13_1\", \"13.1. Proportion of PoC with an account at a bank or other # financial institution or with a mobile-money-service provider [SDG 8.10.2 Tier 1].\" ), # c(\"main\", \"outcome13_2\", \"13.2. Proportion of PoC who self-report positive changes in their income compared to previous year.\" ), # c(\"main\", \"outcome13_3\", \"13.3 Proportion of PoC (working age) who are unemployed.\" ), # c(\"main\", \"outcome16_1\", \"16.1. Proportion of PoC with secure tenure rights and/or # property rights to housing and/or land [revised SDG indicator 1.4.2].\" )#, # # c(\"main\", \"outcome16_2\", \"16.2. Proportion of PoC covered by social protection floors/systems [SDG 1.3.1].\" ) # ), # ridl = params$ridl, # publish = params$publish )"},{"path":"/reference/fct_get_all_variable_names.html","id":null,"dir":"Reference","previous_headings":"","what":"fct_get_all_variable_names — fct_get_all_variable_names","title":"fct_get_all_variable_names — fct_get_all_variable_names","text":"Generate map variables within datalist obtained RIDL - standard Kobo extract Excel","code":""},{"path":"/reference/fct_get_all_variable_names.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"fct_get_all_variable_names — fct_get_all_variable_names","text":"","code":"fct_get_all_variable_names(datalist)"},{"path":"/reference/fct_get_all_variable_names.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"fct_get_all_variable_names — fct_get_all_variable_names","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data()","code":""},{"path":"/reference/fct_get_all_variable_names.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"fct_get_all_variable_names — fct_get_all_variable_names","text":"dataframe variables list member names","code":""},{"path":"/reference/fct_get_all_variable_names.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"fct_get_all_variable_names — fct_get_all_variable_names","text":"","code":"datalist <- kobocruncher::kobo_data( system.file(\"demo_data.xlsx\", #\"test.xlsx\", package = \"IndicatorCalc\")) varname <- fct_get_all_variable_names(datalist = datalist) head(varname, 10) #> # A tibble: 10 × 2 #> df value #> #> 1 main _index #> 2 main start #> 3 main end #> 4 main start_time_1 #> 5 main intro.intro #> 6 main intro.interviewdate #> 7 main intro.Bureau #> 8 main intro.Country #> 9 main intro.countryname #> 10 main intro.geopoint"},{"path":"/reference/fct_kobo_dummy.html","id":null,"dir":"Reference","previous_headings":"","what":"fct_kobo_dummy — fct_kobo_dummy","title":"fct_kobo_dummy — fct_kobo_dummy","text":"Automatically produce dummy dataset line structure XlsForm Making decisions research design analysis strategies often difficult data collected, hard imagine exact form data take. function helps imagine data look like collect . samplesize set per defautl 500 records Supported Features: Generate data set respects ODK structure \"relevant\" skip logic (advanced functionality \"coalesce()\" covered) respects \"constraint\" respects \"repeat\" adds ID column link hierarchical data based \"repeat_count\" function rewriting https://unhcr.github.io/koboloadeR/docs/reference/kobo_dummy.html also build https://thinkr-open.github.io/fakir/ https://docs.ropensci.org/charlatan/","code":""},{"path":"/reference/fct_kobo_dummy.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"fct_kobo_dummy — fct_kobo_dummy","text":"","code":"fct_kobo_dummy(form, n = 384, file)"},{"path":"/reference/fct_kobo_dummy.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"fct_kobo_dummy — fct_kobo_dummy","text":"form file path XlsForm n number main records generated file file xlsx save resulting data nrepeat max random number repeat records generated repeat_count mentionned","code":""},{"path":"/reference/fct_kobo_dummy.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"fct_kobo_dummy — fct_kobo_dummy","text":"data list series dummy data","code":""},{"path":"/reference/fct_kobo_dummy.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"fct_kobo_dummy — fct_kobo_dummy","text":"","code":"## generate dummy dataset for different form version ## CAPI form <- system.file(\"RMS_CAPI_v2.xlsx\", package = \"IndicatorCalc\") datalist <- fct_kobo_dummy(form, n = 384, file = NULL) #> 1-start-start #> 2-end-end #> 3-calculate-start_t #> 4-calculate-end_t #> 5-calculate-time_ds #> 6-calculate-time_dm #> 7-start-geopoint-gps #> 8-date-group_intro.interviewdate #> 9-select_one-group_intro.Bureau #> 10-select_one-group_intro.Country #> 11-calculate-group_intro.countryname #> 12-geopoint-group_intro.geopoint #> 13-select_one-group_intro.pop_groups #> 14-text-group_intro2.Intro01 #> 15-text-group_intro2.Intro02 #> 16-select_one-group_intro2.Intro03 #> 17-acknowledge-group_intro2.consent_form #> 18-select_one-group_intro2.Intro04 #> 19-select_one-group_intro2.Intro05 #> 20-text-group_intro2.Intro05_other #> 21-integer-group_Part1.HH01 #> 22-calculate-group_Part1.Relation_Count #> 23-calculate-group_Part1.namechild2less #> 24-calculate-group_Part1.nochild2less #> 25-calculate-group_Part1.women_name_b_total #> 26-calculate-group_Part1.women_name_b #> 27-calculate-group_Part1.father_name_b #> 28-calculate-group_Part1.women_name #> 29-calculate-group_Part1.father_name #> 30-calculate-group_Part1.adult_name #> 31-calculate-group_Part1.woman1 #> 32-calculate-group_Part1.woman2 #> 33-calculate-group_Part1.woman3 #> 34-calculate-group_Part1.woman4 #> 35-calculate-group_Part1.woman5 #> 36-calculate-group_Part1.woman6 #> 37-calculate-group_Part1.fam_name1 #> 38-calculate-group_Part1.fam_name2 #> 39-calculate-group_Part1.fam_name3 #> 40-calculate-group_Part1.fam_name4 #> 41-calculate-group_Part1.fam_name5 #> 42-calculate-group_Part1.fam_name6 #> 43-calculate-group_Part1.fam_name7 #> 44-calculate-group_Part1.fam_name8 #> 45-calculate-group_Part1.fam_name9 #> 46-calculate-group_Part1.fam_name10 #> 47-calculate-group_Part1.fam_name11 #> 48-calculate-group_Part1.fam_name12 #> 49-calculate-group_Part1.fam_name13 #> 50-calculate-group_Part1.fam_name14 #> 51-calculate-group_Part1.fam_name15 #> 52-calculate-group_Part1.fam_name16 #> 53-calculate-group_Part1.fam_name17 #> 54-calculate-group_Part1.fam_name18 #> 55-calculate-group_Part1.fam_name19 #> 56-calculate-group_Part1.fam_name20 #> 57-calculate-group_Part1.age1 #> 58-calculate-group_Part1.age2 #> 59-calculate-group_Part1.age3 #> 60-calculate-group_Part1.age4 #> 61-calculate-group_Part1.age5 #> 62-calculate-group_Part1.age6 #> 63-calculate-group_Part1.age7 #> 64-calculate-group_Part1.age8 #> 65-calculate-group_Part1.age9 #> 66-calculate-group_Part1.age10 #> 67-calculate-group_Part1.age11 #> 68-calculate-group_Part1.age12 #> 69-calculate-group_Part1.age13 #> 70-calculate-group_Part1.age14 #> 71-calculate-group_Part1.age15 #> 72-calculate-group_Part1.age16 #> 73-calculate-group_Part1.age17 #> 74-calculate-group_Part1.age18 #> 75-calculate-group_Part1.age19 #> 76-calculate-group_Part1.age20 #> 77-calculate-group_Part1.sex1 #> 78-calculate-group_Part1.sex2 #> 79-calculate-group_Part1.sex3 #> 80-calculate-group_Part1.sex4 #> 81-calculate-group_Part1.sex5 #> 82-calculate-group_Part1.sex6 #> 83-calculate-group_Part1.sex7 #> 84-calculate-group_Part1.sex8 #> 85-calculate-group_Part1.sex9 #> 86-calculate-group_Part1.sex10 #> 87-calculate-group_Part1.sex11 #> 88-calculate-group_Part1.sex12 #> 89-calculate-group_Part1.sex13 #> 90-calculate-group_Part1.sex14 #> 91-calculate-group_Part1.sex15 #> 92-calculate-group_Part1.sex16 #> 93-calculate-group_Part1.sex17 #> 94-calculate-group_Part1.sex18 #> 95-calculate-group_Part1.sex19 #> 96-calculate-group_Part1.sex20 #> 97-select_one-group_Part2.P2.S1.S1_Dwelling.DWE01 #> 98-text-group_Part2.P2.S1.S1_Dwelling.DWE01_other #> 99-select_one-group_Part2.P2.S1.S1_Dwelling.DWE02 #> 100-text-group_Part2.P2.S1.S1_Dwelling.DWE02_other #> 101-select_one-group_Part2.P2.S1.S1_Dwelling.DWE03 #> 102-text-group_Part2.P2.S1.S1_Dwelling.DWE03_other #> 103-select_one-group_Part2.P2.S1.S1_Dwelling.DWE04 #> 104-text-group_Part2.P2.S1.S1_Dwelling.DWE04_other #> 105-integer-group_Part2.P2.S1.S1_Dwelling.DWE05 #> 106-select_one-group_Part2.P2.S1.S1_Dwelling.filter_camp #> 107-select_one-group_Part2.P2.S1.S1_Dwelling.DWE06 #> 108-text-group_Part2.P2.S1.S1_Dwelling.DWE06_other #> 109-select_one-group_Part2.P2.S1.S1_Dwelling.DWE07 #> 110-text-group_Part2.P2.S1.S1_Dwelling.DWE07_other #> 111-select_one-group_Part2.P2.S1.S1_Dwelling.DWE08 #> 112-select_one-group_Part2.P2.S1.S1_Dwelling.DWE09 #> 113-select_one-group_Part2.P2.S1.S1_Dwelling.DWE10 #> 114-text-group_Part2.P2.S1.S1_Dwelling.DWE10_other #> 115-select_one-group_Part2.P2.S1.S1_Dwelling.DWE11 #> 116-select_one-group_Part2.P2.S1.S1_Habitable_housing.COOK01 #> 117-select_one-group_Part2.P2.S1.S1_Habitable_housing.COOK02 #> 118-text-group_Part2.P2.S1.S1_Habitable_housing.COOK02_other #> 119-select_one-group_Part2.P2.S1.S1_Habitable_housing.COOK03 #> 120-text-group_Part2.P2.S1.S1_Habitable_housing.COOK03_other #> 121-select_one-group_Part2.P2.S1.S1_Habitable_housing.LIGHT01 #> 122-select_one-group_Part2.P2.S1.S1_Habitable_housing.LIGHT02 #> 123-text-group_Part2.P2.S1.S1_Habitable_housing.LIGHT02b #> 124-select_one-group_Part2.P2.S1.S1_Habitable_housing.LIGHT03 #> 125-text-group_Part2.P2.S1.S1_Habitable_housing.LIGHT03b #> 126-select_one-group_Part2.P2.S1.S1_Habitable_housing.DWA01 #> 127-text-group_Part2.P2.S1.S1_Habitable_housing.DWA01_other #> 128-calculate-group_Part2.P2.S1.S1_Habitable_housing.source #> 129-calculate-group_Part2.P2.S1.S1_Habitable_housing.source2 #> 130-select_one-group_Part2.P2.S1.S1_Habitable_housing.DWA02 #> 131-text-group_Part2.P2.S1.S1_Habitable_housing.DWA02_other #> 132-select_one-group_Part2.P2.S1.S1_Habitable_housing.time_toi.DWA03a #> 133-integer-group_Part2.P2.S1.S1_Habitable_housing.time_toi.DWA03b #> 134-select_one-group_Part2.P2.S1.S1_Habitable_housing.DWA04 #> 135-select_one-group_Part2.P2.S1.S1_Habitable_housing.TOI01 #> 136-text-group_Part2.P2.S1.S1_Habitable_housing.TOI01_other #> 137-select_one-group_Part2.P2.S1.S1_Habitable_housing.TOI02 #> 138-select_one-group_Part2.P2.S1.S1_Habitable_housing.TOI03 #> 139-text-group_Part2.P2.S1.S1_Habitable_housing.TOI03_other #> 140-select_one-group_Part2.P2.S1.S1_Habitable_housing.TOI04 #> 141-text-group_Part2.P2.S1.S1_Habitable_housing.TOI04_other #> 142-select_one-group_Part2.P2.S1.S1_Habitable_housing.TOI05 #> 143-calculate-group_Part2.P2.S2.latestson #> 144-select_one-group_Part2.P2.S2.BIR01 #> 145-select_one-group_Part2.P2.S2.BIR02 #> 146-select_multiple-group_Part2.P2.S2.BIR03 #> 147-text-group_Part2.P2.S2.BIR03_other #> 148-select_one-group_Part2.P2.S2.BIR04 #> 149-text-group_Part2.P2.S2.BIR04_other #> 150-select_one-group_Part2.P2.S2.HEA01 #> 151-text-group_Part2.P2.S2.HEA01_other #> 152-select_one-group_Part2.P2.S2.HEA02 #> 153-text-group_Part2.P2.S2.HEA02_other #> 154-integer-group_Part2.P2.S2.HEA03 #> 155-select_one-group_Part2.P2.S2.SPF.SPF01_op #> 156-select_one-group_Part2.P2.S2.SPF.SPF01a #> 157-select_one-group_Part2.P2.S2.SPF.SPF01b #> 158-select_one-group_Part2.P2.S2.SPF.SPF01c #> 159-select_one-group_Part2.P2.S2.SPF.SPF01d #> 160-select_one-group_Part2.P2.S2.SPF.SPF01e #> 161-select_one-group_Part2.P2.S2.SPF.SPF01f #> 162-select_one-group_Part2.P2.S2.SPF.SPF01g #> 163-select_one-group_Part2.P2.S2.SPF.SPF01h #> 164-calculate-group_Part3.listadult #> 165-calculate-group_Part3.n_selected_adult18 #> 166-calculate-group_Part3.selected_adult18 #> 167-calculate-group_Part3.name_selectedadult18_age #> 168-calculate-group_Part3.name_selectedadult18 #> 169-select_one-group_Part3.P3.S1.UNEM01 #> 170-select_one-group_Part3.P3.S1.UNEM02 #> 171-select_one-group_Part3.P3.S1.UNEM03 #> 172-select_one-group_Part3.P3.S1.UNEM04 #> 173-select_one-group_Part3.P3.S1.UNEM05 #> 174-select_one-group_Part3.P3.S1.UNEM06 #> 175-select_one-group_Part3.P3.S1.UNEM07 #> 176-select_one-group_Part3.P3.S1.UNEM08 #> 177-select_one-group_Part3.P3.S1.UNEM09 #> 178-select_one-group_Part3.P3.S1.UNEM10 #> 179-select_one-group_Part3.P3.S1.INC01 #> 180-select_one-group_Part3.P3.S1.BANK01 #> 181-select_one-group_Part3.P3.S1.BANK02 #> 182-select_one-group_Part3.P3.S1.BANK03 #> 183-select_one-group_Part3.P3.S1.BANK04 #> 184-select_one-group_Part3.P3.S1.BANK05 #> 185-select_one-group_Part3.P3.S2.SAF01 #> 186-select_one-group_Part3.P3.S2.GBV01.GBV01_001 #> 187-select_one-group_Part3.P3.S2.GBV01.GBV01a #> 188-select_one-group_Part3.P3.S2.GBV01.GBV01b #> 189-select_one-group_Part3.P3.S2.GBV01.GBV01c #> 190-select_one-group_Part3.P3.S2.GBV01.GBV01d #> 191-select_one-group_Part3.P3.S2.gbv_screen #> 192-select_one-group_Part3.P3.S2.VAW.VAW01 #> 193-select_one-group_Part3.P3.S2.VAW.VAW01a #> 194-select_one-group_Part3.P3.S2.VAW.VAW01b #> 195-select_one-group_Part3.P3.S2.VAW.VAW01c #> 196-select_one-group_Part3.P3.S2.VAW.VAW01d #> 197-select_one-group_Part3.P3.S2.VAW.VAW01e #> 198-select_one-end_survey.contact_number #> 199-text-end_survey.number_respondent #> 200-select_one-end_survey.end_result #> 201-select_one-end_survey.name_respondent #> 202-select_one-end_survey.final_notes #> 203-text-end_survey.final_notes_entry #> 1 in repeat -S1 ///calculate-group_Part1.S1.personId #> 2 in repeat -S1 ///text-group_Part1.S1.S1_Household.HH02 #> 3 in repeat -S1 ///select_one-group_Part1.S1.S1_Household.HH03 #> 4 in repeat -S1 ///select_one-group_Part1.S1.S1_Household.HH04 #> 5 in repeat -S1 ///select_one-group_Part1.S1.S1_Household.HH05 #> 6 in repeat -S1 ///date-group_Part1.S1.S1_Household.HH06 #> 7 in repeat -S1 ///calculate-group_Part1.S1.S1_Household.calcul1 #> 8 in repeat -S1 ///integer-group_Part1.S1.S1_Household.age #> 9 in repeat -S1 ///integer-group_Part1.S1.S1_Household.AgeMonths #> 10 in repeat -S1 ///calculate-group_Part1.S1.S1_Household.ageMD #> 11 in repeat -S1 ///integer-group_Part1.S1.S1_Household.HH07 #> 12 in repeat -S1 ///integer-group_Part1.S1.S1_Household.HH07_months #> 13 in repeat -S1 ///select_one-group_Part1.S1.S1_Household.HH08 #> 14 in repeat -S1 ///calculate-group_Part1.S1.Relation_R #> 15 in repeat -S1 ///calculate-group_Part1.S1.adult18 #> 16 in repeat -S1 ///calculate-group_Part1.S1.women_b #> 17 in repeat -S1 ///calculate-group_Part1.S1.father_b #> 18 in repeat -S1 ///calculate-group_Part1.S1.childLess2 #> 19 in repeat -S1 ///calculate-group_Part1.S1.childLess2name #> 20 in repeat -S1 ///calculate-group_Part1.S1.women #> 21 in repeat -S1 ///calculate-group_Part1.S1.father #> 22 in repeat -S1 ///calculate-group_Part1.S1.adult #> 23 in repeat -S1 ///calculate-group_Part1.S1.women_b_count #> 1 in repeat -S2 ///calculate-group_Part1.S2.name_individual #> 2 in repeat -S2 ///calculate-group_Part1.S2.ind_age_year #> 3 in repeat -S2 ///calculate-group_Part1.S2.ind_age_month #> 4 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF01 #> 5 in repeat -S2 ///calculate-group_Part1.S2.S2_start.citizenship #> 6 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF02 #> 7 in repeat -S2 ///calculate-group_Part1.S2.S2_start.citizenship2 #> 8 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF03 #> 9 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF04 #> 10 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF05 #> 11 in repeat -S2 ///calculate-group_Part1.S2.S2_start.countrybirth #> 12 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF07a #> 13 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF07b #> 14 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF07c #> 15 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF07d #> 16 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF08a #> 17 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF08b #> 18 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF08c #> 19 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF08d #> 20 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF09 #> 21 in repeat -S2 ///date-group_Part1.S2.S2_start.REF10a #> 22 in repeat -S2 ///text-group_Part1.S2.S2_start.REF10b #> 23 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF11 #> 24 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF12 #> 25 in repeat -S2 ///date-group_Part1.S2.S2_start.REF12a #> 26 in repeat -S2 ///text-group_Part1.S2.S2_start.REF12b #> 27 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF13 #> 28 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF14 #> 29 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF15 #> 30 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF16 #> 31 in repeat -S2 ///text-group_Part1.S2.S2_start.REF16_other #> 32 in repeat -S2 ///select_one-group_Part1.S2.S2_start.REF16a #> 33 in repeat -S2 ///text-group_Part1.S2.S2_start.REF16a_other #> 34 in repeat -S2 ///select_multiple-group_Part1.S2.S3.IDP01 #> 35 in repeat -S2 ///text-group_Part1.S2.S3.IDP01a #> 36 in repeat -S2 ///select_one-group_Part1.S2.S3.IDP02 #> 37 in repeat -S2 ///date-group_Part1.S2.S3.IDP02a #> 38 in repeat -S2 ///text-group_Part1.S2.S3.IDP02b #> 39 in repeat -S2 ///select_one_from_file-group_Part1.S2.S3.IDP03 #> 40 in repeat -S2 ///select_one_from_file-group_Part1.S2.S3.IDP04 #> 41 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_above5.REG01 #> 42 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_above5.REG01a #> 43 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_above5.REG01b #> 44 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_above5.REG01c #> 45 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_above5.REG01d #> 46 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_above5.REG01e #> 47 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_above5.REG01f #> 48 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_above5.REG01g #> 49 in repeat -S2 ///select_one-group_Part1.S2.S4.REG02 #> 50 in repeat -S2 ///select_one-group_Part1.S2.S4.REG03 #> 51 in repeat -S2 ///select_one-group_Part1.S2.S4.REG04 #> 52 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_below5.REG05 #> 53 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_below5.REG05a #> 54 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_below5.REG05b #> 55 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_below5.REG05c #> 56 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_below5.REG05d #> 57 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_below5.REG05e #> 58 in repeat -S2 ///select_one-group_Part1.S2.S4.S4_below5.REG05f #> 59 in repeat -S2 ///select_one-group_Part1.S2.S4.REG06 #> 60 in repeat -S2 ///calculate-group_Part1.S2.indiv_05Less_name #> 61 in repeat -S2 ///calculate-group_Part1.S2.indiv_05Less_age #> 62 in repeat -S2 ///calculate-group_Part1.S2.age_month #> 63 in repeat -S2 ///select_one-group_Part1.S2.S5.MMR01 #> 64 in repeat -S2 ///select_one-group_Part1.S2.S5.MMR02 #> 65 in repeat -S2 ///select_one-group_Part1.S2.S5.MMR03 #> 66 in repeat -S2 ///integer-group_Part1.S2.S5.MMR04 #> 67 in repeat -S2 ///select_one-group_Part1.S2.S6.DIS01a #> 68 in repeat -S2 ///select_one-group_Part1.S2.S6.DIS01 #> 69 in repeat -S2 ///select_one-group_Part1.S2.S6.DIS02 #> 70 in repeat -S2 ///select_one-group_Part1.S2.S6.DIS03 #> 71 in repeat -S2 ///select_one-group_Part1.S2.S6.DIS04 #> 72 in repeat -S2 ///select_one-group_Part1.S2.S6.DIS05 #> 73 in repeat -S2 ///select_one-group_Part1.S2.S6.DIS06 #> 74 in repeat -S2 ///select_one-group_Part1.S2.S7.HACC01 #> 75 in repeat -S2 ///select_multiple-group_Part1.S2.S7.HACC02 #> 76 in repeat -S2 ///text-group_Part1.S2.S7.HACC02_other #> 77 in repeat -S2 ///select_one-group_Part1.S2.S7.HACC03 #> 78 in repeat -S2 ///select_multiple-group_Part1.S2.S7.HACC04 #> 79 in repeat -S2 ///text-group_Part1.S2.S7.HACC04_other #> 1 in repeat -P2.S3 ///calculate-group_Part2.P2.S3.child_edu_name #> 2 in repeat -P2.S3 ///calculate-group_Part2.P2.S3.child_edu_age #> 3 in repeat -P2.S3 ///select_one-group_Part2.P2.S3.child_edu.EDU01 #> 4 in repeat -P2.S3 ///select_one-group_Part2.P2.S3.child_edu.EDU02 #> 5 in repeat -P2.S3 ///select_one-group_Part2.P2.S3.child_edu.EDU03 #> 6 in repeat -P2.S3 ///select_one-group_Part2.P2.S3.child_edu.EDU04 #> 7 in repeat -P2.S3 ///text-group_Part2.P2.S3.child_edu.EDU04_other #> 8 in repeat -P2.S3 ///select_one-group_Part2.P2.S3.comm_act.COMM01 #> 9 in repeat -P2.S3 ///integer-group_Part2.P2.S3.comm_act.COMM02 #> 10 in repeat -P2.S3 ///select_one-group_Part2.P2.S3.comm_act.COMM03 #> 11 in repeat -P2.S3 ///select_one-group_Part2.P2.S3.comm_act.COMM04 # openxlsx::write.xlsx(datalist, here::here(\"inst\", \"dummy_RMS_CAPI_v2.xlsx\")) form <- system.file(\"RMS_CAPI_v3.xlsx\", package = \"IndicatorCalc\") datalist <- fct_kobo_dummy(form, n = 384, file = NULL) #> Warning: Expected 2 pieces. Additional pieces discarded in 1 rows [376]. #> 1-start-start #> 2-end-end #> 3-calculate-start_time_1 #> 4-date-intro.interviewdate #> 5-select_one-intro.Bureau #> 6-select_one-intro.Country #> 7-calculate-intro.countryname #> 8-geopoint-intro.geopoint #> 9-select_one-intro.pop_groups #> 10-text-intro2.name_enumerator #> 11-text-intro2.Intro01 #> 12-text-intro2.Intro02 #> 13-select_one-intro2.Intro03 #> 14-acknowledge-intro2.consent_form #> 15-select_one-intro2.Intro04 #> 16-select_one-intro2.Intro05 #> 17-text-intro2.Intro05_other #> 18-text-Part1.HHH01_aux #> 19-integer-Part1.HHH01_age #> 20-select_one-Part1.respondent #> 21-calculate-Part1.quality_check.MM18above #> 22-calculate-Part1.quality_check.member1 #> 23-calculate-Part1.quality_check.member2 #> 24-calculate-Part1.quality_check.member3 #> 25-calculate-Part1.quality_check.member4 #> 26-calculate-Part1.quality_check.member5 #> 27-calculate-Part1.quality_check.member6 #> 28-calculate-Part1.quality_check.adult_sum_001 #> 29-calculate-Part1.quality_check.hh_size_001 #> 30-acknowledge-Part1.quality_check.confirm_hhsize #> 31-calculate-namechild2less #> 32-calculate-nochild2less #> 33-calculate-women_name_b_total #> 34-calculate-women_name_b #> 35-calculate-father_name_b #> 36-calculate-women_name #> 37-calculate-father_name #> 38-calculate-adult_name #> 39-select_one-Part2.P2_S1.DWE01 #> 40-text-Part2.P2_S1.DWE01_other #> 41-select_one-Part2.P2_S1.SHEL01 #> 42-select_one-Part2.P2_S1.SHEL02 #> 43-select_one-Part2.P2_S1.SHEL03 #> 44-select_one-Part2.P2_S1.SHEL04 #> 45-select_one-Part2.P2_S1.SHEL05 #> 46-select_one-Part2.P2_S1.SHEL06 #> 47-select_one-Part2.P2_S1.RISK01 #> 48-select_one-Part2.P2_S1.RISK02 #> 49-integer-Part2.P2_S1.DWE05 #> 50-select_one-Part2.P2_S2.filter_camp #> 51-select_one-Part2.P2_S2.DWE06_land #> 52-text-Part2.P2_S2.DWE06_other_land #> 53-select_one-Part2.P2_S2.DWE06a_land #> 54-select_one-Part2.P2_S2.DWE07_land #> 55-text-Part2.P2_S2.DWE07_other_land #> 56-select_one-Part2.P2_S2.DWE06_housing #> 57-text-Part2.P2_S2.DWE06_other_housing #> 58-select_one-Part2.P2_S2.DWE06a_housing #> 59-select_one-Part2.P2_S2.DWE07_housing #> 60-text-Part2.P2_S2.DWE07_other_housing #> 61-select_one-Part2.P2_S2.DWE08 #> 62-select_one-Part2.P2_S2.DWE09 #> 63-text-Part2.P2_S2.DWE09_other #> 64-select_one-Part2.P2_S2.DWE10 #> 65-select_one-Part2.P2_S3.COOK01 #> 66-select_one-Part2.P2_S3.COOK02 #> 67-text-Part2.P2_S3.COOK02_other #> 68-select_one-Part2.P2_S3.COOK03 #> 69-text-Part2.P2_S3.COOK03_other #> 70-select_one-Part2.P2_S3.LIGHT01 #> 71-select_one-Part2.P2_S3.LIGHT02 #> 72-text-Part2.P2_S3.LIGHT02_other #> 73-select_one-Part2.P2_S3.LIGHT03 #> 74-text-Part2.P2_S3.LIGHT03_other #> 75-calculate-Part2.P2_S3.electricity_source #> 76-select_multiple-Part2.P2_S3.LIGHT04 #> 77-text-Part2.P2_S3.LIGHT04_other #> 78-select_one-Part2.P2_S3.LIGHT05 #> 79-integer-Part2.P2_S3.LIGHT05_11 #> 80-integer-Part2.P2_S3.LIGHT05_22 #> 81-select_one-Part2.P2_S3.LIGHT06 #> 82-integer-Part2.P2_S3.LIGHT06_11 #> 83-integer-Part2.P2_S3.LIGHT06_22 #> 84-select_one-Part2.P2_S3.DWA01 #> 85-text-Part2.P2_S3.DWA01_other #> 86-calculate-Part2.P2_S3.source #> 87-calculate-Part2.P2_S3.source2 #> 88-select_one-Part2.P2_S3.DWA02 #> 89-text-Part2.P2_S3.DWA02_other #> 90-select_one-Part2.P2_S3.time_toi.DWA03a #> 91-integer-Part2.P2_S3.time_toi.DWA03b #> 92-select_one-Part2.P2_S3.DWA04 #> 93-select_one-Part2.P2_S3.TOI01 #> 94-text-Part2.P2_S3.TOI01_other #> 95-select_one-Part2.P2_S3.TOI02 #> 96-select_one-Part2.P2_S3.TOI03 #> 97-text-Part2.P2_S3.TOI03_other #> 98-select_one-Part2.P2_S3.TOI04 #> 99-text-Part2.P2_S3.TOI04_other #> 100-select_one-Part2.P2_S3.TOI05 #> 101-calculate-Part2.P2_S4.latestson #> 102-select_one-Part2.P2_S4.BIR01 #> 103-select_one-Part2.P2_S4.BIR02 #> 104-select_multiple-Part2.P2_S4.BIR03 #> 105-text-Part2.P2_S4.BIR03_other #> 106-select_one-Part2.P2_S4.BIR04 #> 107-text-Part2.P2_S4.BIR04_other #> 108-select_one-Part2.P2_S4.HEA01 #> 109-text-Part2.P2_S4.HEA01_other #> 110-select_one-Part2.P2_S4.HEA02 #> 111-text-Part2.P2_S4.HEA02_other #> 112-integer-Part2.P2_S4.HEA03 #> 113-select_one-Part2.P2_S5.SPF01_op #> 114-select_one-Part2.P2_S5.SPF01a #> 115-select_one-Part2.P2_S5.SPF01b #> 116-select_one-Part2.P2_S5.SPF01c #> 117-select_one-Part2.P2_S5.SPF01d #> 118-select_one-Part2.P2_S5.SPF01e #> 119-select_one-Part2.P2_S5.SPF01f #> 120-select_one-Part2.P2_S5.SPF01g #> 121-select_one-Part2.P2_S5.SPF01h #> 122-select_one-Part2.P2_S5.SPF01j #> 123-select_one-Part2.P2_S5.SPF01k #> 124-select_one-Part2.P2_S5.SPF01l #> 125-select_one-Part2.P2_S5.SPF01m #> 126-select_one-Part2.P2_S5.SPF01n #> 127-select_one-Part2.P2_S5.SPF01o #> 128-select_one-Part2.P2_S5.SPF01p #> 129-calculate-Part3.first_random.random1ap #> 130-calculate-Part3.first_random.eadult_nap #> 131-calculate-Part3.first_random.epositionap #> 132-calculate-Part3.first_random.random_indexap #> 133-calculate-Part3.first_random.selected_adultap #> 134-calculate-Part3.first_random.name_selectedadult18 #> 135-select_one-Part3.available_first_random.random_present #> 136-calculate-Part3.second_random.random1ap2 #> 137-calculate-Part3.second_random.eadult_nap2 #> 138-calculate-Part3.second_random.epositionap2 #> 139-calculate-Part3.second_random.random_indexap2 #> 140-calculate-Part3.second_random.selected_adultap2 #> 141-calculate-Part3.second_random.name_selectedadult18_2 #> 142-select_one-Part3.second_availability.random_present_2 #> 143-select_one-Part3.name_respondent_individual #> 144-select_one-Part3.P3_S1.EDU01_random #> 145-select_one-Part3.P3_S1.UNEM01 #> 146-select_one-Part3.P3_S1.UNEM02 #> 147-select_one-Part3.P3_S1.UNEM03 #> 148-select_one-Part3.P3_S1.UNEM04 #> 149-select_one-Part3.P3_S1.UNEM05 #> 150-select_one-Part3.P3_S1.UNEM06 #> 151-select_one-Part3.P3_S1.UNEM07 #> 152-select_one-Part3.P3_S1.UNEM08 #> 153-select_one-Part3.P3_S1.UNEM09 #> 154-select_one-Part3.P3_S1.UNEM10 #> 155-select_one-Part3.P3_S1.INC01 #> 156-select_one-Part3.P3_S1.INC02 #> 157-select_one-Part3.P3_S1.BANK01 #> 158-select_one-Part3.P3_S1.BANK02 #> 159-select_one-Part3.P3_S1.BANK03 #> 160-select_one-Part3.P3_S1.BANK04 #> 161-select_one-Part3.P3_S1.BANK05 #> 162-select_one-Part3.P3_S3.FRM01 #> 163-select_one-Part3.P3_S3.FRM02 #> 164-select-Part3.P3_S3.FRM03 #> 165-text-Part3.P3_S3.FRM03_other #> 166-select_one-Part3.P3_S2.SAF01 #> 167-select_one-Part3.P3_S2.GBV01.GBV01_001 #> 168-select_one-Part3.P3_S2.GBV01.GBV01a #> 169-select_one-Part3.P3_S2.GBV01.GBV01b #> 170-select_one-Part3.P3_S2.GBV01.GBV01c #> 171-select_one-Part3.P3_S2.GBV01.GBV01d #> 172-select_one-Part3.P3_S2.gbv_screen #> 173-select_one-Part3.P3_S2.VAWpre_001 #> 174-select_one-Part3.P3_S2.VAWpre01 #> 175-select_one-Part3.P3_S2.VAWpre02 #> 176-select_one-Part3.P3_S2.VAWpre03 #> 177-select_one-Part3.P3_S2.VAWpre04 #> 178-select_one-Part3.P3_S2.VAW.VAW01 #> 179-select_one-Part3.P3_S2.VAW.VAW01a #> 180-select_one-Part3.P3_S2.VAW.VAW01b #> 181-select_one-Part3.P3_S2.VAW.VAW01c #> 182-select_one-Part3.P3_S2.VAW.VAW01d #> 183-select_one-Part3.P3_S2.VAW.VAW01e #> 184-select_one-complete_survey.contact_number #> 185-text-complete_survey.number_respondent #> 186-select_one-complete_survey.end_result #> 187-select_one-complete_survey.name_respondent #> 188-select_one-complete_survey.final_notes #> 189-text-complete_survey.final_notes_entry #> 190-calculate-end_time_1 #> 1 in repeat -rpt_hhmnames ///calculate-Part1.rpt_hhmnames.hhmnames_pos #> 2 in repeat -rpt_hhmnames ///calculate-Part1.rpt_hhmnames.HHH01_2_aux #> 3 in repeat -rpt_hhmnames ///text-Part1.rpt_hhmnames.HH01_aux #> 4 in repeat -rpt_hhmnames ///select_one-Part1.rpt_hhmnames.HH03_aux #> 5 in repeat -rpt_hhmnames ///calculate-Part1.rpt_hhmnames.HH01_2_aux #> 6 in repeat -rpt_hhmnames ///calculate-Part1.rpt_hhmnames.HH03_2_aux #> 1 in repeat -S1 ///calculate-Part1.S1.personId #> 2 in repeat -S1 ///calculate-Part1.S1.hhroster_pos_aux #> 3 in repeat -S1 ///calculate-Part1.S1.hhmnames_pos_match #> 4 in repeat -S1 ///calculate-Part1.S1.HH01 #> 5 in repeat -S1 ///calculate-Part1.S1.HH03 #> 6 in repeat -S1 ///select_one-Part1.S1.HH04 #> 7 in repeat -S1 ///select_one-Part1.S1.HH05 #> 8 in repeat -S1 ///date-Part1.S1.HH06 #> 9 in repeat -S1 ///calculate-Part1.S1.calcul1 #> 10 in repeat -S1 ///integer-Part1.S1.age #> 11 in repeat -S1 ///integer-Part1.S1.AgeMonths #> 12 in repeat -S1 ///calculate-Part1.S1.ageMD #> 13 in repeat -S1 ///integer-Part1.S1.age_est #> 14 in repeat -S1 ///integer-Part1.S1.months_est #> 15 in repeat -S1 ///calculate-Part1.S1.HH07 #> 16 in repeat -S1 ///calculate-Part1.S1.HH07_months #> 17 in repeat -S1 ///select_one-Part1.S1.HH08 #> 18 in repeat -S1 ///calculate-Part1.S1.start_time_2 #> 19 in repeat -S1 ///calculate-Part1.S1.position #> 20 in repeat -S1 ///calculate-Part1.S1.Relation_R #> 21 in repeat -S1 ///calculate-Part1.S1.adult18 #> 22 in repeat -S1 ///calculate-Part1.S1.women_b #> 23 in repeat -S1 ///calculate-Part1.S1.father_b #> 24 in repeat -S1 ///calculate-Part1.S1.childLess2 #> 25 in repeat -S1 ///calculate-Part1.S1.childLess2name #> 26 in repeat -S1 ///calculate-Part1.S1.women #> 27 in repeat -S1 ///calculate-Part1.S1.father #> 28 in repeat -S1 ///calculate-Part1.S1.adult #> 29 in repeat -S1 ///calculate-Part1.S1.women_b_count #> 30 in repeat -S1 ///calculate-Part1.S1.hh_size #> 31 in repeat -S1 ///calculate-Part1.S1.hhhead_age_ab18 #> 32 in repeat -S1 ///calculate-Part1.S1.adult_sum #> 33 in repeat -S1 ///calculate-Part1.S1.hhhead_age #> 34 in repeat -S1 ///calculate-Part1.S1.position18 #> 35 in repeat -S1 ///calculate-Part1.S1.adult01 #> 36 in repeat -S1 ///calculate-Part1.S1.age18above #> 1 in repeat -S2_repeat ///calculate-S2_repeat.name_individual #> 2 in repeat -S2_repeat ///calculate-S2_repeat.ind_age_year #> 3 in repeat -S2_repeat ///calculate-S2_repeat.ind_age_month #> 4 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF01 #> 5 in repeat -S2_repeat ///calculate-S2_repeat.P1_S2.citizenship #> 6 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF02 #> 7 in repeat -S2_repeat ///calculate-S2_repeat.P1_S2.citizenship2 #> 8 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF03 #> 9 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF04 #> 10 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF05 #> 11 in repeat -S2_repeat ///calculate-S2_repeat.P1_S2.countrybirth #> 12 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF07 #> 13 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF08 #> 14 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF09 #> 15 in repeat -S2_repeat ///date-S2_repeat.P1_S2.REF10a #> 16 in repeat -S2_repeat ///text-S2_repeat.P1_S2.REF10b #> 17 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF11 #> 18 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF12 #> 19 in repeat -S2_repeat ///date-S2_repeat.P1_S2.REF12a #> 20 in repeat -S2_repeat ///text-S2_repeat.P1_S2.REF12b #> 21 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF13 #> 22 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF14 #> 23 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF15 #> 24 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF16 #> 25 in repeat -S2_repeat ///text-S2_repeat.P1_S2.REF16_other #> 26 in repeat -S2_repeat ///select_one-S2_repeat.P1_S2.REF16a #> 27 in repeat -S2_repeat ///text-S2_repeat.P1_S2.REF16a_other #> 28 in repeat -S2_repeat ///select_multiple-S2_repeat.P1_S3.IDP01 #> 29 in repeat -S2_repeat ///text-S2_repeat.P1_S3.IDP01a #> 30 in repeat -S2_repeat ///select_one-S2_repeat.P1_S3.IDP02 #> 31 in repeat -S2_repeat ///date-S2_repeat.P1_S3.IDP02a #> 32 in repeat -S2_repeat ///text-S2_repeat.P1_S3.IDP02b #> 33 in repeat -S2_repeat ///select_one_from_file-S2_repeat.P1_S3.IDP03 #> 34 in repeat -S2_repeat ///select_one_from_file-S2_repeat.P1_S3.IDP04 #> 35 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01 #> 36 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01a #> 37 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01b #> 38 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01c #> 39 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01d #> 40 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01e #> 41 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01f #> 42 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_above5.REG01g #> 43 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.REG02 #> 44 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.REG03 #> 45 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.REG04 #> 46 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_below5.REG05 #> 47 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_below5.REG05a #> 48 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_below5.REG05b #> 49 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_below5.REG05c #> 50 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_below5.REG05d #> 51 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_below5.REG05e #> 52 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.S4_below5.REG05f #> 53 in repeat -S2_repeat ///select_one-S2_repeat.P1_S4.REG06 #> 54 in repeat -S2_repeat ///select_one-S2_repeat.P1_S5.MMR01 #> 55 in repeat -S2_repeat ///select_one-S2_repeat.P1_S5.MMR02 #> 56 in repeat -S2_repeat ///select_one-S2_repeat.P1_S5.MMR03 #> 57 in repeat -S2_repeat ///integer-S2_repeat.P1_S5.MMR04 #> 58 in repeat -S2_repeat ///select_one-S2_repeat.P1_S6.DIS01a #> 59 in repeat -S2_repeat ///select_one-S2_repeat.P1_S6.DIS01 #> 60 in repeat -S2_repeat ///select_one-S2_repeat.P1_S6.DIS02 #> 61 in repeat -S2_repeat ///select_one-S2_repeat.P1_S6.DIS03 #> 62 in repeat -S2_repeat ///select_one-S2_repeat.P1_S6.DIS04 #> 63 in repeat -S2_repeat ///select_one-S2_repeat.P1_S6.DIS05 #> 64 in repeat -S2_repeat ///select_one-S2_repeat.P1_S6.DIS06 #> 65 in repeat -S2_repeat ///select_one-S2_repeat.P1_S7.HACC01 #> 66 in repeat -S2_repeat ///select_one-S2_repeat.P1_S7.HACC02 #> 67 in repeat -S2_repeat ///text-S2_repeat.P1_S7.HACC02_other #> 68 in repeat -S2_repeat ///calculate-S2_repeat.P1_S7.reason_care #> 69 in repeat -S2_repeat ///select_one-S2_repeat.P1_S7.HACC03 #> 70 in repeat -S2_repeat ///select_multiple-S2_repeat.P1_S7.HACC04 #> 71 in repeat -S2_repeat ///text-S2_repeat.P1_S7.HACC04_other #> 72 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_edu.EDU01 #> 73 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_edu.EDU02 #> 74 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_edu.EDU03 #> 75 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_edu.EDU04 #> 76 in repeat -S2_repeat ///text-S2_repeat.P1_S8.S8_edu.EDU04_other #> 77 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_edu.EDU05 #> 78 in repeat -S2_repeat ///text-S2_repeat.P1_S8.S8_edu.EDU05_other #> 79 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_comm.COMM01 #> 80 in repeat -S2_repeat ///integer-S2_repeat.P1_S8.S8_comm.COMM02 #> 81 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_comm.COMM03 #> 82 in repeat -S2_repeat ///select_one-S2_repeat.P1_S8.S8_comm.COMM04 # openxlsx::write.xlsx(datalist, here::here(\"inst\", \"dummy_RMS_CAPI_v3.xlsx\")) ## CATI form <- system.file(\"RMS_CATI_v0.xlsx\", package = \"IndicatorCalc\") datalist <- fct_kobo_dummy(form, n = 384, file = NULL) #> 1-start-start #> 2-end-end #> 3-calculate-start_t #> 4-calculate-end_t #> 5-calculate-time_ds #> 6-calculate-time_dm #> 7-text-group_survey.Intro01 #> 8-text-group_survey.Intro02 #> 9-integer-group_survey.number #> 10-integer-group_survey.call_attempt #> 11-select_one-group_survey.attempt1 #> 12-select_one-group_survey.attempt2 #> 13-select_one-group_survey.attempt3 #> 14-acknowledge-group_survey.next_attempt #> 15-date-group_intro.interviewdate #> 16-select_one-group_intro.Bureau #> 17-select_one-group_intro.Country #> 18-calculate-group_intro.countryname #> 19-select_one-group_intro.pop_groups #> 20-acknowledge-group_consent.consent_form #> 21-select_one-group_consent.Intro04 #> 22-integer-group_Part1.HH01 #> 23-calculate-group_Part1.Relation_Count #> 24-calculate-group_Part1.namechild2less #> 25-calculate-group_Part1.nochild2less #> 26-calculate-group_Part1.women_name_b_total #> 27-calculate-group_Part1.women_name_b #> 28-calculate-group_Part1.father_name_b #> 29-calculate-group_Part1.women_name #> 30-calculate-group_Part1.father_name #> 31-calculate-group_Part1.adult_name #> 32-calculate-group_Part1.woman1 #> 33-calculate-group_Part1.woman2 #> 34-calculate-group_Part1.woman3 #> 35-calculate-group_Part1.woman4 #> 36-calculate-group_Part1.woman5 #> 37-calculate-group_Part1.woman6 #> 38-calculate-group_Part1.fam_name1 #> 39-calculate-group_Part1.fam_name2 #> 40-calculate-group_Part1.fam_name3 #> 41-calculate-group_Part1.fam_name4 #> 42-calculate-group_Part1.fam_name5 #> 43-calculate-group_Part1.fam_name6 #> 44-calculate-group_Part1.fam_name7 #> 45-calculate-group_Part1.fam_name8 #> 46-calculate-group_Part1.fam_name9 #> 47-calculate-group_Part1.fam_name10 #> 48-calculate-group_Part1.fam_name11 #> 49-calculate-group_Part1.fam_name12 #> 50-calculate-group_Part1.fam_name13 #> 51-calculate-group_Part1.fam_name14 #> 52-calculate-group_Part1.fam_name15 #> 53-calculate-group_Part1.fam_name16 #> 54-calculate-group_Part1.fam_name17 #> 55-calculate-group_Part1.fam_name18 #> 56-calculate-group_Part1.fam_name19 #> 57-calculate-group_Part1.fam_name20 #> 58-calculate-group_Part1.age1 #> 59-calculate-group_Part1.age2 #> 60-calculate-group_Part1.age3 #> 61-calculate-group_Part1.age4 #> 62-calculate-group_Part1.age5 #> 63-calculate-group_Part1.age6 #> 64-calculate-group_Part1.age7 #> 65-calculate-group_Part1.age8 #> 66-calculate-group_Part1.age9 #> 67-calculate-group_Part1.age10 #> 68-calculate-group_Part1.age11 #> 69-calculate-group_Part1.age12 #> 70-calculate-group_Part1.age13 #> 71-calculate-group_Part1.age14 #> 72-calculate-group_Part1.age15 #> 73-calculate-group_Part1.age16 #> 74-calculate-group_Part1.age17 #> 75-calculate-group_Part1.age18 #> 76-calculate-group_Part1.age19 #> 77-calculate-group_Part1.age20 #> 78-calculate-group_Part1.sex1 #> 79-calculate-group_Part1.sex2 #> 80-calculate-group_Part1.sex3 #> 81-calculate-group_Part1.sex4 #> 82-calculate-group_Part1.sex5 #> 83-calculate-group_Part1.sex6 #> 84-calculate-group_Part1.sex7 #> 85-calculate-group_Part1.sex8 #> 86-calculate-group_Part1.sex9 #> 87-calculate-group_Part1.sex10 #> 88-calculate-group_Part1.sex11 #> 89-calculate-group_Part1.sex12 #> 90-calculate-group_Part1.sex13 #> 91-calculate-group_Part1.sex14 #> 92-calculate-group_Part1.sex15 #> 93-calculate-group_Part1.sex16 #> 94-calculate-group_Part1.sex17 #> 95-calculate-group_Part1.sex18 #> 96-calculate-group_Part1.sex19 #> 97-calculate-group_Part1.sex20 #> 98-calculate-group_Part1.name_individual #> 99-calculate-group_Part1.ind_age_year #> 100-calculate-group_Part1.ind_age_month #> 101-calculate-group_Part1.sumbelow5 #> 102-calculate-group_Part1.sumbelow18 #> 103-calculate-group_Part1.sumage_vaccine #> 104-calculate-group_Part1.sumchild_edu_calcul #> 105-calculate-group_Part1.nobelow5 #> 106-calculate-group_Part1.nobelow18 #> 107-calculate-group_Part1.noage_vaccine #> 108-calculate-group_Part1.nochild_edu_calcul #> 109-select_one-group_Part1.S2.REF01 #> 110-calculate-group_Part1.S2.citizenship #> 111-select_one-group_Part1.S2.REF02 #> 112-calculate-group_Part1.S2.citizenship2 #> 113-select_one-group_Part1.S2.REF03 #> 114-select_one-group_Part1.S2.REF04 #> 115-select_one-group_Part1.S2.REF05 #> 116-calculate-group_Part1.S2.countrybirth #> 117-select_one-group_Part1.S2.REF07a #> 118-select_one-group_Part1.S2.REF07b #> 119-select_one-group_Part1.S2.REF07c #> 120-select_one-group_Part1.S2.REF07d #> 121-select_one-group_Part1.S2.REF08a #> 122-select_one-group_Part1.S2.REF08b #> 123-select_one-group_Part1.S2.REF08c #> 124-select_one-group_Part1.S2.REF08d #> 125-select_one-group_Part1.S2.REF09 #> 126-date-group_Part1.S2.REF10a #> 127-text-group_Part1.S2.REF10b #> 128-select_one-group_Part1.S2.REF11 #> 129-select_one-group_Part1.S2.REF12 #> 130-date-group_Part1.S2.REF12a #> 131-text-group_Part1.S2.REF12b #> 132-select_one-group_Part1.S2.REF13 #> 133-select_one-group_Part1.S2.REF14 #> 134-select_one-group_Part1.S2.REF15 #> 135-select_one-group_Part1.S2.REF16 #> 136-text-group_Part1.S2.REF16_other #> 137-select_one-group_Part1.S2.REF16a #> 138-text-group_Part1.S2.REF16a_other #> 139-select_multiple-group_Part1.S3.IDP01 #> 140-text-group_Part1.S3.IDP01a #> 141-select_one-group_Part1.S3.IDP02 #> 142-date-group_Part1.S3.IDP02a #> 143-text-group_Part1.S3.IDP02b #> 144-select_one_from_file-group_Part1.S3.IDP03 #> 145-select_one_from_file-group_Part1.S3.IDP04 #> 146-select_one-group_Part1.S4.S4_above5.REG01 #> 147-select_one-group_Part1.S4.S4_above5.REG01a #> 148-select_one-group_Part1.S4.S4_above5.REG01b #> 149-select_one-group_Part1.S4.S4_above5.REG01c #> 150-select_one-group_Part1.S4.S4_above5.REG01d #> 151-select_one-group_Part1.S4.S4_above5.REG01e #> 152-select_one-group_Part1.S4.S4_above5.REG01f #> 153-select_one-group_Part1.S4.S4_above5.REG01g #> 154-select_one-group_Part1.S4.REG02 #> 155-select_one-group_Part1.S6.DIS01a #> 156-select_one-group_Part1.S6.DIS01 #> 157-select_one-group_Part1.S6.DIS02 #> 158-select_one-group_Part1.S6.DIS03 #> 159-select_one-group_Part1.S6.DIS04 #> 160-select_one-group_Part1.S6.DIS05 #> 161-select_one-group_Part1.S6.DIS06 #> 162-select_one-group_Part1.S7.HACC01 #> 163-select_multiple-group_Part1.S7.HACC02 #> 164-text-group_Part1.S7.HACC02_other #> 165-select_one-group_Part1.S7.HACC03 #> 166-select_multiple-group_Part1.S7.HACC04 #> 167-text-group_Part1.S7.HACC04_other #> 168-select_one-group_Part2.P2.S1.S1_Dwelling.DWE01 #> 169-text-group_Part2.P2.S1.S1_Dwelling.DWE01_other #> 170-select_one-group_Part2.P2.S1.S1_Dwelling.DWE02 #> 171-text-group_Part2.P2.S1.S1_Dwelling.DWE02_other #> 172-select_one-group_Part2.P2.S1.S1_Dwelling.DWE03 #> 173-text-group_Part2.P2.S1.S1_Dwelling.DWE03_other #> 174-select_one-group_Part2.P2.S1.S1_Dwelling.DWE04 #> 175-text-group_Part2.P2.S1.S1_Dwelling.DWE04_other #> 176-integer-group_Part2.P2.S1.S1_Dwelling.DWE05 #> 177-select_one-group_Part2.P2.S1.S1_Dwelling.filter_camp #> 178-select_one-group_Part2.P2.S1.S1_Dwelling.DWE06 #> 179-text-group_Part2.P2.S1.S1_Dwelling.DWE06_other #> 180-select_one-group_Part2.P2.S1.S1_Dwelling.DWE07 #> 181-text-group_Part2.P2.S1.S1_Dwelling.DWE07_other #> 182-select_one-group_Part2.P2.S1.S1_Dwelling.DWE08 #> 183-select_one-group_Part2.P2.S1.S1_Dwelling.DWE09 #> 184-select_one-group_Part2.P2.S1.S1_Dwelling.DWE10 #> 185-text-group_Part2.P2.S1.S1_Dwelling.DWE10_other #> 186-select_one-group_Part2.P2.S1.S1_Dwelling.DWE11 #> 187-select_one-group_Part2.P2.S1.S2_Habitable_housing.COOK01 #> 188-select_one-group_Part2.P2.S1.S2_Habitable_housing.COOK02 #> 189-text-group_Part2.P2.S1.S2_Habitable_housing.COOK02_other #> 190-select_one-group_Part2.P2.S1.S2_Habitable_housing.COOK03 #> 191-text-group_Part2.P2.S1.S2_Habitable_housing.COOK03_other #> 192-select_one-group_Part2.P2.S1.S2_Habitable_housing.LIGHT01 #> 193-select_one-group_Part2.P2.S1.S2_Habitable_housing.LIGHT02 #> 194-text-group_Part2.P2.S1.S2_Habitable_housing.LIGHT02b #> 195-select_one-group_Part2.P2.S1.S2_Habitable_housing.LIGHT03 #> 196-text-group_Part2.P2.S1.S2_Habitable_housing.LIGHT03b #> 197-select_one-group_Part2.P2.S1.S2_Habitable_housing.DWA01 #> 198-text-group_Part2.P2.S1.S2_Habitable_housing.DWA01_other #> 199-calculate-group_Part2.P2.S1.S2_Habitable_housing.source #> 200-calculate-group_Part2.P2.S1.S2_Habitable_housing.source2 #> 201-select_one-group_Part2.P2.S1.S2_Habitable_housing.DWA02 #> 202-text-group_Part2.P2.S1.S2_Habitable_housing.DWA02_other #> 203-select_one-group_Part2.P2.S1.S2_Habitable_housing.time_toi.DWA03a #> 204-integer-group_Part2.P2.S1.S2_Habitable_housing.time_toi.DWA03b #> 205-select_one-group_Part2.P2.S1.S2_Habitable_housing.DWA04 #> 206-select_one-group_Part2.P2.S1.S2_Habitable_housing.TOI01 #> 207-text-group_Part2.P2.S1.S2_Habitable_housing.TOI01_other #> 208-select_one-group_Part2.P2.S1.S2_Habitable_housing.TOI02 #> 209-select_one-group_Part2.P2.S1.S2_Habitable_housing.TOI03 #> 210-text-group_Part2.P2.S1.S2_Habitable_housing.TOI03_other #> 211-select_one-group_Part2.P2.S1.S2_Habitable_housing.TOI04 #> 212-text-group_Part2.P2.S1.S2_Habitable_housing.TOI04_other #> 213-select_one-group_Part2.P2.S1.S2_Habitable_housing.TOI05 #> 214-calculate-group_Part2.P2.S2.latestson #> 215-select_one-group_Part2.P2.S2.BIR01 #> 216-select_one-group_Part2.P2.S2.BIR02 #> 217-select_multiple-group_Part2.P2.S2.BIR03 #> 218-text-group_Part2.P2.S2.BIR03_other #> 219-select_one-group_Part2.P2.S2.BIR04 #> 220-text-group_Part2.P2.S2.BIR04_other #> 221-select_one-group_Part2.P2.S2.HEA01 #> 222-text-group_Part2.P2.S2.HEA01_other #> 223-select_one-group_Part2.P2.S2.HEA02 #> 224-text-group_Part2.P2.S2.HEA02_other #> 225-integer-group_Part2.P2.S2.HEA03 #> 226-select_one-group_Part2.P2.S2.SPF.SPF01_op #> 227-select_one-group_Part2.P2.S2.SPF.SPF01a #> 228-select_one-group_Part2.P2.S2.SPF.SPF01b #> 229-select_one-group_Part2.P2.S2.SPF.SPF01c #> 230-select_one-group_Part2.P2.S2.SPF.SPF01d #> 231-select_one-group_Part2.P2.S2.SPF.SPF01e #> 232-select_one-group_Part2.P2.S2.SPF.SPF01f #> 233-select_one-group_Part2.P2.S2.SPF.SPF01g #> 234-select_one-group_Part2.P2.S2.SPF.SPF01h #> 235-select_one-group_Part3.P3.S1.filter_elderly #> 236-select_one-group_Part3.P3.S1.UNEM01 #> 237-select_one-group_Part3.P3.S1.UNEM02 #> 238-select_one-group_Part3.P3.S1.UNEM03 #> 239-select_one-group_Part3.P3.S1.UNEM04 #> 240-select_one-group_Part3.P3.S1.UNEM05 #> 241-select_one-group_Part3.P3.S1.UNEM06 #> 242-select_one-group_Part3.P3.S1.UNEM07 #> 243-select_one-group_Part3.P3.S1.UNEM08 #> 244-select_one-group_Part3.P3.S1.UNEM09 #> 245-select_one-group_Part3.P3.S1.UNEM10 #> 246-select_one-group_Part3.P3.S1.INC01 #> 247-select_one-group_Part3.P3.S1.BANK01 #> 248-select_one-group_Part3.P3.S1.BANK02 #> 249-select_one-group_Part3.P3.S1.BANK03 #> 250-select_one-group_Part3.P3.S1.BANK04 #> 251-select_one-group_Part3.P3.S1.BANK05 #> 252-select_one-group_Part3.P3.S2.SAF01 #> 253-select_one-group_Part3.P3.S2.GBV01.GBV01_001 #> 254-select_one-group_Part3.P3.S2.GBV01.GBV01a #> 255-select_one-group_Part3.P3.S2.GBV01.GBV01b #> 256-select_one-group_Part3.P3.S2.GBV01.GBV01c #> 257-select_one-group_Part3.P3.S2.GBV01.GBV01d #> 258-calculate-group_Part4.child_edu_group.listchild_edu_calcul_nc #> 259-calculate-group_Part4.child_edu_group.n_selected_child_edu_calcul_nc #> 260-calculate-group_Part4.child_edu_group.selected_child_edu_calcul_nc #> 261-calculate-group_Part4.child_edu_group.name_selectedchild_edu_calcul_nc_age #> 262-calculate-group_Part4.child_edu_group.name_selectedchild_edu #> 263-select_one-group_Part4.child_edu_group.EDU01 #> 264-select_one-group_Part4.child_edu_group.EDU02 #> 265-select_one-group_Part4.child_edu_group.EDU03 #> 266-select_one-group_Part4.child_edu_group.EDU04 #> 267-text-group_Part4.child_edu_group.EDU04_other #> 268-calculate-group_Part4.comm_act.listbelow18 #> 269-calculate-group_Part4.comm_act.n_selected_below18 #> 270-calculate-group_Part4.comm_act.selected_below18 #> 271-calculate-group_Part4.comm_act.name_selectedbelow18_age #> 272-calculate-group_Part4.comm_act.name_selectedbelow18 #> 273-select_one-group_Part4.comm_act.COMM01 #> 274-integer-group_Part4.comm_act.COMM02 #> 275-select_one-group_Part4.comm_act.COMM03 #> 276-select_one-group_Part4.comm_act.COMM04 #> 277-calculate-group_Part4.P4_below5.P4_registration.listbelow5 #> 278-calculate-group_Part4.P4_below5.P4_registration.n_selected_below5 #> 279-calculate-group_Part4.P4_below5.P4_registration.selected_below5 #> 280-calculate-group_Part4.P4_below5.P4_registration.name_selectedbelow5_age #> 281-calculate-group_Part4.P4_below5.P4_registration.name_selectedbelow5 #> 282-select_one-group_Part4.P4_below5.P4_registration.REG03 #> 283-select_one-group_Part4.P4_below5.P4_registration.REG04 #> 284-select_one-group_Part4.P4_below5.P4_registration.S4_below5.REG05 #> 285-select_one-group_Part4.P4_below5.P4_registration.S4_below5.REG05a #> 286-select_one-group_Part4.P4_below5.P4_registration.S4_below5.REG05b #> 287-select_one-group_Part4.P4_below5.P4_registration.S4_below5.REG05c #> 288-select_one-group_Part4.P4_below5.P4_registration.S4_below5.REG05d #> 289-select_one-group_Part4.P4_below5.P4_registration.S4_below5.REG05e #> 290-select_one-group_Part4.P4_below5.P4_registration.S4_below5.REG05f #> 291-select_one-group_Part4.P4_below5.P4_registration.REG06 #> 292-select_one-group_Part4.P4_below5.P4_vaccination.MMR01 #> 293-select_one-group_Part4.P4_below5.P4_vaccination.MMR02 #> 294-select_one-group_Part4.P4_below5.P4_vaccination.MMR03 #> 295-integer-group_Part4.P4_below5.P4_vaccination.MMR04 #> 296-select_one-end_survey.end_result #> 297-select_one-end_survey.name_respondent #> 298-text-end_survey.number_respondent #> 299-select_one-end_survey.final_notes #> 300-text-end_survey.final_notes_entry #> 1 in repeat -S1 ///calculate-group_Part1.S1.personId #> 2 in repeat -S1 ///text-group_Part1.S1.S1_Household.HH02 #> 3 in repeat -S1 ///select_one-group_Part1.S1.S1_Household.HH03 #> 4 in repeat -S1 ///select_one-group_Part1.S1.S1_Household.HH04 #> 5 in repeat -S1 ///select_one-group_Part1.S1.S1_Household.HH05 #> 6 in repeat -S1 ///date-group_Part1.S1.S1_Household.HH06 #> 7 in repeat -S1 ///calculate-group_Part1.S1.S1_Household.calcul1 #> 8 in repeat -S1 ///integer-group_Part1.S1.S1_Household.age #> 9 in repeat -S1 ///integer-group_Part1.S1.S1_Household.AgeMonths #> 10 in repeat -S1 ///calculate-group_Part1.S1.S1_Household.ageMD #> 11 in repeat -S1 ///integer-group_Part1.S1.S1_Household.HH07 #> 12 in repeat -S1 ///integer-group_Part1.S1.S1_Household.HH07_months #> 13 in repeat -S1 ///select_one-group_Part1.S1.S1_Household.HH08 #> 14 in repeat -S1 ///calculate-group_Part1.S1.Relation_R #> 15 in repeat -S1 ///calculate-group_Part1.S1.below5 #> 16 in repeat -S1 ///calculate-group_Part1.S1.below18 #> 17 in repeat -S1 ///calculate-group_Part1.S1.age_vaccine #> 18 in repeat -S1 ///calculate-group_Part1.S1.child_edu_calcul #> 19 in repeat -S1 ///calculate-group_Part1.S1.below5_r #> 20 in repeat -S1 ///calculate-group_Part1.S1.below18_r #> 21 in repeat -S1 ///calculate-group_Part1.S1.age_vaccine_r #> 22 in repeat -S1 ///calculate-group_Part1.S1.child_edu_calcul_r #> 23 in repeat -S1 ///calculate-group_Part1.S1.positionbelow5 #> 24 in repeat -S1 ///calculate-group_Part1.S1.positionbelow18 #> 25 in repeat -S1 ///calculate-group_Part1.S1.positionage_vaccine #> 26 in repeat -S1 ///calculate-group_Part1.S1.positionchild_edu_calcul #> 27 in repeat -S1 ///calculate-group_Part1.S1.below5_nc #> 28 in repeat -S1 ///calculate-group_Part1.S1.below18_nc #> 29 in repeat -S1 ///calculate-group_Part1.S1.age_vaccine_nc #> 30 in repeat -S1 ///calculate-group_Part1.S1.child_edu_calcul_nc #> 31 in repeat -S1 ///calculate-group_Part1.S1.women_b #> 32 in repeat -S1 ///calculate-group_Part1.S1.father_b #> 33 in repeat -S1 ///calculate-group_Part1.S1.childLess2 #> 34 in repeat -S1 ///calculate-group_Part1.S1.childLess2name #> 35 in repeat -S1 ///calculate-group_Part1.S1.women #> 36 in repeat -S1 ///calculate-group_Part1.S1.father #> 37 in repeat -S1 ///calculate-group_Part1.S1.adult #> 38 in repeat -S1 ///calculate-group_Part1.S1.women_b_count # openxlsx::write.xlsx(datalist, here::here(\"inst\", \"dummy_RMS_CATI_v0.xlsx\")) form <- system.file(\"RMS_CATI_v3.xlsx\", package = \"IndicatorCalc\") datalist <- fct_kobo_dummy(form, n = 384, file = NULL) #> Warning: Expected 2 pieces. Additional pieces discarded in 1 rows [326]. #> 1-start-start #> 2-end-end #> 3-calculate-start_time_1 #> 4-date-intro.interviewdate #> 5-text-intro.name_enumerator #> 6-text-intro.Intro01 #> 7-text-intro.Intro02 #> 8-integer-intro.number #> 9-integer-intro.call_attempt #> 10-select_one-intro.attempt1 #> 11-select_one-intro.attempt2 #> 12-select_one-intro.attempt3 #> 13-acknowledge-intro.next_attempt #> 14-calculate-intro.start_time_2 #> 15-acknowledge-group_consent.consent_form #> 16-select_one-group_consent.Intro04 #> 17-select_one-intro2.Bureau #> 18-select_one-intro2.Country #> 19-calculate-intro2.countryname #> 20-select_one-intro2.pop_groups #> 21-text-Part1.HHH01_aux #> 22-integer-Part1.HHH01_age #> 23-select_one-Part1.respondent #> 24-calculate-Part1.quality_check.adult_sum_001 #> 25-calculate-Part1.quality_check.hh_size_001 #> 26-acknowledge-Part1.quality_check.confirm_hhsize #> 27-calculate-namechild2less #> 28-calculate-nochild2less #> 29-calculate-women_name_b_total #> 30-calculate-women_name_b #> 31-calculate-father_name_b #> 32-calculate-women_name #> 33-calculate-father_name #> 34-calculate-adult_name #> 35-calculate-sumbelow5 #> 36-calculate-sumbelow18 #> 37-calculate-sumage_vaccine #> 38-calculate-sumchild_edu_calcul #> 39-calculate-nobelow5 #> 40-calculate-nobelow18 #> 41-calculate-noage_vaccine #> 42-calculate-nochild_edu_calcul #> 43-select_one-S2_respondent.P1_S2.REF01 #> 44-calculate-S2_respondent.P1_S2.citizenship #> 45-select_one-S2_respondent.P1_S2.REF02 #> 46-calculate-S2_respondent.P1_S2.citizenship2 #> 47-select_one-S2_respondent.P1_S2.REF03 #> 48-select_one-S2_respondent.P1_S2.REF04 #> 49-select_one-S2_respondent.P1_S2.REF05 #> 50-calculate-S2_respondent.P1_S2.countrybirth #> 51-select_one-S2_respondent.P1_S2.REF07 #> 52-select_one-S2_respondent.P1_S2.REF08 #> 53-select_one-S2_respondent.P1_S2.REF09 #> 54-date-S2_respondent.P1_S2.REF10a #> 55-text-S2_respondent.P1_S2.REF10b #> 56-select_one-S2_respondent.P1_S2.REF11 #> 57-select_one-S2_respondent.P1_S2.REF12 #> 58-date-S2_respondent.P1_S2.REF12a #> 59-text-S2_respondent.P1_S2.REF12b #> 60-select_one-S2_respondent.P1_S2.REF13 #> 61-select_one-S2_respondent.P1_S2.REF14 #> 62-select_one-S2_respondent.P1_S2.REF15 #> 63-select_one-S2_respondent.P1_S2.REF16 #> 64-text-S2_respondent.P1_S2.REF16_other #> 65-select_one-S2_respondent.P1_S2.REF16a #> 66-text-S2_respondent.P1_S2.REF16a_other #> 67-select_multiple-S2_respondent.P1_S3.IDP01 #> 68-text-S2_respondent.P1_S3.IDP01a #> 69-select_one-S2_respondent.P1_S3.IDP02 #> 70-date-S2_respondent.P1_S3.IDP02a #> 71-text-S2_respondent.P1_S3.IDP02b #> 72-select_one_from_file-S2_respondent.P1_S3.IDP03 #> 73-select_one_from_file-S2_respondent.P1_S3.IDP04 #> 74-select_one-S2_respondent.P1_S4.S4_above5.REG01 #> 75-select_one-S2_respondent.P1_S4.S4_above5.REG01a #> 76-select_one-S2_respondent.P1_S4.S4_above5.REG01b #> 77-select_one-S2_respondent.P1_S4.S4_above5.REG01c #> 78-select_one-S2_respondent.P1_S4.S4_above5.REG01d #> 79-select_one-S2_respondent.P1_S4.S4_above5.REG01e #> 80-select_one-S2_respondent.P1_S4.S4_above5.REG01f #> 81-select_one-S2_respondent.P1_S4.S4_above5.REG01g #> 82-select_one-S2_respondent.P1_S4.REG02 #> 83-select_one-S2_respondent.P1_S6.DIS01a #> 84-select_one-S2_respondent.P1_S6.DIS01 #> 85-select_one-S2_respondent.P1_S6.DIS02 #> 86-select_one-S2_respondent.P1_S6.DIS03 #> 87-select_one-S2_respondent.P1_S6.DIS04 #> 88-select_one-S2_respondent.P1_S6.DIS05 #> 89-select_one-S2_respondent.P1_S6.DIS06 #> 90-select_one-S2_respondent.P1_S7.HACC01 #> 91-select_one-S2_respondent.P1_S7.HACC02 #> 92-text-S2_respondent.P1_S7.HACC02_other #> 93-calculate-S2_respondent.P1_S7.reason_care #> 94-select_one-S2_respondent.P1_S7.HACC03 #> 95-select_multiple-S2_respondent.P1_S7.HACC04 #> 96-text-S2_respondent.P1_S7.HACC04_other #> 97-select_one-Part2.P2_S1.DWE01 #> 98-text-Part2.P2_S1.DWE01_other #> 99-select_one-Part2.P2_S1.SHEL01 #> 100-select_one-Part2.P2_S1.SHEL02 #> 101-select_one-Part2.P2_S1.SHEL03 #> 102-select_one-Part2.P2_S1.SHEL04 #> 103-select_one-Part2.P2_S1.SHEL05 #> 104-select_one-Part2.P2_S1.SHEL06 #> 105-select_one-Part2.P2_S1.RISK01 #> 106-select_one-Part2.P2_S1.RISK02 #> 107-integer-Part2.P2_S1.DWE05 #> 108-select_one-Part2.P2_S2.filter_camp #> 109-select_one-Part2.P2_S2.DWE06_land #> 110-text-Part2.P2_S2.DWE06_other_land #> 111-select_one-Part2.P2_S2.DWE06a_land #> 112-select_one-Part2.P2_S2.DWE07_land #> 113-text-Part2.P2_S2.DWE07_other_land #> 114-select_one-Part2.P2_S2.DWE06_housing #> 115-text-Part2.P2_S2.DWE06_other_housing #> 116-select_one-Part2.P2_S2.DWE06a_housing #> 117-select_one-Part2.P2_S2.DWE07_housing #> 118-text-Part2.P2_S2.DWE07_other_housing #> 119-select_one-Part2.P2_S2.DWE08 #> 120-select_one-Part2.P2_S2.DWE09 #> 121-text-Part2.P2_S2.DWE09_other #> 122-select_one-Part2.P2_S2.DWE10 #> 123-select_one-Part2.P2_S3.COOK01 #> 124-select_one-Part2.P2_S3.COOK02 #> 125-text-Part2.P2_S3.COOK02_other #> 126-select_one-Part2.P2_S3.COOK03 #> 127-text-Part2.P2_S3.COOK03_other #> 128-select_one-Part2.P2_S3.LIGHT01 #> 129-select_one-Part2.P2_S3.LIGHT02 #> 130-text-Part2.P2_S3.LIGHT02_other #> 131-select_one-Part2.P2_S3.LIGHT03 #> 132-text-Part2.P2_S3.LIGHT03_other #> 133-calculate-Part2.P2_S3.electricity_source #> 134-select_multiple-Part2.P2_S3.LIGHT04 #> 135-text-Part2.P2_S3.LIGHT04_other #> 136-select_one-Part2.P2_S3.LIGHT05 #> 137-integer-Part2.P2_S3.LIGHT05_11 #> 138-integer-Part2.P2_S3.LIGHT05_22 #> 139-select_one-Part2.P2_S3.LIGHT06 #> 140-integer-Part2.P2_S3.LIGHT06_11 #> 141-integer-Part2.P2_S3.LIGHT06_22 #> 142-select_one-Part2.P2_S3.DWA01 #> 143-text-Part2.P2_S3.DWA01_other #> 144-calculate-Part2.P2_S3.source #> 145-calculate-Part2.P2_S3.source2 #> 146-select_one-Part2.P2_S3.DWA02 #> 147-text-Part2.P2_S3.DWA02_other #> 148-select_one-Part2.P2_S3.time_toi.DWA03a #> 149-integer-Part2.P2_S3.time_toi.DWA03b #> 150-select_one-Part2.P2_S3.DWA04 #> 151-select_one-Part2.P2_S3.TOI01 #> 152-text-Part2.P2_S3.TOI01_other #> 153-select_one-Part2.P2_S3.TOI02 #> 154-select_one-Part2.P2_S3.TOI03 #> 155-text-Part2.P2_S3.TOI03_other #> 156-select_one-Part2.P2_S3.TOI04 #> 157-text-Part2.P2_S3.TOI04_other #> 158-select_one-Part2.P2_S3.TOI05 #> 159-calculate-Part2.P2_S4.latestson #> 160-select_one-Part2.P2_S4.BIR01 #> 161-select_one-Part2.P2_S4.BIR02 #> 162-select_multiple-Part2.P2_S4.BIR03 #> 163-text-Part2.P2_S4.BIR03_other #> 164-select_one-Part2.P2_S4.BIR04 #> 165-text-Part2.P2_S4.BIR04_other #> 166-select_one-Part2.P2_S4.HEA01 #> 167-text-Part2.P2_S4.HEA01_other #> 168-select_one-Part2.P2_S4.HEA02 #> 169-text-Part2.P2_S4.HEA02_other #> 170-integer-Part2.P2_S4.HEA03 #> 171-select_one-Part2.P2_S5.SPF01_op #> 172-select_one-Part2.P2_S5.SPF01a #> 173-select_one-Part2.P2_S5.SPF01b #> 174-select_one-Part2.P2_S5.SPF01c #> 175-select_one-Part2.P2_S5.SPF01d #> 176-select_one-Part2.P2_S5.SPF01e #> 177-select_one-Part2.P2_S5.SPF01f #> 178-select_one-Part2.P2_S5.SPF01g #> 179-select_one-Part2.P2_S5.SPF01h #> 180-select_one-Part2.P2_S5.SPF01j #> 181-select_one-Part2.P2_S5.SPF01k #> 182-select_one-Part2.P2_S5.SPF01l #> 183-select_one-Part2.P2_S5.SPF01m #> 184-select_one-Part2.P2_S5.SPF01n #> 185-select_one-Part2.P2_S5.SPF01o #> 186-select_one-Part2.P2_S5.SPF01p #> 187-select_one-Part3.P3_S1.EDU01_random #> 188-select_one-Part3.P3_S1.UNEM01 #> 189-select_one-Part3.P3_S1.UNEM02 #> 190-select_one-Part3.P3_S1.UNEM03 #> 191-select_one-Part3.P3_S1.UNEM04 #> 192-select_one-Part3.P3_S1.UNEM05 #> 193-select_one-Part3.P3_S1.UNEM06 #> 194-select_one-Part3.P3_S1.UNEM07 #> 195-select_one-Part3.P3_S1.UNEM08 #> 196-select_one-Part3.P3_S1.UNEM09 #> 197-select_one-Part3.P3_S1.UNEM10 #> 198-select_one-Part3.P3_S1.INC01 #> 199-select_one-Part3.P3_S1.INC02 #> 200-select_one-Part3.P3_S1.BANK01 #> 201-select_one-Part3.P3_S1.BANK02 #> 202-select_one-Part3.P3_S1.BANK03 #> 203-select_one-Part3.P3_S1.BANK04 #> 204-select_one-Part3.P3_S1.BANK05 #> 205-select_one-Part3.P3_S3.FRM01 #> 206-select_one-Part3.P3_S3.FRM02 #> 207-select-Part3.P3_S3.FRM03 #> 208-text-Part3.P3_S3.FRM03_other #> 209-select_one-Part3.P3_S2.SAF01 #> 210-select_one-Part3.P3_S2.GBV01.GBV01_001 #> 211-select_one-Part3.P3_S2.GBV01.GBV01a #> 212-select_one-Part3.P3_S2.GBV01.GBV01b #> 213-select_one-Part3.P3_S2.GBV01.GBV01c #> 214-select_one-Part3.P3_S2.GBV01.GBV01d #> 215-calculate-group_Part4.S1.child_edu_group.listchild_edu_calcul_nc #> 216-calculate-group_Part4.S1.child_edu_group.n_selected_child_edu_calcul_nc #> 217-calculate-group_Part4.S1.child_edu_group.selected_child_edu_calcul_nc #> 218-calculate-group_Part4.S1.child_edu_group.name_selectedchild_edu_calcul_nc_age #> 219-calculate-group_Part4.S1.child_edu_group.name_selectedchild_edu #> 220-select_one-group_Part4.S1.child_edu_group.EDU01 #> 221-select_one-group_Part4.S1.child_edu_group.EDU02 #> 222-select_one-group_Part4.S1.child_edu_group.EDU03 #> 223-select_one-group_Part4.S1.child_edu_group.EDU04 #> 224-text-group_Part4.S1.child_edu_group.EDU04_other #> 225-select_one-group_Part4.S1.child_edu_group.EDU05 #> 226-text-group_Part4.S1.child_edu_group.EDU05_other #> 227-calculate-group_Part4.S2.comm_act.listbelow18 #> 228-calculate-group_Part4.S2.comm_act.n_selected_below18 #> 229-calculate-group_Part4.S2.comm_act.selected_below18 #> 230-calculate-group_Part4.S2.comm_act.name_selectedbelow18_age #> 231-calculate-group_Part4.S2.comm_act.name_selectedbelow18 #> 232-select_one-group_Part4.S2.comm_act.COMM01 #> 233-integer-group_Part4.S2.comm_act.COMM02 #> 234-select_one-group_Part4.S2.comm_act.COMM03 #> 235-select_one-group_Part4.S2.comm_act.COMM04 #> 236-calculate-group_Part4.S3. Reg below5.listbelow5 #> 237-calculate-group_Part4.S3. Reg below5.n_selected_below5 #> 238-calculate-group_Part4.S3. Reg below5.selected_below5 #> 239-calculate-group_Part4.S3. Reg below5.name_selectedbelow5_age #> 240-calculate-group_Part4.S3. Reg below5.name_selectedbelow5 #> 241-select_one-group_Part4.S3. Reg below5.REG03 #> 242-select_one-group_Part4.S3. Reg below5.REG04 #> 243-select_one-group_Part4.S3. Reg below5.S3_below5.REG05 #> 244-select_one-group_Part4.S3. Reg below5.S3_below5.REG05a #> 245-select_one-group_Part4.S3. Reg below5.S3_below5.REG05b #> 246-select_one-group_Part4.S3. Reg below5.S3_below5.REG05c #> 247-select_one-group_Part4.S3. Reg below5.S3_below5.REG05d #> 248-select_one-group_Part4.S3. Reg below5.S3_below5.REG05e #> 249-select_one-group_Part4.S3. Reg below5.S3_below5.REG05f #> 250-select_one-group_Part4.S3. Reg below5.REG06 #> 251-select_one-group_Part4.S4_vaccination.MMR01 #> 252-select_one-group_Part4.S4_vaccination.MMR02 #> 253-select_one-group_Part4.S4_vaccination.MMR03 #> 254-integer-group_Part4.S4_vaccination.MMR04 #> 255-select_one-complete_survey.contact_number #> 256-text-complete_survey.number_respondent #> 257-select_one-complete_survey.end_result #> 258-select_one-complete_survey.name_respondent #> 259-select_one-complete_survey.final_notes #> 260-text-complete_survey.final_notes_entry #> 261-calculate-end_time_1 #> 1 in repeat -rpt_hhmnames ///calculate-Part1.rpt_hhmnames.hhmnames_pos #> 2 in repeat -rpt_hhmnames ///calculate-Part1.rpt_hhmnames.HHH01_2_aux #> 3 in repeat -rpt_hhmnames ///text-Part1.rpt_hhmnames.HH01_aux #> 4 in repeat -rpt_hhmnames ///select_one-Part1.rpt_hhmnames.HH03_aux #> 5 in repeat -rpt_hhmnames ///calculate-Part1.rpt_hhmnames.HH01_2_aux #> 6 in repeat -rpt_hhmnames ///calculate-Part1.rpt_hhmnames.HH03_2_aux #> 1 in repeat -S1 ///calculate-Part1.S1.personId #> 2 in repeat -S1 ///calculate-Part1.S1.hhroster_pos_aux #> 3 in repeat -S1 ///calculate-Part1.S1.hhmnames_pos_match #> 4 in repeat -S1 ///calculate-Part1.S1.HH01 #> 5 in repeat -S1 ///calculate-Part1.S1.HH03 #> 6 in repeat -S1 ///select_one-Part1.S1.HH04 #> 7 in repeat -S1 ///select_one-Part1.S1.HH05 #> 8 in repeat -S1 ///date-Part1.S1.HH06 #> 9 in repeat -S1 ///calculate-Part1.S1.calcul1 #> 10 in repeat -S1 ///calculate-Part1.S1.age #> 11 in repeat -S1 ///calculate-Part1.S1.AgeMonths #> 12 in repeat -S1 ///calculate-Part1.S1.ageMD #> 13 in repeat -S1 ///integer-Part1.S1.age_est #> 14 in repeat -S1 ///integer-Part1.S1.months_est #> 15 in repeat -S1 ///calculate-Part1.S1.HH07 #> 16 in repeat -S1 ///calculate-Part1.S1.HH07_months #> 17 in repeat -S1 ///select_one-Part1.S1.HH08 #> 18 in repeat -S1 ///calculate-Part1.S1.start_time_2 #> 19 in repeat -S1 ///calculate-Part1.S1.position #> 20 in repeat -S1 ///calculate-Part1.S1.Relation_R #> 21 in repeat -S1 ///calculate-Part1.S1.adult18 #> 22 in repeat -S1 ///calculate-Part1.S1.women_b #> 23 in repeat -S1 ///calculate-Part1.S1.father_b #> 24 in repeat -S1 ///calculate-Part1.S1.childLess2 #> 25 in repeat -S1 ///calculate-Part1.S1.childLess2name #> 26 in repeat -S1 ///calculate-Part1.S1.women #> 27 in repeat -S1 ///calculate-Part1.S1.father #> 28 in repeat -S1 ///calculate-Part1.S1.adult #> 29 in repeat -S1 ///calculate-Part1.S1.women_b_count #> 30 in repeat -S1 ///calculate-Part1.S1.hh_size #> 31 in repeat -S1 ///calculate-Part1.S1.hhhead_age_ab18 #> 32 in repeat -S1 ///calculate-Part1.S1.adult_sum #> 33 in repeat -S1 ///calculate-Part1.S1.hhhead_age #> 34 in repeat -S1 ///calculate-Part1.S1.position18 #> 35 in repeat -S1 ///calculate-Part1.S1.adult01 #> 36 in repeat -S1 ///calculate-Part1.S1.age18above #> 37 in repeat -S1 ///calculate-Part1.S1.below5 #> 38 in repeat -S1 ///calculate-Part1.S1.below18 #> 39 in repeat -S1 ///calculate-Part1.S1.age_vaccine #> 40 in repeat -S1 ///calculate-Part1.S1.child_edu_calcul #> 41 in repeat -S1 ///calculate-Part1.S1.below5_r #> 42 in repeat -S1 ///calculate-Part1.S1.below18_r #> 43 in repeat -S1 ///calculate-Part1.S1.age_vaccine_r #> 44 in repeat -S1 ///calculate-Part1.S1.child_edu_calcul_r #> 45 in repeat -S1 ///calculate-Part1.S1.positionbelow5 #> 46 in repeat -S1 ///calculate-Part1.S1.positionbelow18 #> 47 in repeat -S1 ///calculate-Part1.S1.positionage_vaccine #> 48 in repeat -S1 ///calculate-Part1.S1.positionchild_edu_calcul #> 49 in repeat -S1 ///calculate-Part1.S1.below5_nc #> 50 in repeat -S1 ///calculate-Part1.S1.below18_nc #> 51 in repeat -S1 ///calculate-Part1.S1.age_vaccine_nc #> 52 in repeat -S1 ///calculate-Part1.S1.child_edu_calcul_nc # openxlsx::write.xlsx(datalist, here::here(\"inst\", \"dummy_RMS_CATI_v3.xlsx\"))"},{"path":"/reference/fct_plot_indic_donut.html","id":null,"dir":"Reference","previous_headings":"","what":"fct_plot_indic_donut — fct_plot_indic_donut","title":"fct_plot_indic_donut — fct_plot_indic_donut","text":"Wrapper summary chart indicator - allows add hint, source, icon interpretation threshold available","code":""},{"path":"/reference/fct_plot_indic_donut.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"fct_plot_indic_donut — fct_plot_indic_donut","text":"","code":"fct_plot_indic_donut( indicator, subtitle_chart = NULL, caption_chart = NULL, ordered_threhold = NULL, iconunicode = \"f496\" )"},{"path":"/reference/fct_plot_indic_donut.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"fct_plot_indic_donut — fct_plot_indic_donut","text":"indicator vector subtitle_chart subtitle chart caption_chart caption chart ordered_threhold vector different threshold (green, orange, red) iconunicode unicode value fontawesome --- see https://fontawesome.com/search?o=r&m=free","code":""},{"path":"/reference/fct_plot_indic_donut.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"fct_plot_indic_donut — fct_plot_indic_donut","text":"ggplot2 object","code":""},{"path":"/reference/fct_plot_indic_donut.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"fct_plot_indic_donut — fct_plot_indic_donut","text":"","code":"test <- data.frame( shelter = rbinom(20, 1, 0.5)) |> dplyr::mutate( shelter = labelled::labelled( shelter, labels = c( \"Yes\" = 1, \"No\" = 0), label = \"Access to adequate shelter also testing a long title to see if it wraps well\")) fct_plot_indic_donut(indicator = test$shelter, subtitle_chart = NULL, caption_chart = NULL, ordered_threhold = NULL, iconunicode = \"e54f\") ## test no value test2 <- NULL fct_plot_indic_donut(indicator = test2, subtitle_chart = NULL, caption_chart = NULL, ordered_threhold = NULL, iconunicode = \"e54f\") #> No value was supplied for plotting..."},{"path":"/reference/fct_plot_rbm_sdg.html","id":null,"dir":"Reference","previous_headings":"","what":"Plot SDG Indicator for a country — fct_plot_rbm_sdg","title":"Plot SDG Indicator for a country — fct_plot_rbm_sdg","text":"function designed help interpretation survey results providing comparison guidelines. displays chart base comparison analyzing results UNHCR UNHCR Result monitoring survey. pulls values published within UN Registry SDG Indicator values function includes mapping table RBM/RMS SDG extract data https://unstats.un.org/SDGAPI/swagger/ using package SDGsR https://drmattg.github.io/SDGsR/articles/Introduction_to_SDGsR.html devtools::install_github(\"DrMattG/SDGsR\", dependencies = TRUE)","code":""},{"path":"/reference/fct_plot_rbm_sdg.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Plot SDG Indicator for a country — fct_plot_rbm_sdg","text":"","code":"fct_plot_rbm_sdg(country = \"BRA\", rbm = \"outcome16_2\", years = c(2000, 2022))"},{"path":"/reference/fct_plot_rbm_sdg.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Plot SDG Indicator for a country — fct_plot_rbm_sdg","text":"country iso3 code country (easier recall M49 used API) rbm RBM variable name - can match SDG years years filter chart - instance c(2000,2022)","code":""},{"path":"/reference/fct_plot_rbm_sdg.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"Plot SDG Indicator for a country — fct_plot_rbm_sdg","text":"ggplot2 object","code":""},{"path":"/reference/fct_plot_rbm_sdg.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Plot SDG Indicator for a country — fct_plot_rbm_sdg","text":"","code":"# fct_plot_rbm_sdg( country = \"BRA\", # rbm = \"impact2_2\", # years = c(2000, 2022)) + # unhcrthemes::theme_unhcr(font_size = 10)"},{"path":"/reference/fct_re_map.html","id":null,"dir":"Reference","previous_headings":"","what":"fct_re_map — fct_re_map","title":"fct_re_map — fct_re_map","text":"Take list hierarchical survey entry - use another list remap variables modalities specific questions","code":""},{"path":"/reference/fct_re_map.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"fct_re_map — fct_re_map","text":"","code":"fct_re_map(datalist, mapper)"},{"path":"/reference/fct_re_map.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"fct_re_map — fct_re_map","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data() mapper list providing mapping variables used calculation - mapper potentially adjusted relation deviation standard XlsForm contextualized dataset","code":""},{"path":"/reference/fct_re_map.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"fct_re_map — fct_re_map","text":"datalist","code":""},{"path":"/reference/fct_re_map.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"fct_re_map — fct_re_map","text":"","code":"mapper = list( hierarchy = \"main\", variablemap = data.frame( label = c(\"Does this household use anything for lighting?\", \"What source of electricity is used most of the time in this household?\"), variable = c(\"LIGHT01\", \"LIGHT03\"), mappattern = c(\"LIGHT01\", \"LIGHT03\") ), modalitymap = data.frame( variable = c( \"LIGHT01\", \"LIGHT03\", \"LIGHT03\", \"LIGHT03\"), label = c( \"yes\", \"No electricity in household\", \"Other, specify\", \"Don't know\"), standard = c( \"1\", \"1\", \"96\", \"98\"), map = c(\"yes\", \"Noelec\", \"Other\", \"Dontknow\") ) ) ## One variable is not correctly datalist <- list(mainhousehold = data.frame( group.LIGHT01 = c(\"yes\", \"yes\", \"no\", \"yes\", \"yes\", \"no\", \"yes\", \"yes\", \"yes\"), group.LIGHT03 = c(\"Noelec\", \"Other\", \"Dontknow\", \"Noelec\", \"Other\", \"Dontknow\", \"Nuclear\", \"Other\", \"Dontknow\")) ) datalist <- fct_re_map(datalist = datalist, mapper = mapper ) #> Mapped levels for LIGHT01 are now: 1, no #> Mapped levels for LIGHT03 are now: 1, 96, 98, Nuclear #fct_check_map(datalist = datalist, mapper = mapper ) ## Now testing on a full remap... ## Dummy data created with fct_kobo_dummy datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2.xlsx\", package = \"IndicatorCalc\")) ## Mapping file created from Dummy data mappingfile <- system.file(\"RMS_CAPI_v2_mapping.xlsx\", package = \"IndicatorCalc\") IndicatorRequirementFile <- system.file(\"RMS_CAPI_v2_mapper.xlsx\", package = \"IndicatorCalc\") ## and now we remap both required variables for main and ind mappermain <- fct_build_map(mappingfile = mappingfile, IndicatorRequirementFile = IndicatorRequirementFile, thisMeasureLevel = \"main\") datalist <- fct_re_map(datalist = datalist, mapper = mappermain ) #> ℹ HEA01 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for HEA01 are now: 1, 2, 3, 4, 5, 96, 98 #> ℹ HEA02 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for HEA02 are now: 1, 2, 3, 96 #> The following `from` values were not present in `x`: 1 #> Mapped levels for HEA03 are now: 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95 #> Mapped levels for LIGHT01 are now: 0, 1 #> ℹ LIGHT02 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for LIGHT02 are now: 1, 10, 11, 12, 13, 2, 3, 4, 5, 6, 7, 8, 9, 96 #> ℹ LIGHT03 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for LIGHT03 are now: 1, 2, 3, 4, 5, 6, 7, 8, 96, 98 #> ℹ DWA01 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWA01 are now: 1, 10, 11, 12, 13, 14, 15, 16, 2, 3, 4, 5, 6, 7, 8, 9, 96, 98 #> ℹ DWA02 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWA02 are now: 1, 2, 3 #> Mapped levels for DWA03a are now: 1, 2 #> The following `from` values were not present in `x`: 1 #> Mapped levels for DWA03b are now: 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95 #> Mapped levels for DWA04 are now: 0, 1 #> ℹ DWE01 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE01 are now: 1, 2, 3, 4, 5, 6, 7, 8, 9, 96 #> ℹ DWE02 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE02 are now: 1, 2, 3, 4, 5, 6, 7, 8, 9, 96 #> ℹ DWE03 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE03 are now: 1, 10, 11, 12, 13, 2, 3, 4, 5, 6, 7, 8, 9, 96 #> ℹ DWE04 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE04 are now: 1, 10, 11, 12, 13, 14, 15, 2, 3, 4, 5, 6, 7, 8, 9, 96 #> The following `from` values were not present in `x`: 1 #> Mapped levels for DWE05 are now: 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95 #> Mapped levels for DWE08 are now: 0, 1 #> Mapped levels for DWE09 are now: 1, 2, 3, 4 #> The following `from` values were not present in `x`: 1 #> Mapped levels for HH01 are now: 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95 #> Mapped levels for SAF01 are now: 1, 2, 3, 4, 98, 99 #> Mapped levels for GBV01a are now: 0, 1, 98 #> Mapped levels for GBV01b are now: 0, 1, 98 #> Mapped levels for GBV01c are now: 0, 1, 98 #> Mapped levels for GBV01d are now: 0, 1, 98 #> Mapped levels for VAW01a are now: 0, 1, 99 #> Mapped levels for VAW01b are now: 0, 1, 99 #> Mapped levels for VAW01c are now: 0, 1, 99 #> Mapped levels for VAW01d are now: 0, 1, 99 #> Mapped levels for VAW01e are now: 0, 1, 99 #> Mapped levels for BIR01 are now: 0, 1 #> Mapped levels for BIR02 are now: 0, 1 #> ℹ BIR03 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> The following `from` values were not present in `x`: 2, 3, 4, 5, 6, 96, 98 #> Mapped levels for BIR03 are now: 0, 1 #> ℹ BIR04 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for BIR04 are now: 1, 2, 3, 96 #> ℹ TOI01 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for TOI01 are now: 1, 10, 11, 12, 2, 3, 4, 5, 6, 7, 8, 9, 96 #> Mapped levels for TOI02 are now: 1, 2, 98 #> ℹ COOK02 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for COOK02 are now: 1, 10, 2, 3, 4, 5, 6, 7, 8, 9, 96 #> ℹ COOK03 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for COOK03 are now: 1, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 2, 20, 21, 3, 4, 5, 6, 7, 8, 9, 96 #> Mapped levels for BANK01 are now: 0, 1 #> Mapped levels for BANK02 are now: 0, 1 #> Mapped levels for BANK03 are now: 0, 1 #> Mapped levels for BANK04 are now: 0, 1 #> Mapped levels for BANK05 are now: 0, 1 #> Mapped levels for INC01 are now: 1, 2, 3, 98 #> Mapped levels for UNEM01 are now: 0, 1 #> Mapped levels for UNEM02 are now: 0, 1 #> Mapped levels for UNEM03 are now: 0, 1 #> Mapped levels for UNEM04 are now: 0, 1 #> Mapped levels for UNEM05 are now: 0, 1 #> Mapped levels for UNEM06 are now: 1, 2, 3 #> Mapped levels for UNEM07 are now: 1, 2, 3 #> Mapped levels for UNEM08 are now: 1, 2, 3, 4 #> Mapped levels for UNEM09 are now: 0, 1 #> Mapped levels for UNEM10 are now: 0, 1 #> ℹ DWE06 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE06 are now: 1, 2, 3, 4, 5, 6, 7, 8, 9, 96, 98, 99 #> ℹ DWE07 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE07 are now: 1, 10, 11, 2, 3, 4, 5, 6, 7, 8, 9, 96, 98, 99 #> ℹ DWE10 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE10 are now: 1, 2, 3, 4, 5, 6, 96 #> Mapped levels for DWE11 are now: 1, 2, 3, 4, 99 #> Mapped levels for SPF01a are now: 0, 1, 98 #> Mapped levels for SPF01b are now: 0, 1, 98 #> Mapped levels for SPF01c are now: 0, 1, 98 #> Mapped levels for SPF01d are now: 0, 1, 98 #> Mapped levels for SPF01e are now: 0, 1, 98 #> Mapped levels for SPF01f are now: 0, 1, 98 #> Mapped levels for SPF01g are now: 0, 1, 98 #> Mapped levels for SPF01h are now: 0, 1, 98 mapperind <- fct_build_map(mappingfile = mappingfile, IndicatorRequirementFile = IndicatorRequirementFile, thisMeasureLevel = \"ind\") datalist <- fct_re_map(datalist = datalist, mapper = mapperind ) #> Mapped levels for HACC01 are now: 0, 1 #> ℹ HACC02 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> The following `from` values were not present in `x`: 2, 3, 4, 5, 96 #> Mapped levels for HACC02 are now: 0, 1 #> Mapped levels for HACC03 are now: 0, 1 #> ℹ HACC04 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> The following `from` values were not present in `x`: 2, 3, 4, 5, 6, 7, 8, 9, 10, 96 #> Mapped levels for HACC04 are now: 0, 1 #> Mapped levels for EDU01 are now: 0, 1 #> Mapped levels for EDU02 are now: 0, 1 #> Mapped levels for EDU03 are now: 1, 2, 3, 4, 5, 6, 98 #> ℹ EDU04 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for EDU04 are now: 1, 2, 3, 4, 5, 96, 98 #> ℹ HH07 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> The following `from` values were not present in `x`: 1 #> Mapped levels for HH07 are now: 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95 #> Mapped levels for REG03 are now: 0, 1, 98 #> Mapped levels for REG04 are now: 0, 1, 98, 99 #> Mapped levels for REG01a are now: 0, 1, 99 #> Mapped levels for REG01b are now: 0, 1, 99 #> Mapped levels for REG01c are now: 0, 1, 99 #> Mapped levels for REG01d are now: 0, 1, 99 #> Mapped levels for REG01e are now: 0, 1, 99 #> Mapped levels for REG01f are now: 0, 1, 99 #> Mapped levels for REG01g are now: 0, 1, 99 #> Mapped levels for REG02 are now: 0, 1, 99 #> Mapped levels for REG05a are now: 0, 1, 99 #> Mapped levels for REG05b are now: 0, 1, 99 #> Mapped levels for REG05c are now: 0, 1, 99 #> Mapped levels for REG05d are now: 0, 1, 99 #> Mapped levels for REG05e are now: 0, 1, 99 #> Mapped levels for REG05f are now: 0, 1, 99 #> Mapped levels for REG06 are now: 0, 1, 99 #> Mapped levels for COMM01 are now: 0, 1 #> The following `from` values were not present in `x`: 1 #> Mapped levels for COMM02 are now: 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95 #> Mapped levels for COMM03 are now: 0, 1, 98 #> Mapped levels for COMM04 are now: 0, 1, 98 #> Mapped levels for MMR03 are now: 0, 1, 98 #> ℹ TOI03 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for TOI03 are now: 1, 2, 3, 4, 5, 96, 98 #> ℹ TOI04 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for TOI04 are now: 1, 2, 3 #> Mapped levels for TOI05 are now: 0, 1 #> Mapped levels for COOK01 are now: 0, 1 ## Writing this in the installation folder of the packages to run all examples # openxlsx::write.xlsx( list ( main = as.data.frame(datalist[[\"main\"]]), # ind = as.data.frame(datalist[[\"ind\"]]) ), # here::here(\"inst\",\"dummy_RMS_CAPI_v2_mapped.xlsx\"))"},{"path":"/reference/fct_require.html","id":null,"dir":"Reference","previous_headings":"","what":"fct_require — fct_require","title":"fct_require — fct_require","text":"Write file variable requirement single indicator functions","code":""},{"path":"/reference/fct_require.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"fct_require — fct_require","text":"","code":"fct_require(xlsformpath)"},{"path":"/reference/fct_require.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"fct_require — fct_require","text":"xlsformpath path xlsform","code":""},{"path":"/reference/fct_require.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"fct_require — fct_require","text":"print console","code":""},{"path":"/reference/fct_require.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"fct_require — fct_require","text":"function used conveniently keep mapping excel tables used show variable requirements indicator calculation expects specific table within xlsform called Indicator_to_question","code":""},{"path":"/reference/fct_require.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"fct_require — fct_require","text":"","code":"## Write in dev/mapper.R each of the function parameters - as recorded in system.file(\"IndicMap.xlsx\", package = \"IndicatorCalc\") xlsformpath <- system.file(\"RMS_CAPI_v2.xlsx\", package = \"IndicatorCalc\") RMS_CAPI_v2_mapper <- fct_require(xlsformpath ) #> /tmp/RtmpJ9ybqX/file11a0c70edc944 # openxlsx::write.xlsx(RMS_CAPI_v2_mapper, here::here(\"inst\", \"RMS_CAPI_v2_mapper.xlsx\")) xlsformpath <- system.file(\"RMS_CAPI_v3.xlsx\", package = \"IndicatorCalc\") RMS_CAPI_v3_mapper <- fct_require(xlsformpath ) #> Warning: Expected 2 pieces. Additional pieces discarded in 1 rows [376]. #> /tmp/RtmpJ9ybqX/file11a0c27d2cbda # openxlsx::write.xlsx(RMS_CAPI_v3_mapper, here::here(\"inst\", \"RMS_CAPI_v3_mapper.xlsx\")) ## CATI xlsformpath <- system.file(\"RMS_CATI_v0.xlsx\", package = \"IndicatorCalc\") RMS_CATI_v0_mapper <- fct_require(xlsformpath ) #> /tmp/RtmpJ9ybqX/file11a0c8eb9a05 # openxlsx::write.xlsx(RMS_CATI_v0_mapper, here::here(\"inst\", \"RMS_CATI_v0_mapper.xlsx\")) xlsformpath <- system.file(\"RMS_CATI_v3.xlsx\", package = \"IndicatorCalc\") RMS_CATI_v3_mapper <- fct_require(xlsformpath ) #> Warning: Expected 2 pieces. Additional pieces discarded in 1 rows [326]. #> /tmp/RtmpJ9ybqX/file11a0c2ede22e8 # openxlsx::write.xlsx(RMS_CATI_v3_mapper, here::here(\"inst\", \"RMS_CATI_v3_mapper.xlsx\"))"},{"path":"/reference/fct_var_mapping.html","id":null,"dir":"Reference","previous_headings":"","what":"fct_var_mapping — fct_var_mapping","title":"fct_var_mapping — fct_var_mapping","text":"Create diff identify mapping expected variables / modalities configured specific xlsform. function use fuzzy matching process identify best second best match process... generates excel file ready manual review can used input next function pipeline fct_build_map() open excel, filter match matching_index_best different 0 can confirm match, manually set 0 matching can confirmed. matching expected one may take second best match, correct, paste set index 0","code":""},{"path":"/reference/fct_var_mapping.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"fct_var_mapping — fct_var_mapping","text":"","code":"fct_var_mapping(xlsformpath, IndicatorRequirementFile, mappingfile_out)"},{"path":"/reference/fct_var_mapping.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"fct_var_mapping — fct_var_mapping","text":"xlsformpath path xlsform IndicatorRequirementFile path file standard mapping depending form version mappingfile_out path file mapping","code":""},{"path":"/reference/fct_var_mapping.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"fct_var_mapping — fct_var_mapping","text":"list best mapping...","code":""},{"path":"/reference/fct_var_mapping.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"fct_var_mapping — fct_var_mapping","text":"","code":"# Test the function form <- system.file(\"RMS_CAPI_v2.xlsx\", package = \"IndicatorCalc\") IndicatorRequirementFile <- system.file(\"RMS_CAPI_v2_mapper.xlsx\", package = \"IndicatorCalc\") # Get the map to revise mapper <- fct_var_mapping(xlsformpath = form, IndicatorRequirementFile = IndicatorRequirementFile, mappingfile_out = tempfile()) # here::here(\"inst\", \"RMS_CAPI_v2_mapping.xlsx\"))"},{"path":"/reference/impact2_3.html","id":null,"dir":"Reference","previous_headings":"","what":"impact2_3 — impact2_3","title":"impact2_3 — impact2_3","text":"Proportion PoC access health services","code":""},{"path":"/reference/impact2_3.