forked from cvat-ai/cvat
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadaptive-pool.patch
27 lines (24 loc) · 1.15 KB
/
adaptive-pool.patch
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
This is a hack to work around the the lack of support for AdaptiveAvgPool2d
in PyTorch's ONNX exporter (<https://github.com/pytorch/pytorch/issues/42653>).
It might become unnecessary in the future, since OpenVINO 2023 is to add support
for AdaptiveAvgPool2d exported with operator_export_type=ONNX_ATEN_FALLBACK
(<https://github.com/openvinotoolkit/openvino/pull/14682>).
diff --git a/networks/deeplab_resnet.py b/networks/deeplab_resnet.py
index ecfa084..e8ff297 100644
--- a/networks/deeplab_resnet.py
+++ b/networks/deeplab_resnet.py
@@ -99,7 +99,14 @@ class PSPModule(nn.Module):
self.final = nn.Conv2d(out_features, n_classes, kernel_size=1)
def _make_stage_1(self, in_features, size):
- prior = nn.AdaptiveAvgPool2d(output_size=(size, size))
+ kernel_size, stride = {
+ 1: (64, 64),
+ 2: (32, 32),
+ 3: (22, 21),
+ 6: (11, 9),
+ }[size]
+
+ prior = nn.AvgPool2d(kernel_size=kernel_size, stride=stride)
conv = nn.Conv2d(in_features, in_features//4, kernel_size=1, bias=False)
bn = nn.BatchNorm2d(in_features//4, affine=affine_par)
relu = nn.ReLU(inplace=True)