Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Error while parsing quantized model using detect.py/val.py #9950

Closed
1 task done
Sanath1998 opened this issue Oct 28, 2022 · 2 comments
Closed
1 task done

Error while parsing quantized model using detect.py/val.py #9950

Sanath1998 opened this issue Oct 28, 2022 · 2 comments
Labels
question Further information is requested Stale Stale and schedule for closing soon

Comments

@Sanath1998
Copy link

Search before asking

Question

Hi @glenn-jocher,

Actually I have tested the custom models (float32) with inferencing using detect.py/val.py. The results were quite promising and there seemed to be no issues.

  1. But while the model was quantized to int8 precision I'am unable to do inference using detet.py/val.py.
  2. The error msg is as show below :-
    =================================
    File "detect.py", line 73, in mainfunc
    model_LPD = DetectMultiBackend(weights_yolov5_LPD, device=device, dnn=dnn_yolov5, data=data_yolov5,
    fp16=half_yolov5)
    File "/yolov5/models/common.py", line 340, in init
    model = attempt_load(weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse)
    File "/yolov5/models/experimental.py", line 80, in attempt_load
    ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
    AttributeError: 'collections.OrderedDict' object has no attribute 'to'
    =================================

Could you please tell how to resolve this and how to infer the quantized models?

Thanks and regards

Additional

No response

@Sanath1998 Sanath1998 added the question Further information is requested label Oct 28, 2022
@glenn-jocher
Copy link
Member

👋 Hello! Thanks for asking about YOLOv5 🚀 benchmarks. YOLOv5 inference is officially supported in 11 formats, and all formats are benchmarked for identical accuracy and to compare speed every 24 hours by the YOLOv5 CI.

💡 ProTip: Export to ONNX or OpenVINO for up to 3x CPU speedup. See CPU Benchmarks.
💡 ProTip: Export to TensorRT for up to 5x GPU speedup. See GPU Benchmarks.

Format export.py --include Model
PyTorch - yolov5s.pt
TorchScript torchscript yolov5s.torchscript
ONNX onnx yolov5s.onnx
OpenVINO openvino yolov5s_openvino_model/
TensorRT engine yolov5s.engine
CoreML coreml yolov5s.mlmodel
TensorFlow SavedModel saved_model yolov5s_saved_model/
TensorFlow GraphDef pb yolov5s.pb
TensorFlow Lite tflite yolov5s.tflite
TensorFlow Edge TPU edgetpu yolov5s_edgetpu.tflite
TensorFlow.js tfjs yolov5s_web_model/

Benchmarks

Benchmarks below run on a Colab Pro with the YOLOv5 tutorial notebook Open In Colab. To reproduce:

python utils/benchmarks.py --weights yolov5s.pt --imgsz 640 --device 0

Colab Pro V100 GPU

benchmarks: weights=/content/yolov5/yolov5s.pt, imgsz=640, batch_size=1, data=/content/yolov5/data/coco128.yaml, device=0, half=False, test=False
Checking setup...
YOLOv5 🚀 v6.1-135-g7926afc torch 1.10.0+cu111 CUDA:0 (Tesla V100-SXM2-16GB, 16160MiB)
Setup complete ✅ (8 CPUs, 51.0 GB RAM, 46.7/166.8 GB disk)

Benchmarks complete (458.07s)
                   Format  [email protected]:0.95  Inference time (ms)
0                 PyTorch        0.4623                10.19
1             TorchScript        0.4623                 6.85
2                    ONNX        0.4623                14.63
3                OpenVINO           NaN                  NaN
4                TensorRT        0.4617                 1.89
5                  CoreML           NaN                  NaN
6   TensorFlow SavedModel        0.4623                21.28
7     TensorFlow GraphDef        0.4623                21.22
8         TensorFlow Lite           NaN                  NaN
9     TensorFlow Edge TPU           NaN                  NaN
10          TensorFlow.js           NaN                  NaN

Colab Pro CPU

benchmarks: weights=/content/yolov5/yolov5s.pt, imgsz=640, batch_size=1, data=/content/yolov5/data/coco128.yaml, device=cpu, half=False, test=False
Checking setup...
YOLOv5 🚀 v6.1-135-g7926afc torch 1.10.0+cu111 CPU
Setup complete ✅ (8 CPUs, 51.0 GB RAM, 41.5/166.8 GB disk)

Benchmarks complete (241.20s)
                   Format  [email protected]:0.95  Inference time (ms)
0                 PyTorch        0.4623               127.61
1             TorchScript        0.4623               131.23
2                    ONNX        0.4623                69.34
3                OpenVINO        0.4623                66.52
4                TensorRT           NaN                  NaN
5                  CoreML           NaN                  NaN
6   TensorFlow SavedModel        0.4623               123.79
7     TensorFlow GraphDef        0.4623               121.57
8         TensorFlow Lite        0.4623               316.61
9     TensorFlow Edge TPU           NaN                  NaN
10          TensorFlow.js           NaN                  NaN

Good luck 🍀 and let us know if you have any other questions!

@github-actions
Copy link
Contributor

github-actions bot commented Dec 2, 2022

👋 Hello, this issue has been automatically marked as stale because it has not had recent activity. Please note it will be closed if no further activity occurs.

Access additional YOLOv5 🚀 resources:

Access additional Ultralytics ⚡ resources:

Feel free to inform us of any other issues you discover or feature requests that come to mind in the future. Pull Requests (PRs) are also always welcomed!

Thank you for your contributions to YOLOv5 🚀 and Vision AI ⭐!

@github-actions github-actions bot added the Stale Stale and schedule for closing soon label Dec 2, 2022
@github-actions github-actions bot closed this as not planned Won't fix, can't repro, duplicate, stale Dec 12, 2022
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
question Further information is requested Stale Stale and schedule for closing soon
Projects
None yet
Development

No branches or pull requests

2 participants