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"impact2_3 — impact2_3","text":"","code":"impact2_3(datalist)"},{"path":"/reference/impact2_3.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"impact2_3 — impact2_3","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data()","code":""},{"path":"/reference/impact2_3.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"impact2_3 — impact2_3","text":"new calculated variable - appended ...","code":""},{"path":"/reference/impact2_3.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"impact2_3 — impact2_3","text":"indicator measures access primary health care services persons concern need health services. Health services refers preventive, pro-motive, curative, rehabilitative palliative health services. linked SDG indicator 3.8.1 coverage essential health services. standard questions indicator taken UNHCR's HAUS monitors trends refugees outside camps access utilize health services time. Healthcare can delivered combination community level, mobile fixed healthcare facilities. number, type location vary context. standard questionnaire module help us understand differences. Numerator: Population received asked health services previous 30 days Denominator: Total population asked health services previous 30 days Formula: HACC01=1 + / ((HACC03=1 & HACC04!=7,8,96) + HACC01=1) indicator comes individual dataset Calculate able access due reasons unrelated asked services (HACC04 7 8 96)","code":""},{"path":"/reference/impact2_3.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"impact2_3 — impact2_3","text":"","code":"## data, cf example fct_re_map() # datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", # package = \"IndicatorCalc\")) # ## Apply calculation # datalist <- impact2_3(datalist ) # # ## Visualise value # fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$impact2_3, # iconunicode = \"f140\")"},{"path":"/reference/impact3_2a.html","id":null,"dir":"Reference","previous_headings":"","what":"impact3_2a — impact3_2a","title":"impact3_2a — impact3_2a","text":"Proportion Persons Concern enrolled primary education indicator measures number students enrolled primary education, regardless age, expressed percentage official school-age population corresponding respective level education. also referred Gross enrollment rate (GER). linked SGD indicator 4.1.1 quality education. standard questions indicator taken UNHCR's Standardized Education Module adapted primarily IHSN/EPDC MICS indicator questionnaire frameworks. Definitions: \"Enrollment\" refers individuals officially registered primary/secondary school education programme. \"Primary education\" designed provide students fundamental skills reading, writing mathematics. Duration typically varies 4 7 years. common duration 6 years. corresponds ISCED (International Standard Classification Education) level 1. \"Primary school age\" depends education system varies country country. Children typically enter primary education age 5 7 leave age 10 12. Numerator: Population enrolled primary education (regardless age) Denominator: Total primary school age population (adjusted country enumeration) Formula: (EDU01=1 & EDU02=1 & EDU03=2) / Number children aged 6 10","code":""},{"path":"/reference/impact3_2a.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"impact3_2a — impact3_2a","text":"","code":"impact3_2a(datalist)"},{"path":"/reference/impact3_2a.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"impact3_2a — impact3_2a","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data()","code":""},{"path":"/reference/impact3_2a.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"impact3_2a — impact3_2a","text":"new calculated variable - appended ...","code":""},{"path":"/reference/impact3_2a.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"impact3_2a — impact3_2a","text":"indicator comes individual dataset","code":""},{"path":"/reference/impact3_2a.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"impact3_2a — impact3_2a","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply calculation datalist <- impact3_2a(datalist ) #> ✔ EDU01 #> ✔ EDU02 #> ✔ EDU03 #> ✔ EDU04 #> ✔ HH07 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$impact3_2a, iconunicode = \"f140\")"},{"path":"/reference/impact3_2b.html","id":null,"dir":"Reference","previous_headings":"","what":"impact3_2b — impact3_2b","title":"impact3_2b — impact3_2b","text":"Proportion Persons Concern enrolled secondary education","code":""},{"path":"/reference/impact3_2b.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"impact3_2b — impact3_2b","text":"","code":"impact3_2b(datalist)"},{"path":"/reference/impact3_2b.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"impact3_2b — impact3_2b","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data()","code":""},{"path":"/reference/impact3_2b.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"impact3_2b — impact3_2b","text":"new calculated variable - appended ...","code":""},{"path":"/reference/impact3_2b.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"impact3_2b — impact3_2b","text":"indicator measures number students enrolled secondary education, regardless age, expressed percentage official school-age population corresponding respective level education. also referred Gross enrollment rate (GER). linked SGD indicator 4.1.1 quality education. standard questions indicator taken UNHCR's Standardized Education Module adapted primarily IHSN/EPDC MICS indicator questionnaire frameworks. Definitions: \"Enrollment\" refers individuals officially registered primary/secondary school education programme. \"Secondary education\" provides learning educational activities building primary education preparing first labour market entry well study. common duration 6 years often divided lower upper secondary education (corresponding respectively ISCED 2 3). \"Secondary school age\" depends education system differ country country. Children typically enter secondary education age 11 13 leave age 17-19. Whenever possible, operations encouraged also disaggregate data lower upper secondary Numerator: Population enrolled secondary education (regardless age) Denominator: Total secondary school age population (adjusted country enumeration) Formula: (EDU01=1 & EDU02=1 & (EDU03=3,4) / Number children aged 11 18 indicator comes individual dataset Include attending secondary secondary -technical vocational","code":""},{"path":"/reference/impact3_2b.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"impact3_2b — impact3_2b","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply calculation datalist <- impact3_2b(datalist ) #> ✔ EDU01 #> ✔ EDU02 #> ✔ EDU03 #> ✔ EDU04 #> ✔ HH07 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$impact3_2b, iconunicode = \"f140\")"},{"path":"/reference/impact3_3.html","id":null,"dir":"Reference","previous_headings":"","what":"impact3_3 — impact3_3","title":"impact3_3 — impact3_3","text":"Proportion population feel safe walking alone neighbourhood","code":""},{"path":"/reference/impact3_3.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"impact3_3 — impact3_3","text":"","code":"impact3_3(datalist)"},{"path":"/reference/impact3_3.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"impact3_3 — impact3_3","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data()","code":""},{"path":"/reference/impact3_3.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"impact3_3 — impact3_3","text":"new calculated variable - appended ...","code":""},{"path":"/reference/impact3_3.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"impact3_3 — impact3_3","text":"indicator measures proportion persons concern self-report feeling safe walking alone /neighborhood dark. linked SDG indicator 16.1.4. standard module indicator taken SGD indicator owner UNODC. indicator pertains self-reported feeling 'safety' 'security' since security associated additional external factors. Numerator: Population self-report feeling safe walking alone neighborhood dark Denominator: Total population Formula: SAF01=1,2 / SAF01=1,2,3,4 indicator comes main dataset based respondent randomly selected individual level unsafe unsafe 0, 98 99 go blank never walk alone also go blank ","code":""},{"path":"/reference/impact3_3.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"impact3_3 — impact3_3","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply calculation datalist <- impact3_3(datalist) #> ✔ SAF01 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$impact3_3, iconunicode = \"f140\")"},{"path":"/reference/impact_2_2.html","id":null,"dir":"Reference","previous_headings":"","what":"impact_2_2 — impact_2_2","title":"impact_2_2 — impact_2_2","text":"Proportion Persons Concern residing physically safe secure settlements access basic facilities","code":""},{"path":"/reference/impact_2_2.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"impact_2_2 — impact_2_2","text":"","code":"impact_2_2(datalist)"},{"path":"/reference/impact_2_2.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"impact_2_2 — impact_2_2","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data()","code":""},{"path":"/reference/impact_2_2.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"impact_2_2 — impact_2_2","text":"new calculated variable - appended ...","code":""},{"path":"/reference/impact_2_2.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"impact_2_2 — impact_2_2","text":"electricity, healthcare, drinking water adequate shelter calculated, check values variable , calculating 2.2 impact indicator.","code":""},{"path":"/reference/impact_2_2.html","id":"inter-electricity","dir":"Reference","previous_headings":"","what":"inter_electricity","title":"impact_2_2 — impact_2_2","text":"Households lighting provides sense safety security within outside households sunset. households lack access electricity, especially lighting connectivity, affects occupants' security limits opportunities socialization, learning self-reliance. Numerator: Population access electricity, especially lighting connectivity Denominator: Total population Formula: LIGHT01 = 1 & LIGHT03 != 1, 96, 98","code":""},{"path":"/reference/impact_2_2.html","id":"inter-healthcare","dir":"Reference","previous_headings":"","what":"inter_healthcare","title":"impact_2_2 — impact_2_2","text":"Access healthcare depends availability healthcare, including physical reach, acceptability affordability . indicator, focus availability healthcare system. According Sphere Handbook, primary healthcare facility accessible within one hour's walk dwellings. Numerator: Population can reach primary healthcare facility within one hour dwellings Denominator: Total population Formula: HEA01 != 96, 98 & HEA03 <= 60 (reachable within one hour/60 minutes)","code":""},{"path":"/reference/impact_2_2.html","id":"inter-drinkingwater","dir":"Reference","previous_headings":"","what":"inter_drinkingwater","title":"impact_2_2 — impact_2_2","text":"Access clean drinking water essential person's survival well precursor achieving protection outcomes related health, education economic developed. calculation access drinking water linked SGD Indicator 6.1.1. questionnaire module analysis guidance taken UNICEF MICS6. Numerator: Population using improved sources drinking water either dwelling/yard/plot within 30 minutes round trip collection time Denominator: Total population Formula: DWA03 < 30 (30 minutes), & DWA01 != 7,9,13,96,98 & DWA02 != 3 basic service calculated main dataset three conditions improved source, dwelling/yard/plot reachable 30 minutes","code":""},{"path":"/reference/impact_2_2.html","id":"inter-shelter","dir":"Reference","previous_headings":"","what":"inter_shelter","title":"impact_2_2 — impact_2_2","text":"right access adequate housing protected international law. concept \"adequacy\" means housing four walls roof indicated Sphere Handbook. Habitable housing primarily refers fact housing provide protection cold, damp, heat, rain, wind, threats health, structural hazards, disease vectors overcrowded. shelter/housing primarily contextual element, may discrepancies country country data measured. Adequate shelter measured based improved material dwelling indicated DHS publication housing conditions also used MICS6. Overcrowding also used occurs three people per habitable room defined UN-Habitat. Formula: Adequate shelter calculated main dataset classify habitable improved/adequate shelter","code":"**Numerator**: Population that have access to adequate housing **Denominator**: Total population *DWE01* = 1,2 & *DWE02* = 3,4,5,6,7,8,9 & *DWE03* = 8,9,10,11,12,13 & *DWE04* = 10,11,12,13,14,15 & crowding (*HH01*/*DWE05*) \\<= 3"},{"path":"/reference/impact_2_2.html","id":"compile-alll","dir":"Reference","previous_headings":"","what":"Compile alll","title":"impact_2_2 — impact_2_2","text":"variables correctly calculated, can compute final variable impact 2.2 indicator. Numerator: Population residing physically safe secure settlements access basic facilities Denominator: Total population Formula: shelter=1 & electricity=1 & healthcare=1 & drinkingwater=1 Impact 2.2 \"1\" services accessible","code":""},{"path":"/reference/impact_2_2.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"impact_2_2 — impact_2_2","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply calculation datalist <- impact_2_2(datalist) #> ✔ HEA01 #> ✔ HEA02 #> ✔ HEA03 #> ✔ LIGHT01 #> ✔ LIGHT02 #> ✔ LIGHT03 #> ✔ DWA01 #> ✔ DWA02 #> ✔ DWA03a #> ✔ DWA03b #> ✔ DWA04 #> ✔ DWE01 #> ✔ DWE02 #> ✔ DWE03 #> ✔ DWE04 #> ✔ DWE05 #> ✔ DWE08 #> ✔ DWE09 #> ✔ HH01 table(datalist[[\"main\"]]$impact2_2, useNA = \"ifany\") #> #> 0 #> 384 fct_plot_indic_donut(indicator = datalist[[\"main\"]]$impact2_2, iconunicode = \"f140\") ## Can get the details as well table(datalist[[\"main\"]]$electricity, useNA = \"ifany\") #> #> 0 1 #> 198 186 fct_plot_indic_donut(indicator = datalist[[\"main\"]]$electricity, iconunicode = \"f0e7\") table(datalist[[\"main\"]]$healthcare, useNA = \"ifany\") #> #> 0 1 #> 179 205 fct_plot_indic_donut(indicator = datalist[[\"main\"]]$healthcare, iconunicode = \"f479\") table(datalist[[\"main\"]]$drinkingwater, useNA = \"ifany\") #> #> 0 1 #> 113 271 fct_plot_indic_donut(indicator = datalist[[\"main\"]]$drinkingwater, iconunicode = \"e006\") ## Check intermediary variables table(datalist[[\"main\"]]$dwa_cond1, useNA = \"ifany\") #> #> 1 #> 384 table(datalist[[\"main\"]]$reachableU30, useNA = \"ifany\") #> #> 0 1 #> 356 28 table(datalist[[\"main\"]]$DWA02, useNA = \"ifany\") #> #> 1 2 3 #> 128 136 120 table(datalist[[\"main\"]]$dwa_cond2, useNA = \"ifany\") #> #> 0 1 #> 113 271 # Tabulate table(datalist[[\"main\"]]$dwe01_cat, useNA = \"ifany\") #> #> 0 1 #> 317 67 table(datalist[[\"main\"]]$dwe02_cat, useNA = \"ifany\") #> #> 0 1 #> 120 264 table(datalist[[\"main\"]]$dwe03_cat, useNA = \"ifany\") #> #> 0 1 #> 227 157 table(datalist[[\"main\"]]$dwe04_cat, useNA = \"ifany\") #> #> 0 1 #> 234 150 table(datalist[[\"main\"]]$dwe05_cat, useNA = \"ifany\") #> #> 0 1 #> 18 366 table(datalist[[\"main\"]]$shelter, useNA = \"ifany\") #> #> 0 1 #> 375 9 #plot fct_plot_indic_donut(datalist[[\"main\"]]$shelter, iconunicode = \"e54f\")"},{"path":"/reference/inter_drinkingwater.html","id":null,"dir":"Reference","previous_headings":"","what":"inter_drinkingwater — inter_drinkingwater","title":"inter_drinkingwater — inter_drinkingwater","text":"Access clean drinking water essential person's survival well precursor achieving protection outcomes related health, education economic developed. calculation access drinking water linked SGD Indicator 6.1.1. questionnaire module analysis guidance taken UNICEF MICS6. Numerator: Population using improved sources drinking water either dwelling/yard/plot within 30 minutes round trip collection time Denominator: Total population Formula: DWA03 < 30 (30 minutes), & DWA01 != 7,9,13,96,98 & DWA02 != 3 basic service calculated main dataset three conditions improved source, dwelling/yard/plot reachable 30 minutes","code":""},{"path":"/reference/inter_drinkingwater.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"inter_drinkingwater — inter_drinkingwater","text":"","code":"inter_drinkingwater( datalist, mapper = list(hierarchy = \"main\", variablemap = data.frame(label = c(\"What is the main source of drinking water for this household?\", \"Where is this source located?\", \"Unit used to measure time to access\", \"How long does it take to go there, get water, and come back,\\n including waiting time?\"), variable = c(\"DWA01\", \"DWA02\", \"DWA03a\", \"DWA03b\"), mappattern = c(\"DWA01\", \"DWA02\", \"DWA03a\", \"DWA03b\")), modalitymap = data.frame(variable = c(\"DWA01\", \"DWA01\", \"DWA01\", \"DWA01\", \"DWA01\", \"DWA02\", \"DWA02\", \"DWA02\", \"DWA03a\", \"DWA03a\"), label = c(\"Unprotected Dug Well\", \"Unprotected Spring\", \"Surface Water (River, Stream, Pond, Dam, Canal)\", \"Other, specify\", \"Don't know\", \"In Own Dwelling\", \"In Own Yard/Plot\", \"Elsewhere\", \"Minutes\", \"Hours\"), standard = c(\"7\", \"9\", \"13\", \"96\", \"98\", \"1\", \"2\", \"3\", \"1\", \"2\"), map = c(\"7\", \"9\", \"13\", \"96\", \"98\", \"1\", \"2\", \"3\", \"1\", \"2\"))) )"},{"path":"/reference/inter_drinkingwater.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"inter_drinkingwater — inter_drinkingwater","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data() mapper list providing mapping variables used calculation - mapper potentially adjusted relation deviation standard XlsForm contextualized dataset","code":""},{"path":"/reference/inter_drinkingwater.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"inter_drinkingwater — inter_drinkingwater","text":"new calculated variable - appended ...","code":""},{"path":"/reference/inter_drinkingwater.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"inter_drinkingwater — inter_drinkingwater","text":"","code":"datalist <- kobocruncher::kobo_data( system.file(\"test.xlsx\", package = \"IndicatorCalc\")) #> Warning: Expecting logical in G1286 / R1286C7: got 'no' ## in the contextualised form - DWA03a has been skipped and all results are in min... ## only manual transformation can adjust this before we use the mapper.. datalist[[\"main\"]]$DWA03a <- \"1\" datalist[[\"main\"]]$DWA03b <- datalist[[\"main\"]]$VulnerabilityScoring.BasicNeeds.DWA03 # now the mapper mapper <- list( hierarchy = \"main\", variablemap = data.frame( label = c( \"What is the main source of drinking water for this household?\", \"Where is this source located?\", \"Unit used to measure time to access\", \"How long does it take to go there, wait get water, and come back?\"), variable = c(\"DWA01\", \"DWA02\", \"DWA03a\", \"DWA03b\" ), mappattern = c(\"DWA01\", \"DWA02\", \"DWA03a\", \"DWA03b\" ) ), modalitymap = data.frame( variable = c(\"DWA01\", \"DWA01\", \"DWA01\",\"DWA01\", \"DWA01\", \"DWA02\",\"DWA02\", \"DWA02\", \"DWA03a\",\"DWA03a\"), label = c( ##DWA01 \"Unprotected Dug Well\", \"Unprotected Spring\", \"Surface Water (River, Stream, Pond, Dam, Canal)\", \"Other, specify\", \"Don't know\", ##DWA02 \"In Own Dwelling\", \"In Own Yard/Plot\", \"Elsewhere\", ## DWA03a \"Minutes\", \"Hours\" ), standard = c( \"7\", \"9\", \"13\", \"96\", \"98\", \"1\", \"2\", \"3\", \"1\", \"2\"), map = c( \"7\", \"9\", \"13\", \"96\", \"98\", \"1\", \"2\", \"3\", \"1\", \"2\") ) ) datalist <- inter_drinkingwater(datalist, mapper ) #> ℹ DWA01 standard variable was not found in the dataset. #> ℹ DWA02 standard variable was not found in the dataset. #> DWA03a is in the dataset and has at least one of the expected modality for calculation #> ℹ DWA03b standard variable in the dataset misses at least one response among : #> ℹ DWA01 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> The following `from` values were not present in `x`: 9 #> Mapped levels for DWA01 are now: 1, 11, 12, 13, 14, 15, 2, 3, 4, 5, 7, 96, 98 #> ℹ DWA02 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWA02 are now: 1, 2, 3 #> The following `from` values were not present in `x`: 2 #> Mapped levels for DWA03a are now: 1 #> Mapped levels for DWA03b are now: 0, 10, 15, 2, 3, 30, 5, 90 ## Indicator summary table(datalist[[\"main\"]]$drinkingwater, useNA = \"ifany\") #> #> 0 1 #> 1204 86 fct_plot_indic_donut(indicator = datalist[[\"main\"]]$drinkingwater, iconunicode = \"e006\") ## Check auxilliary table(datalist[[\"main\"]]$dwa_cond1, useNA = \"ifany\") #> #> 0 1 #> 69 1221 table(datalist[[\"main\"]]$reachableU30, useNA = \"ifany\") #> #> 0 1 #> 1 1289 table(datalist[[\"main\"]]$DWA02, useNA = \"ifany\") #> #> 1 2 3 #> 42 34 11 1203 table(datalist[[\"main\"]]$dwa_cond2, useNA = \"ifany\") #> #> 0 1 #> 1 86 1203"},{"path":"/reference/inter_electricity.html","id":null,"dir":"Reference","previous_headings":"","what":"inter_electricity — inter_electricity","title":"inter_electricity — inter_electricity","text":"Households lighting provides sense safety security within outside households sunset. households lack access electricity, especially lighting connectivity, affects occupants' security limits opportunities socialization, learning self-reliance. Numerator: Population access electricity, especially lighting connectivity Denominator: Total population Formula: LIGHT01 = 1 & LIGHT03 != 1, 96, 98","code":""},{"path":"/reference/inter_electricity.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"inter_electricity — inter_electricity","text":"","code":"inter_electricity( datalist, mapper = list(hierarchy = \"main\", variablemap = data.frame(label = c(\"Does this household use anything for lighting?\", \"What source of electricity is used most of the time in this household?\"), variable = c(\"LIGHT01\", \"LIGHT03\"), mappattern = c(\"LIGHT01\", \"LIGHT03\")), modalitymap = data.frame(variable = c(\"LIGHT01\", \"LIGHT03\", \"LIGHT03\", \"LIGHT03\"), label = c(\"yes\", \"No electricity in household\", \"Other, specify\", \"Don't know\"), standard = c(\"1\", \"1\", \"96\", \"98\"), map = c(\"1\", \"1\", \"96\", \"98\"))) )"},{"path":"/reference/inter_electricity.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"inter_electricity — inter_electricity","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data() mapper list providing mapping variables used calculation - mapper potentially adjusted relation deviation standard XlsForm contextualized dataset","code":""},{"path":"/reference/inter_electricity.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"inter_electricity — inter_electricity","text":"new calculated variable - appended ...","code":""},{"path":"/reference/inter_electricity.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"inter_electricity — inter_electricity","text":"","code":"datalist <- kobocruncher::kobo_data( system.file(\"test.xlsx\", package = \"IndicatorCalc\")) #> Warning: Expecting logical in G1286 / R1286C7: got 'no' mapper <- list( hierarchy = \"main\", variablemap = data.frame( label = c(\"Does this household use anything for lighting?\", \"What source of electricity is used most of the time in this household?\"), variable = c(\"LIGHT01\", \"LIGHT03\"), mappattern = c(\"LIGHT01\", \"LIGHT03\") ), modalitymap = data.frame( variable = c( \"LIGHT01\", \"LIGHT03\", \"LIGHT03\", \"LIGHT03\"), label = c( \"yes\", \"No electricity in household\", \"Other, specify\", \"Don't know\"), standard = c( \"1\", \"1\", \"96\", \"98\"), map = c(\"yes\", \"1\", \"96\", \"98\"))) datalist <- inter_electricity( datalist =datalist, mapper = mapper ) #> ℹ LIGHT01 standard variable was not found in the dataset. #> ℹ LIGHT03 standard variable was not found in the dataset. #> Mapped levels for LIGHT01 are now: 1, no, notell #> ℹ LIGHT03 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for LIGHT03 are now: 1, 2, 3, 4, 5, 6, 7, 96, 98 table(datalist[[\"main\"]]$electricity) #> #> 0 1 #> 81 1209 fct_plot_indic_donut(indicator = datalist[[\"main\"]]$electricity, iconunicode = \"f0e7\")"},{"path":"/reference/inter_healthcare.html","id":null,"dir":"Reference","previous_headings":"","what":"inter_healthcare — inter_healthcare","title":"inter_healthcare — inter_healthcare","text":"Access healthcare depends availability healthcare, including physical reach, acceptability affordability . indicator, focus availability healthcare system. According Sphere Handbook, primary healthcare facility accessible within one hour's walk dwellings. Numerator: Population can reach primary healthcare facility within one hour dwellings Denominator: Total population Formula: HEA01 != 96, 98 & HEA03 <= 60 (reachable within one hour/60 minutes)","code":""},{"path":"/reference/inter_healthcare.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"inter_healthcare — inter_healthcare","text":"","code":"inter_healthcare( datalist, mapper = list(hierarchy = \"main\", variablemap = data.frame(label = c(\"In general, when anyone in your household is sick, where do they go to seek care?\", \"How long does it take to go there when you use the mode of transport that you mentioned above?\"), variable = c(\"HEA01\", \"HEA03\"), mappattern = c(\"HEA01\", \"HEA03\")), modalitymap = data.frame(variable = c(\"HEA01\", \"HEA01\"), label = c(\"Other, specify\", \"Don't know\"), standard = c(\"96\", \"98\"), map = c(\"96\", \"98\"))) )"},{"path":"/reference/inter_healthcare.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"inter_healthcare — inter_healthcare","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data() mapper list providing mapping variables used calculation - mapper potentially adjusted relation deviation standard XlsForm contextualized dataset","code":""},{"path":"/reference/inter_healthcare.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"inter_healthcare — inter_healthcare","text":"new calculated variable - appended ...","code":""},{"path":"/reference/inter_healthcare.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"inter_healthcare — inter_healthcare","text":"","code":"datalist <- kobocruncher::kobo_data( system.file(\"test.xlsx\", package = \"IndicatorCalc\")) #> Warning: Expecting logical in G1286 / R1286C7: got 'no' mapper <- list( hierarchy = \"main\", variablemap = data.frame( label = c( \"In general, when anyone in your household is sick, where do they go to seek care?\", \"How long it takes to go there when you use the mode of transport mentioned above?\"), variable = c(\"HEA01\", \"HEA03\"), mappattern = c(\"HEA01\", \"HEA03\") ), modalitymap = data.frame( variable = c( \"HEA01\", \"HEA01\" ), label = c( \"Other, specify\", \"Don't know\"), standard = c(\"96\", \"98\" ), map = c(\"96\", \"98\" ))) datalist <- inter_healthcare(datalist, mapper ) #> ℹ HEA01 standard variable was not found in the dataset. #> ℹ HEA03 standard variable was not found in the dataset. #> ℹ HEA01 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for HEA01 are now: 1, 2, 3, 4, 5, 96, 98 #> Mapped levels for HEA03 are now: 0, 1, 10, 100, 12, 120, 13, 15, 18, 2, 20, 22, 25, 3, 30, 300, 35, 4, 40, 45, 5, 50, 55, 6, 60, 7, 70, 75, 8, 90, 900 table(datalist[[\"main\"]]$healthcare) #> #> 0 1 #> 93 1197 fct_plot_indic_donut(indicator = datalist[[\"main\"]]$healthcare, iconunicode = \"f479\")"},{"path":"/reference/inter_shelter.html","id":null,"dir":"Reference","previous_headings":"","what":"inter_shelter — inter_shelter","title":"inter_shelter — inter_shelter","text":"right access adequate housing protected international law. concept \"adequacy\" means housing four walls roof indicated Sphere Handbook. Habitable housing primarily refers fact housing provide protection cold, damp, heat, rain, wind, threats health, structural hazards, disease vectors overcrowded. shelter/housing primarily contextual element, may discrepancies country country data measured. Adequate shelter measured based improved material dwelling indicated DHS publication housing conditions also used MICS6. Overcrowding also used occurs three people per habitable room defined UN-Habitat. Formula:","code":"**Numerator**: Population that have access to adequate housing **Denominator**: Total population"},{"path":"/reference/inter_shelter.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"inter_shelter — inter_shelter","text":"","code":"inter_shelter( datalist, mapper = list(hierarchy = \"main\", variablemap = data.frame(label = c(\"What type of dwelling does the household live in?\", \"Main material of the dwelling floor\", \"Main material of the roof\", \"Main material of the exterior walls\", \"How many separate rooms do the members of your household occupy?\", \"What is the total number of persons in this household?\"), variable = c(\"DWE01\", \"DWE02\", \"DWE03\", \"DWE04\", \"DWE05\", \"HH01\"), mappattern = c(\"DWE01\", \"DWE02\", \"DWE03\", \"DWE04\", \"DWE05\", \"HH01\")), modalitymap = data.frame(variable = c(\"DWE01\", \"DWE01\", \"DWE02\", \"DWE02\", \"DWE02\", \"DWE03\", \"DWE03\", \"DWE03\", \"DWE03\", \"DWE03\", \"DWE03\", \"DWE04\", \"DWE04\", \"DWE04\", \"DWE04\", \"DWE04\", \"DWE04\"), label = c(\"Apartment\", \"House\", \"Earth/sand\", \"Dung\", \"Other (Specify)\", \"Metal/tin\", \"Wood\", \"Calamine/Cement fibre\", \"Ceramic tiles\", \"Cement\", \"Roofing shingles\", \"Cement\", \"Stone with lime/ cement\", \"Bricks\", \"Cement blocks\", \"Covered adobe\", \"Wood planks/shingles\"), standard = c(\"1\", \"2\", \"1\", \"2\", \"96\", \"8\", \"9\", \"10\", \"11\", \"12\", \"13\", \"10\", \"11\", \"12\", \"13\", \"14\", \"15\"), map = c(\"1\", \"2\", \"1\", \"2\", \"96\", \"8\", \"9\", \"10\", \"11\", \"12\", \"13\", \"10\", \"11\", \"12\", \"13\", \"14\", \"15\"))) )"},{"path":"/reference/inter_shelter.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"inter_shelter — inter_shelter","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data() mapper list providing mapping variables used calculation - mapper potentially adjusted relation deviation standard XlsForm contextualized dataset","code":""},{"path":"/reference/inter_shelter.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"inter_shelter — inter_shelter","text":"new calculated variable - appended ...","code":""},{"path":"/reference/inter_shelter.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"inter_shelter — inter_shelter","text":"Adequate shelter calculated main dataset classify habitable improved/adequate shelter","code":"*DWE01* = 1,2 & *DWE02* = 3,4,5,6,7,8,9 & *DWE03* = 8,9,10,11,12,13 & *DWE04* = 10,11,12,13,14,15 & crowding (*HH01*/*DWE05*) \\<= 3"},{"path":"/reference/inter_shelter.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"inter_shelter — inter_shelter","text":"","code":"datalist <- kobocruncher::kobo_data( system.file(\"test.xlsx\", package = \"IndicatorCalc\")) #> Warning: Expecting logical in G1286 / R1286C7: got 'no' mapper <- list( hierarchy = \"main\", variablemap = data.frame( label = c( \"What type of dwelling does the household live in?\", \"Main material of the dwelling floor\", \"Main material of the roof\", \"Main material of the exterior walls\", \"How many separate rooms do the members of your household occupy?\", \"What is the total number of persons in this household?\"), variable = c(\"DWE01\",\"DWE02\",\"DWE03\",\"DWE04\",\"DWE05\", \"HH01\"), mappattern = c(\"DWE01\",\"DWE02\",\"DWE03\",\"DWE04\",\"DWE05\", \"progres_groupsize\") ), modalitymap = data.frame( variable = c( \"DWE01\",\"DWE01\", \"DWE02\",\"DWE02\",\"DWE02\", \"DWE03\",\"DWE03\",\"DWE03\",\"DWE03\",\"DWE03\",\"DWE03\", \"DWE04\",\"DWE04\",\"DWE04\",\"DWE04\",\"DWE04\",\"DWE04\"), label = c( \"Apartment\", \"House\", # DWE01 \"Earth/sand\", \"Dung\", \"Other (Specify)\", #DWE02 \"Metal/tin\", \"Wood\", \"Calamine/Cement fibre\", \"Ceramic tiles\", \"Cement\", \"Roofing shingles\",#DWE03 \"Cement\", \"Stone with lime/ cement\", \"Bricks\", \"Cement blocks\", \"Covered adobe\", \"Wood planks/shingles\" # DWE04 ), standard = c( \"1\",\"2\", \"1\", \"2\",\"96\", \"8\",\"9\",\"10\",\"11\",\"12\",\"13\", \"10\",\"11\",\"12\",\"13\",\"14\",\"15\"), map = c(\"1\",\"2\", \"1\", \"2\",\"96\", \"8\",\"9\",\"10\",\"11\",\"12\",\"13\", \"10\",\"11\",\"12\",\"13\",\"14\",\"15\"))) ## Calculate datalist <- inter_shelter(datalist, mapper) #> ℹ DWE01 standard variable was not found in the dataset. #> ℹ DWE02 standard variable was not found in the dataset. #> ℹ DWE03 standard variable was not found in the dataset. #> ℹ DWE04 standard variable was not found in the dataset. #> ℹ DWE05 standard variable was not found in the dataset. #> ℹ HH01 standard variable was not found in the dataset. #> ℹ DWE01 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE01 are now: 1, 2, 3, 5, 6, 7, 8, 9, 96 #> ℹ DWE02 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE02 are now: 1, 2, 3, 5, 6, 7, 8, 96 #> ℹ DWE03 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE03 are now: 1, 10, 11, 12, 13, 2, 4, 6, 7, 8, 9, 96 #> ℹ DWE04 variable has more than one variable pattern match in the dataset. We will take the first one but good to check... #> Mapped levels for DWE04 are now: 1, 10, 11, 12, 13, 14, 15, 2, 3, 4, 5, 6, 7, 8, 9, 96 #> Mapped levels for DWE05 are now: 1, 2, 3, 4, 5, 6 #> Mapped levels for HH01 are now: 1, 10, 11, 12, 2, 3, 4, 5, 6, 7, 8, 9 # Tabulate table(datalist[[\"main\"]]$dwe01_cat) #> #> 0 1 #> 639 651 table(datalist[[\"main\"]]$dwe02_cat) #> #> 0 1 #> 55 1235 table(datalist[[\"main\"]]$dwe03_cat) #> #> 0 1 #> 154 1136 table(datalist[[\"main\"]]$dwe04_cat) #> #> 0 1 #> 189 1101 table(datalist[[\"main\"]]$dwe05_cat) #> #> 0 1 #> 409 881 table(datalist[[\"main\"]]$shelter) #> #> 0 1 #> 860 430 #plot fct_plot_indic_donut(datalist[[\"main\"]]$shelter, iconunicode = \"e54f\")"},{"path":"/reference/outcome10_1.html","id":null,"dir":"Reference","previous_headings":"","what":"outcome10_1 — outcome10_1","title":"outcome10_1 — outcome10_1","text":"Proportion children aged 9 months five years received measles vaccination","code":""},{"path":"/reference/outcome10_1.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"outcome10_1 — outcome10_1","text":"","code":"outcome10_1(datalist)"},{"path":"/reference/outcome10_1.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"outcome10_1 — outcome10_1","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data()","code":""},{"path":"/reference/outcome10_1.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"outcome10_1 — outcome10_1","text":"new calculated variable - appended ...","code":""},{"path":"/reference/outcome10_1.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"outcome10_1 — outcome10_1","text":"Coverage measles vaccination children target age group 9 months 5 years age. Measles vaccination essential preventive primary care intervention protect children measles infection. Standard module UNICEF MICS6 Children 5 module. calculation module also aligned UNICEF MICS6. Numerator: Total number children 9 months 5 years received measles containing vaccine (measles MMR- Measles Mumps Rubella) Denominator: Total number children 9 months 5 years Formula: *MMR03=*1 / Total number children 9 months 5 years comes main dataset MICS TC.1.1 UNICEF calculates first dose received## Children et least one dose measles vaccination","code":""},{"path":"/reference/outcome10_1.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"outcome10_1 — outcome10_1","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome10_1(datalist) #> ✔ MMR03 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$outcome10_1, iconunicode = \"f140\")"},{"path":"/reference/outcome10_2.html","id":null,"dir":"Reference","previous_headings":"","what":"outcome10_2 — outcome10_2","title":"outcome10_2 — outcome10_2","text":"Proportion births attended skilled health personnel","code":""},{"path":"/reference/outcome10_2.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"outcome10_2 — outcome10_2","text":"","code":"outcome10_2(datalist)"},{"path":"/reference/outcome10_2.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"outcome10_2 — outcome10_2","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data()","code":""},{"path":"/reference/outcome10_2.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"outcome10_2 — outcome10_2","text":"new calculated variable - appended ...","code":""},{"path":"/reference/outcome10_2.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"outcome10_2 — outcome10_2","text":"indicator measures percentage births attended personnel trained give necessary supervision, care, advice women pregnancy, labor, postpartum period; conduct deliveries ; care newborns. indicator linked SGD 3.1.2. National-level household surveys main data sources used collect data skilled health personnel providing childbirth care. surveys include Demographic Health Surveys (DHS), Multiple Indicator Cluster Surveys (MICS), Reproductive Health Surveys (RHS) national surveys based similar methodologies. Standard module UNICEF MICS6 individual questionnaire woman. calculation module also aligned UNICEF MICS6. national categories skilled health personnel verified, estimates countries may include additional categories trained personnel beyond doctor, nurse, midwife. Numerator: Total number births attended skilled health personnel) Denominator: Total number live births Formula: (BIR01=1 | BIR02=1) & (BIR03=1,2,3) / Total number live births comes main dataset MICS TM.5.UNICEF MICS calculation trained health personnel ## live births last 2 years Traditional birth attendant community health worker can included trained","code":""},{"path":"/reference/outcome10_2.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"outcome10_2 — outcome10_2","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome10_2(datalist ) #> ✔ BIR01 #> ✔ BIR02 #> ✔ BIR03 #> ✔ BIR04 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome10_2, iconunicode = \"f140\")"},{"path":"/reference/outcome12_1.html","id":null,"dir":"Reference","previous_headings":"","what":"outcome12_1 — outcome12_1","title":"outcome12_1 — outcome12_1","text":"Proportion Persons Concern using least basic drinking water services","code":""},{"path":"/reference/outcome12_1.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"outcome12_1 — outcome12_1","text":"","code":"outcome12_1(datalist)"},{"path":"/reference/outcome12_1.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"outcome12_1 — outcome12_1","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data()","code":""},{"path":"/reference/outcome12_1.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"outcome12_1 — outcome12_1","text":"new calculated variable - appended ...","code":""},{"path":"/reference/outcome12_1.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"outcome12_1 — outcome12_1","text":"indicator defined percentage PoCs using least basic water services. Access clean drinking water essential person's survival well precursor achieving protection outcomes related health, education economic developed. calculation access drinking water linked SGD Indicator 6.1.1. questionnaire module analysis guidance taken UNICEF MICS6. Numerator: Population using improved sources drinking water either dwelling/yard/plot within 30 minutes round trip collection time Denominator: Total population Formula: DWA03 \\< 30 (30 minutes), & DWA01 !=7,9,13,96,98 & DWA02 !=3 comes main dataset two conditions improved source, dwelling/yard/plot reachable 30 minutes","code":""},{"path":"/reference/outcome12_1.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"outcome12_1 — outcome12_1","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome12_1(datalist ) #> ✔ DWA01 #> ✔ DWA02 #> ✔ DWA03a #> ✔ DWA03b #> ✔ DWA04 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome12_1, iconunicode = \"f140\")"},{"path":"/reference/outcome12_2.html","id":null,"dir":"Reference","previous_headings":"","what":"outcome12_2 — outcome12_2","title":"outcome12_2 — outcome12_2","text":"Proportion Persons Concern access safe household toilet","code":""},{"path":"/reference/outcome12_2.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"outcome12_2 — outcome12_2","text":"","code":"outcome12_2(datalist)"},{"path":"/reference/outcome12_2.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"outcome12_2 — outcome12_2","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data()","code":""},{"path":"/reference/outcome12_2.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"outcome12_2 — outcome12_2","text":"new calculated variable - appended ...","code":""},{"path":"/reference/outcome12_2.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"outcome12_2 — outcome12_2","text":"indicator measures proportion persons concerns access least basic sanitation services -- toilets -- shared households. toilet defined basic sanitation facility. indicator linked SGD indicator 6.2.1. standard module taken UNICEF MICS6 main household questionnaire. Calculation indicator based MICS6 analysis tools. Numerator: Total population access sanitation facility household Denominator: Total population Formula: TOI01=1,2,3,4,5,6,7,9 & (TOI02 =1 & TOI03=1,2,3,4) & TOI05=1 comes main dataset MICS calculation WS3.1/WS3.4","code":""},{"path":"/reference/outcome12_2.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"outcome12_2 — outcome12_2","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome12_2(datalist) #> ✔ TOI01 #> ✔ TOI02 #> ✖ TOI03 not found in the dataset. #> ✖ TOI04 not found in the dataset. #> ✖ TOI05 not found in the dataset. #> There are missing data requirement to calculate Indicator Outcome 12.2 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome12_2, iconunicode = \"f140\") #> Warning: Unknown or uninitialised column: `outcome12_2`. #> No value was supplied for plotting..."},{"path":"/reference/outcome13_1.html","id":null,"dir":"Reference","previous_headings":"","what":"outcome13_1 — outcome13_1","title":"outcome13_1 — outcome13_1","text":"Proportion Persons Concern account bank financial institution mobile-money-service provider","code":""},{"path":"/reference/outcome13_1.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"outcome13_1 — outcome13_1","text":"","code":"outcome13_1(datalist)"},{"path":"/reference/outcome13_1.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"outcome13_1 — outcome13_1","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data()","code":""},{"path":"/reference/outcome13_1.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"outcome13_1 — outcome13_1","text":"new calculated variable - appended ...","code":""},{"path":"/reference/outcome13_1.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"outcome13_1 — outcome13_1","text":"indicator measures percentage persons concern (ages 15+) report account (together someone else) bank another type financial institution personally using mobile money service past 12 months country asylum habitual residence (returnees, countries origin included). methodology taken Global Findex Database developed World Bank. indicator also linked SGD Indicator 8.10.2. Numerator: Total population personal mobile bank account Denominator: Total population Formula: BANK01=1 \\| BANK02=1 \\| BANK03=1 \\|BANK05=1 indicator comes main dataset based respondent randomly selected individual level include respondent account /someone else, ATM card, personal bank card personally used phone send money (proxy)","code":""},{"path":"/reference/outcome13_1.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"outcome13_1 — outcome13_1","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome13_1(datalist ) #> ✔ BANK01 #> ✔ BANK02 #> ✔ BANK03 #> ✔ BANK04 #> ✔ BANK05 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome13_1, iconunicode = \"f140\")"},{"path":"/reference/outcome13_2.html","id":null,"dir":"Reference","previous_headings":"","what":"outcome13_2 — outcome13_2","title":"outcome13_2 — outcome13_2","text":"Proportion Persons Concern self-report positive changes income compared previous year","code":""},{"path":"/reference/outcome13_2.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"outcome13_2 — outcome13_2","text":"","code":"outcome13_2(datalist)"},{"path":"/reference/outcome13_2.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"outcome13_2 — outcome13_2","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data()","code":""},{"path":"/reference/outcome13_2.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"outcome13_2 — outcome13_2","text":"new calculated variable - appended ...","code":""},{"path":"/reference/outcome13_2.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"outcome13_2 — outcome13_2","text":"indicator measures proportion PoC self-report positive changes income compared previous year. Numerator: Population 18 self-report increased income compared last year Denominator: Total population 18 Formula: INC01=1 indicator comes main dataset based respondent randomly selected individual level calculate positive responded ''","code":""},{"path":"/reference/outcome13_2.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"outcome13_2 — outcome13_2","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome13_2(datalist) #> ✔ INC01 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome13_2, iconunicode = \"f140\")"},{"path":"/reference/outcome13_3.html","id":null,"dir":"Reference","previous_headings":"","what":"outcome13_3#' — outcome13_3","title":"outcome13_3#' — outcome13_3","text":"Proportion Persons Concern (working age) unemployed unemployment rate standard indicator measure efficiency effectiveness economy. Persons Concern, access employment central self-reliance, socio-economic inclusion dignity often restricted laws, policies practical barriers. indicator also linked SGD 8.5.2. standard questionnaire module Standardized Employment Module UNHCR. calculations also done based guidance.","code":""},{"path":"/reference/outcome13_3.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"outcome13_3#' — outcome13_3","text":"","code":"outcome13_3(datalist)"},{"path":"/reference/outcome13_3.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"outcome13_3#' — outcome13_3","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data()","code":""},{"path":"/reference/outcome13_3.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"outcome13_3#' — outcome13_3","text":"new calculated variable - appended ...","code":""},{"path":"/reference/outcome13_3.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"outcome13_3#' — outcome13_3","text":"Numerator: Unemployed working age population within country Denominator: Total working age population employed unemployed within country (often referred labour force) Formula: UNEM01=1 \\| (UNEM02=1 & UNEM07=3) \\| UNEM04=1 \\| (UNEM02=1 & UNEM07=1 &( UNEM08=1,2)) \\|(UNEM05=1 & UNEM06=3) \\| ( UNEM05=1 & ( UNEM06=1,2 \\| UNEM08=1,2) indicator comes main dataset based respondent randomly selected individual level #Numerator: working age employment, looked employment past 30 days available take employment","code":""},{"path":"/reference/outcome13_3.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"outcome13_3#' — outcome13_3","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome13_3(datalist ) #> ✔ UNEM01 #> ✔ UNEM02 #> ✔ UNEM03 #> ✔ UNEM04 #> ✔ UNEM05 #> ✔ UNEM06 #> ✔ UNEM07 #> ✔ UNEM08 #> ✔ UNEM09 #> ✔ UNEM10 table( datalist[[\"main\"]]$outcome13_3, useNA = \"ifany\") #> #> 0 1 #> 334 12 38 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome13_3, iconunicode = \"f140\")"},{"path":"/reference/outcome14_1.html","id":null,"dir":"Reference","previous_headings":"","what":"outcome14_1 — outcome14_1","title":"outcome14_1 — outcome14_1","text":"Proportion returnees legally recognized identity documents credentials","code":""},{"path":"/reference/outcome14_1.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"outcome14_1 — outcome14_1","text":"","code":"outcome14_1(datalist)"},{"path":"/reference/outcome14_1.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"outcome14_1 — outcome14_1","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data()","code":""},{"path":"/reference/outcome14_1.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"outcome14_1 — outcome14_1","text":"new calculated variable - appended ...","code":""},{"path":"/reference/outcome14_1.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"outcome14_1 — outcome14_1","text":"indicator measures proportion returned refugees possess legally recognized valid identity documents credentials support return . Commonly context return, returnees require civil documentation credentials inclusion updating civil registries , well access services. Definitions • Identity document credential document credential may used proof identity, may also include reference individuals' legal status associated rights vis-à-vis host State /UNHCR. Numerator: Total number returnees legally recognized identity documents credentials Denominator: Total number returnees Formula: REG01=1 \\| REG02=1 \\| REG03=1 \\| REG05=1 \\| REG06=1 indicator comes individual dataset Calculate valid identity documents 5 REG05 REG06 variables","code":""},{"path":"/reference/outcome14_1.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"outcome14_1 — outcome14_1","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome14_1(datalist ) #> ✔ REG01a #> ✔ REG01b #> ✔ REG01c #> ✔ REG01d #> ✔ REG01e #> ✔ REG01f #> ✔ REG01g #> ✔ REG02 #> ✔ REG03 #> ✔ REG04 #> ✔ REG05a #> ✔ REG05b #> ✔ REG05c #> ✔ REG05d #> ✔ REG05e #> ✔ REG05f #> ✔ REG06 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$outcome14_1, iconunicode = \"f140\")"},{"path":"/reference/outcome16_1.html","id":null,"dir":"Reference","previous_headings":"","what":"outcome16_1 — outcome16_1","title":"outcome16_1 — outcome16_1","text":"Proportion Persons Concern secure tenure rights /property rights housing /land indicator measures proportion persons concern secure tenure rights housing /land. Security tenure means persons concern can live homes without fear forced eviction, whether communal settlement situations, informal settlements, host communities return.","code":""},{"path":"/reference/outcome16_1.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"outcome16_1 — outcome16_1","text":"","code":"outcome16_1(datalist)"},{"path":"/reference/outcome16_1.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"outcome16_1 — outcome16_1","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data()","code":""},{"path":"/reference/outcome16_1.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"outcome16_1 — outcome16_1","text":"new calculated variable - appended ...","code":""},{"path":"/reference/outcome16_1.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"outcome16_1 — outcome16_1","text":"indicator linked SGD Indicator 1.4.2. guidance can found Concept Secure tenure rights: comprised two sub-components: () legally recognized documentation (ii) perception security tenure, necessary provide full measurement tenure security. Legally recognized documentation: Legal documentation rights refers recording publication information nature location land, rights right holders form recognized government, therefore official. Perceived security tenure: Perception tenure security refers individual's perception likelihood involuntary loss land, disagreement ownership rights land ability use , regardless formal status can optimistic pessimistic. Numerator: Total population secure tenure rights housing /land Denominator: Total population Formula: DWE011 = 1,2 & DWE10 = 1,2,3,4,5,6 & DWE06 != 9, 96,98,99 & DWE07 = 9, 96,98,99 indicator calculated main dataset","code":""},{"path":"/reference/outcome16_1.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"outcome16_1 — outcome16_1","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome16_1(datalist ) #> ✔ DWE06 #> ✔ DWE07 #> ✔ DWE10 #> ✔ DWE11 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome16_1, iconunicode = \"f140\")"},{"path":"/reference/outcome16_2.html","id":null,"dir":"Reference","previous_headings":"","what":"outcome16_2 — outcome16_2","title":"outcome16_2 — outcome16_2","text":"Proportion Persons Concern covered social protection floors/systems indicator measures proportion persons concern receive government social protection benefits. Social protection set policies programmes aimed preventing protecting people poverty, vulnerability social exclusion throughout life-course, particular emphasis vulnerable groups. persons concern, part social protection system measure integration stability. indicator linked SGD indicator 1.3.1. indicator focuses social benefits received government UNHCR might supporting UNHCR. Numerator: Total population covered social protection floors/systems Denominator: Total population Formula: SPF01=1 indicator calculated main dataset PoC covered least one social protection floors/systems","code":""},{"path":"/reference/outcome16_2.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"outcome16_2 — outcome16_2","text":"","code":"outcome16_2(datalist)"},{"path":"/reference/outcome16_2.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"outcome16_2 — outcome16_2","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data()","code":""},{"path":"/reference/outcome16_2.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"outcome16_2 — outcome16_2","text":"new calculated variable - appended ...","code":""},{"path":"/reference/outcome16_2.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"outcome16_2 — outcome16_2","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome16_2(datalist) #> ✔ SPF01a #> ✔ SPF01b #> ✔ SPF01c #> ✔ SPF01d #> ✔ SPF01e #> ✔ SPF01f #> ✔ SPF01g #> ✔ SPF01h table( datalist[[\"main\"]]$outcome16_2, useNA = \"ifany\") #> #> 0 1 #> 17 367 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome16_2, iconunicode = \"f140\")"},{"path":"/reference/outcome1_2.html","id":null,"dir":"Reference","previous_headings":"","what":"outcome1_2 — outcome1_2","title":"outcome1_2 — outcome1_2","text":"Proportion children 5 years age whose births registered civil authority","code":""},{"path":"/reference/outcome1_2.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"outcome1_2 — outcome1_2","text":"","code":"outcome1_2(datalist)"},{"path":"/reference/outcome1_2.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"outcome1_2 — outcome1_2","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data()","code":""},{"path":"/reference/outcome1_2.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"outcome1_2 — outcome1_2","text":"new calculated variable - appended ...","code":""},{"path":"/reference/outcome1_2.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"outcome1_2 — outcome1_2","text":"indicator measures proportion children 5 years old whose births registered civil authority civil documentation issued. directly linked SGD indicator 16.9.1. standard module indicator taken MICS adjusted UNHCR context. Definitions •Birth registration refers registration new births civil authorities completion process issuance birth certificate. also includes documents issued UNHCR relevant organizations given authority State documents recognized national authorities. Clarifications •Birth notifications hospital records records midwives traditional birth attendants, issued solely UNHCR partners shall considered birth certificates although important sources establishing total number births. Operations encouraged track number birth notifications birth registrations purpose indicator report number births registered. • standard indicator used DHS, MICS RMS report birth registration refers percentage children age 5 (0-59 months) birth certificate, regardless whether seen interviewer, whose birth reported registered civil authorities time survey.","code":"| Standard Questions | |:------------------:| | REG03 - REG04 | **Numerator**: Number of children under 5 years old who are registered with civil authorities **Denominator**: Total number of children under 5 years old **Formula**: (*REG03=1 \\| REG04=1) / Number of children under 5* This indicator comes from the individual dataset ind$REG03 - birth certificate ind$REG04 - birth has been registered"},{"path":"/reference/outcome1_2.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"outcome1_2 — outcome1_2","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome1_2(datalist) #> ✔ REG03 #> ✔ REG04 #> ✔ HH07 table(datalist[[\"ind\"]]$outcome1_2, useNA = \"ifany\") #> #> #> 384 table(datalist[[\"ind\"]]$less_than_5, useNA = \"ifany\") #> #> 0 #> 384 table(datalist[[\"ind\"]]$HH07, useNA = \"ifany\") #> #> 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 #> 6 3 5 3 7 2 6 6 7 7 3 6 2 9 4 5 9 8 2 4 4 5 4 3 6 2 #> 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 #> 3 2 1 4 4 5 5 4 8 6 9 3 11 8 6 6 6 4 4 3 5 6 2 6 6 8 #> 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 #> 3 8 5 4 5 7 1 3 3 3 5 7 5 7 2 5 6 6 4 2 3 7 2 7 5 6 barplot(as.integer(datalist[[\"ind\"]]$HH07)) table(datalist[[\"ind\"]]$birthCertificate, useNA = \"ifany\") #> #> 0 1 #> 251 133 table(datalist[[\"ind\"]]$birthRegistered, useNA = \"ifany\") #> #> 0 1 #> 190 88 106 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$outcome1_2, iconunicode = \"f140\") fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$birthCertificate, iconunicode = \"f140\") fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$birthRegistered, iconunicode = \"f140\")"},{"path":"/reference/outcome1_3.html","id":null,"dir":"Reference","previous_headings":"","what":"outcome1_3 — outcome1_3","title":"outcome1_3 — outcome1_3","text":"Proportion Persons Concern legally recognized identity documents credentials","code":""},{"path":"/reference/outcome1_3.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"outcome1_3 — outcome1_3","text":"","code":"outcome1_3(datalist)"},{"path":"/reference/outcome1_3.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"outcome1_3 — outcome1_3","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data()","code":""},{"path":"/reference/outcome1_3.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"outcome1_3 — outcome1_3","text":"new calculated variable - appended ...","code":""},{"path":"/reference/outcome1_3.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"outcome1_3 — outcome1_3","text":"indicator measures proportion persons concern possess legally recognized valid identity documents credentials. Establishing one's identity possessing legally recognized valid identity documents credentials ensures legal protection persons concern, protection refoulement, registration life events prevent statelessness, well access services. Definitions Numerator: Total population valid identity documents credentials Denominator: Total population Formula: ( REG01=1 \\| REG02=1 \\| REG03=1 \\| REG05=1 \\| REG06=1) / Total population indicator comes individual dataset - Calculate valid identity documents 5 REG05 REG06 variables ind$REG05a - passport ind$REG05b - civil/government issued ID ind$REG05c - residency permit ind$REG05d - statelessness documentation ind$REG05e - household card address/family book ind$REG05f - social security card ind$REG06 - document establishes identity add birth certificate additional document REG03","code":"Identity document or credential is any document or credential which may be used as proof of identity, which may also include reference to the individuals' legal status and associated rights vis-à-vis the host State and/or UNHCR."},{"path":"/reference/outcome1_3.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"outcome1_3 — outcome1_3","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome1_3(datalist) #> ✔ REG01a #> ✔ REG01b #> ✔ REG01c #> ✔ REG01d #> ✔ REG01e #> ✔ REG01f #> ✔ REG01g #> ✔ REG02 #> ✔ REG03 #> ✔ REG05a #> ✔ REG05b #> ✔ REG05c #> ✔ REG05d #> ✔ REG05e #> ✔ REG05f #> ✔ REG06 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$outcome1_3, iconunicode = \"f140\") fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$document_above5, iconunicode = \"f140\") fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$document_under5, iconunicode = \"f140\")"},{"path":"/reference/outcome4_1.html","id":null,"dir":"Reference","previous_headings":"","what":"outcome4_1 — outcome4_1","title":"outcome4_1 — outcome4_1","text":"Proportion Persons Concern know access available GBV services","code":""},{"path":"/reference/outcome4_1.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"outcome4_1 — outcome4_1","text":"","code":"outcome4_1(datalist)"},{"path":"/reference/outcome4_1.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"outcome4_1 — outcome4_1","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data()","code":""},{"path":"/reference/outcome4_1.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"outcome4_1 — outcome4_1","text":"new calculated variable - appended ...","code":""},{"path":"/reference/outcome4_1.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"outcome4_1 — outcome4_1","text":"indicator defined proportion persons concern know access least one four available gender-based violence services aftermath GBV incident. linked Inter-Agency Minimum Standards Gender-Based Violence Emergencies Programming. response options appear standardized module used. Definitions: **GBV01a (**Health): \"Medical treatment health care address immediate long-term physical mental health effects GBV. can include initial examination treatment, follow-medical care, mental health care, health-related legal services, preparation documentation provision evidence judicial related processes.\" GBV01b (Psycho-social/ case management): \"Psychosocial care support assist healing recovery emotional, psychological social effects. includes crisis care well longer-term emotional practical support survivor /family, information advocacy, case management, educating family members can support survivor's healing recovery. GBV01c (Safety/security): \"Options safety protection survivors families risk violence wish protected. can include safe shelters, police community security, relocation, case children, alternative care arrangements\". GBV01d (Legal assistance): \"Legal actors clearly honestly inform victim/survivor #' procedures, limitations, pros, cons existing legal options\". Numerator: Total population indicates knowing access available GBV services Denominator: Total population Formula: ( GBV01a=1 \\| GBV01b=1 \\| GBV01c=1 \\| GBV01d=1) / Total population indicator comes main dataset based respondent randomly selected individual level","code":""},{"path":"/reference/outcome4_1.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"outcome4_1 — outcome4_1","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome4_1(datalist ) #> ✔ GBV01a #> ✔ GBV01b #> ✔ GBV01c #> ✔ GBV01d ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome1_4, iconunicode = \"f140\") #> Warning: Unknown or uninitialised column: `outcome1_4`. #> No value was supplied for plotting..."},{"path":"/reference/outcome4_2.html","id":null,"dir":"Reference","previous_headings":"","what":"outcome4_1 — outcome4_2","title":"outcome4_1 — outcome4_2","text":"Proportion Persons Concern accept violence women","code":""},{"path":"/reference/outcome4_2.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"outcome4_1 — outcome4_2","text":"","code":"outcome4_2(datalist)"},{"path":"/reference/outcome4_2.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"outcome4_1 — outcome4_2","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data()","code":""},{"path":"/reference/outcome4_2.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"outcome4_1 — outcome4_2","text":"new calculated variable - appended ...","code":""},{"path":"/reference/outcome4_2.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"outcome4_1 — outcome4_2","text":"indicator measures proportion persons concern disagree husband justified hitting beating wife list specific reasons. serves proxy indicator accept violence women. module taken Domestic Violence Module DHS similar module used MICS. Due sensitivity, module recommended face--face surveys. Data Collection Safeguards Enumerators (data collection teams) must trained GBV safe disclosures referrals prior undertaking household surveys (least get briefing GBV referral pathway area). ensure quality feedback limit risks harm, advisable administer survey members household separately confidential spaces (consider using interview rooms community centres settings layout communities' homes allow confidential discussions). also recommended ensure -sex enumerators minimize risks SEA particularly female respondents. Numerator: Population 18 disagree husband justified hitting beating wife following reasons: Going without telling . Neglecting children. Arguing . Refusing sexual intercourse . Burning food. Denominator: Total population 18 Formula: ( GBV01a=1 \\| GBV01b=1 \\| GBV01c=1 \\| GBV01d=1) / Total population indicator comes main dataset based respondent randomly selected individual level randomly selected adult believes husband justified beating wife various circumstances yes selected circumstances Prefer respond put missing","code":""},{"path":"/reference/outcome4_2.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"outcome4_1 — outcome4_2","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome4_2(datalist) #> ✔ VAW01a #> ✔ VAW01b #> ✔ VAW01c #> ✔ VAW01d #> ✔ VAW01e ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome4_2, iconunicode = \"f140\")"},{"path":"/reference/outcome5_2.html","id":null,"dir":"Reference","previous_headings":"","what":"outcome5_2 — outcome5_2","title":"outcome5_2 — outcome5_2","text":"Proportion children participate community-based child protection programmes","code":""},{"path":"/reference/outcome5_2.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"outcome5_2 — outcome5_2","text":"","code":"outcome5_2(datalist)"},{"path":"/reference/outcome5_2.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"outcome5_2 — outcome5_2","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data()","code":""},{"path":"/reference/outcome5_2.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"outcome5_2 — outcome5_2","text":"new calculated variable - appended ...","code":""},{"path":"/reference/outcome5_2.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"outcome5_2 — outcome5_2","text":"indicator defined proportion children participate community-based child protection programmes. module question comes UNHCR Core indicator metadata. Children' participation community-based recreational child protection activities key mechanism protection children providing children protected environment can participate organized activities play, socialize, learn, express , promoting psycho-social well-reducing risk abuse, violence exploitation. Numerator: Total number children 4-17 years participate community-based recreational child protection programmes Denominator: Total [number children 4-17 years Formula: ( COMM01=1 & COMM02 \\>=2 \\| & COMM03=1 & COMM04=1) / Total number children 4-17 years indicator comes individual level dataset Children participate community-based programmes least 2 times, adult supervision physically safe area","code":""},{"path":"/reference/outcome5_2.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"outcome5_2 — outcome5_2","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome5_2(datalist ) #> ✔ COMM01 #> ✔ COMM02 #> ✔ COMM03 #> ✔ COMM04 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"ind\"]]$outcome5_2, iconunicode = \"f140\")"},{"path":"/reference/outcome8_2.html","id":null,"dir":"Reference","previous_headings":"","what":"outcome8_2 — outcome8_2","title":"outcome8_2 — outcome8_2","text":"Proportion Persons Concern primary reliance clean (cooking) fuels technology","code":""},{"path":"/reference/outcome8_2.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"outcome8_2 — outcome8_2","text":"","code":"outcome8_2(datalist)"},{"path":"/reference/outcome8_2.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"outcome8_2 — outcome8_2","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data()","code":""},{"path":"/reference/outcome8_2.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"outcome8_2 — outcome8_2","text":"new calculated variable - appended ...","code":""},{"path":"/reference/outcome8_2.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"outcome8_2 — outcome8_2","text":"indicator measures proportion population use clean fuel technology primary source cooking. type cooking fuel technology meeting set standards indoor air emissions, main cooking solution. also linked SGD indicator 7.1.2 . standard questions similar MICS calculation indicators based UNICEF MICS guidance calculation SGD indicator. Numerator: Percentage population primary reliance clean fuels technologies cooking Denominator: Total population Formula: COOK01=1 (cooking device) & (COOK02=1,2,3,4,5) \\| (COOK02=6 & COOK03=1,2) / Total Population indicator comes household level dataset Based MICS calculation : TC4.1","code":""},{"path":"/reference/outcome8_2.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"outcome8_2 — outcome8_2","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome8_2(datalist ) #> ✔ COOK01 #> ✖ COOK02 not found in the dataset. #> ✖ COOK03 not found in the dataset. #> There are missing data requirement to calculate Indicator Outcome 8.2 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome8_2, iconunicode = \"f140\") #> Warning: Unknown or uninitialised column: `outcome8_2`. #> No value was supplied for plotting..."},{"path":"/reference/outcome9_1.html","id":null,"dir":"Reference","previous_headings":"","what":"outcome9_1 — outcome9_1","title":"outcome9_1 — outcome9_1","text":"Proportion Persons Concern living habitable affordable housing","code":""},{"path":"/reference/outcome9_1.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"outcome9_1 — outcome9_1","text":"","code":"outcome9_1(datalist)"},{"path":"/reference/outcome9_1.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"outcome9_1 — outcome9_1","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data()","code":""},{"path":"/reference/outcome9_1.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"outcome9_1 — outcome9_1","text":"new calculated variable - appended ...","code":""},{"path":"/reference/outcome9_1.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"outcome9_1 — outcome9_1","text":"indicator measures proportion persons concern living habitable affordable housing. indicator focuses habitability affordability. limited reflection key aspects adequate housing including security tenure, availability basic services infrastructure, accessibility, location housing, cultural appropriateness. also linked SGD indicator 11.1.1. right access adequate housing protected international law. concept \"adequacy\" means housing four walls roof indicated Sphere Handbook. Habitable housing primarily refers fact housing provide protection cold, damp, heat, rain, wind, threats health, structural hazards, disease vectors overcrowded. shelter/housing primarily contextual element, may discrepancies country country data measured.Habitable shelter measured based improved material dwelling indicated DHS publication housing conditions also used MICS6. Overcrowding also used occurs three people per habitable room defined UN-Habitat. Affordable housing refers fact cost housing related expenditures maintenance household items level compromise attainment satisfaction basic needs Numerator: Total population living habitable affordable housing Denominator: Total population Formula: DWE01 = 1,2 & DWE02 = 3,4,5,6,7,8,9 & DWE03 = 8,9,10,11,12,13 & DWE04 = 10,11,12,13,14,15 & crowding (HH01/DWE05) \\<= 3 & (DWE08=1 & DWE09=1,2) \\| DWE08=0 indicator calculated main dataset classify habitable improved/adequate shelter","code":""},{"path":"/reference/outcome9_1.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"outcome9_1 — outcome9_1","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome9_1(datalist) #> ✔ DWE01 #> ✔ DWE02 #> ✔ DWE03 #> ✔ DWE04 #> ✔ DWE05 #> ✔ DWE08 #> ✔ DWE09 #> ✔ HH01 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome9_1, iconunicode = \"f140\")"},{"path":"/reference/outcome9_2.html","id":null,"dir":"Reference","previous_headings":"","what":"outcome9_2 — outcome9_2","title":"outcome9_2 — outcome9_2","text":"Proportion Persons Concern energy ensure lighting","code":""},{"path":"/reference/outcome9_2.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"outcome9_2 — outcome9_2","text":"","code":"outcome9_2(datalist)"},{"path":"/reference/outcome9_2.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"outcome9_2 — outcome9_2","text":"datalist list hierarchical data frame survey data set. format expected match Excel export synchronized kobo RILD loaded kobocruncher::kobo_data()","code":""},{"path":"/reference/outcome9_2.html","id":"value","dir":"Reference","previous_headings":"","what":"Value","title":"outcome9_2 — outcome9_2","text":"new calculated variable - appended ...","code":""},{"path":"/reference/outcome9_2.html","id":"details","dir":"Reference","previous_headings":"","what":"Details","title":"outcome9_2 — outcome9_2","text":"indicator measures percentage Persons Concern access clean sustainable source lighting household level. Safe sustainable access clean energy increasingly recognized human right integral part Sustainable Development Goals. indicator lighting constructed essential questions LIGHT01 LIGHT02 captures used light source. LSMS Guidebook main source measuring energy access defined SGD 7.1.12. : $Population reliance clean fuels technologies lightingTotal population$ Numerator: Population living households primary reliance clean fuels technologies lighting Denominator: Total population Formula: LIGHT01 = 1 & LIGHT02 = 1, 3, 4, 5, 6, 7, 8 / Total Population comes main dataset Calculates percentage PoC access clean fuel lighting / basic connectivity (9.1 Outcome Indicator)","code":""},{"path":"/reference/outcome9_2.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"outcome9_2 — outcome9_2","text":"","code":"## data, cf example fct_re_map() datalist <- kobocruncher::kobo_data( system.file(\"dummy_RMS_CAPI_v2_mapped.xlsx\", package = \"IndicatorCalc\")) #> Warning: Unknown or uninitialised column: `_parent_index`. ## Apply indicator function on datalist datalist <- outcome9_2(datalist ) #> ✔ LIGHT01 #> ✔ LIGHT02 #> ✔ LIGHT03 ## Visualise value fct_plot_indic_donut(indicator = datalist[[\"main\"]]$outcome9_2, iconunicode = \"f140\")"},{"path":"/reference/run_app.html","id":null,"dir":"Reference","previous_headings":"","what":"Run the Shiny Application — run_app","title":"Run the Shiny Application — run_app","text":"Run Shiny Application","code":""},{"path":"/reference/run_app.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Run the Shiny Application — run_app","text":"","code":"run_app( onStart = NULL, options = list(), enableBookmarking = NULL, uiPattern = \"/\", ... )"},{"path":"/reference/run_app.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Run the Shiny Application — run_app","text":"onStart function called app actually run. needed shinyAppObj, since shinyAppDir case, global.R file can used purpose. options Named options passed runApp call (can following: \"port\", \"launch.browser\", \"host\", \"quiet\", \"display.mode\" \"test.mode\"). can also specify width height parameters provide hint embedding environment ideal height/width app. enableBookmarking Can one \"url\", \"server\", \"disable\". default value, NULL, respect setting previous calls enableBookmarking(). See enableBookmarking() information bookmarking app. uiPattern regular expression applied GET request determine whether ui used handle request. Note entire request path must match regular expression order match considered successful. ... arguments pass golem_opts. See ?golem::get_golem_options details.","code":""},{"path":"/news/index.html","id":"indicatorcalc-0009000","dir":"Changelog","previous_headings":"","what":"IndicatorCalc 0.0.0.9000","title":"IndicatorCalc 0.0.0.9000","text":"Added NEWS.md file track changes package.","code":""}]
diff --git a/docs/sitemap.xml b/docs/sitemap.xml
index 7416bf5..146052e 100644
--- a/docs/sitemap.xml
+++ b/docs/sitemap.xml
@@ -18,6 +18,9 @@
/articles/index.html
+
+ /articles/indicators-calculation-functions.html
+
/articles/utilities.html
@@ -30,6 +33,12 @@
/news/index.html
+
+ /reference/fct_build_map.html
+
+
+ /reference/fct_build_requirement.html
+
/reference/fct_check_map.html
@@ -51,9 +60,24 @@
/reference/fct_re_map.html
+
+ /reference/fct_require.html
+
/reference/fct_var_mapping.html
+
+ /reference/impact2_3.html
+
+
+ /reference/impact3_2a.html
+
+
+ /reference/impact3_2b.html
+
+
+ /reference/impact3_3.html
+
/reference/impact_2_2.html
@@ -72,6 +96,60 @@
/reference/inter_shelter.html
+
+ /reference/outcome10_1.html
+
+
+ /reference/outcome10_2.html
+
+
+ /reference/outcome12_1.html
+
+
+ /reference/outcome12_2.html
+
+
+ /reference/outcome13_1.html
+
+
+ /reference/outcome13_2.html
+
+
+ /reference/outcome13_3.html
+
+
+ /reference/outcome14_1.html
+
+
+ /reference/outcome16_1.html
+
+
+ /reference/outcome16_2.html
+
+
+ /reference/outcome1_2.html
+
+
+ /reference/outcome1_3.html
+
+
+ /reference/outcome4_1.html
+
+
+ /reference/outcome4_2.html
+
+
+ /reference/outcome5_2.html
+
+
+ /reference/outcome8_2.html
+
+
+ /reference/outcome9_1.html
+
+
+ /reference/outcome9_2.html
+
/reference/run_app.html
diff --git a/docs/tutorial/index.Rmd b/docs/tutorial/index.Rmd
index 431140e..b7b40f1 100644
--- a/docs/tutorial/index.Rmd
+++ b/docs/tutorial/index.Rmd
@@ -45,13 +45,14 @@ library(fontawesome)
# Standardized Indicator Calculations
- * key indicators used to measure, inform and monitor progress towards global development objectives
+ * [UNHCR Results Monitoring Surveys (RMS)](https://intranet.unhcr.org/en/support-services/common-good-data-initiatives/household-surveys/Results-Monitoring-Surveys.html) are household-level surveys with standard questionnaires following context-appropriate methodological approaches, based on international statistical standards and definitions.
+
+ * The calculation of Standard Indicators is a key step in the analysis of Household survey dataset.
+
+ * Indicators used to measure, inform and monitor progress towards global development objectives. They allow also to compare the situation of forcibly displaced people with the host population.
- * [UNHCR Results Monitoring Surveys (RMS)](https://intranet.unhcr.org/en/support-services/common-good-data-initiatives/household-surveys/Results-Monitoring-Surveys.html) are household-level surveys with standard questionnaires following context-appropriate methodological approaches.
- * The calculation of Standard Indicators is a key step in the analysis of Household survey dataset.
- * UNHCR Results Monitoring Survey is based on international statistical standards and definitions.
???
@@ -61,13 +62,30 @@ There is broad consensus around the key indicators used to measure, inform and m
---
-# Package Objectives
+# Why the effort to turn a script into a function and then a package?
+
+ * Enhanced __Modularity__: Functions allow you to break down a complex script into smaller, more manageable modules. Each function can represent a specific task or operation, making the code easier to understand and maintain.
+
+ * Improved __Reusability__: By encapsulating specific functionalities within functions, you can reuse the same code across different parts of your script or even in other projects. This reduces redundancy and promotes a more efficient development process.
+
+ * __Readability__: Functions provide a clear and structured way to organize your code. A well-defined function with a specific purpose makes the overall script more readable and understandable.
+
+ * __Maintainability__: Debugging and maintaining code become more straightforward when functions are used. If an issue arises, you can focus on the specific function rather than navigating through a large and complex script.
+
+ * __Parameterization__: Functions allow you to parameterize your code, enabling the customization of behavior based on input arguments. This enhances flexibility, as the same function can be used with different inputs to achieve varied results.
+
+ * __Flexibility__: When a script is turned into functions, making updates or changes to specific functionalities becomes more manageable. You can modify a function without affecting the entire script, leading to a more agile development process.
+
+
+---
- * Turning existing scripts as functions
+# Package Objectives
- * Designed to work based on dataset standard backup format exported from [kobotoolbox](http://http://kobo.unhcr.org)
+ * Designed to work based on dataset standard backup format exported from [kobotoolbox](http://http://kobo.unhcr.org) - that includes full variable name (group name + variable name)
+
+ * Works with [UNHCR Internal Data Repository](http://ridl.unhcr.org) (RIDL) integration in mind, meaning indicators calculation is done after cleaning (not directly out of the data exported from kobotoolbox API)
- * Works with [UNHCR Internal Data Repository](http://ridl.unhcr.org) (RIDL) integration in mind
+ * Help to keep consistence between indicator calculations and standard xlsform content
???
@@ -89,6 +107,8 @@ Each calculation is implemented as a function with in-built check to identify wh
* Pipeline the work and streamline the process for indicator calculations
* How to automate as much as possible so that a simple interface can be built to allow for indicator calculation without coding capacity...
+
+ * Test indicator calculation before collecting data - by generating a dummy dataset based on the form structure
???
@@ -101,9 +121,11 @@ Each calculation is implemented as a function with in-built check to identify wh
# Setting up data transformation
- *
+ * Use the form structure (xlsform) to map with the expected variables
- *
+ * Usage of matching algorithm to do the mapping - output a matching index
+
+ * Provides always a second best match..
???
@@ -116,7 +138,12 @@ Run the function var_mapping( "path/to/myxlsform.xlsx") in order to create your
# Manual Review
- *
+
+ * When you open the excel, filter for all match where the matching_index_best is different than 0
+
+ * If you can confirm the match, manually set it to 0 so that the matching can be confirmed.
+
+ * If the matching is not the expected one you may take the second best match, and if correct, paste it and set the index to 0
*
@@ -131,12 +158,15 @@ Review manually the variable mapping and __recode data__ manually the variables
# Report Template
- * Allows to use all the functions from the package wtihin a streamline data pipeline
+ * Allows to use all the functions from the package within a streamline data pipeline
* The report is configured through parameters (in the _yaml_)
+ * Includes simple charts to display the indicator value together with some standard interpretation hint
+
* Pull metadata already documented within RIDL to avoid re-entering it, brings in Indicator Visualisation and pull comparable SDG valuess
+
???
Then either generate a dummy dataset or connect your project with [RIDL](https://ridl.unhcr.org)
diff --git a/docs/tutorial/index.html b/docs/tutorial/index.html
index cec0c3b..873458d 100644
--- a/docs/tutorial/index.html
+++ b/docs/tutorial/index.html
@@ -798,6 +798,38 @@
--unhcr-logoblue: url("");
--unhcr-logowhite: url("");
}
+:root {
+--unhcr-logoblue: url("");
+--unhcr-logowhite: url("");
+}
+:root {
+--unhcr-logoblue: url("");
+--unhcr-logowhite: url("");
+}
+:root {
+--unhcr-logoblue: url("");
+--unhcr-logowhite: url("");
+}
+:root {
+--unhcr-logoblue: url("");
+--unhcr-logowhite: url("");
+}
+:root {
+--unhcr-logoblue: url("");
+--unhcr-logowhite: url("");
+}
+:root {
+--unhcr-logoblue: url("");
+--unhcr-logowhite: url("");
+}
+:root {
+--unhcr-logoblue: url("");
+--unhcr-logowhite: url("");
+}
+:root {
+--unhcr-logoblue: url("");
+--unhcr-logowhite: url("");
+}