Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

About the params and FLOPs of yolov5s #5973

Closed
1 task done
big-xiao opened this issue Dec 14, 2021 · 2 comments · Fixed by #5977
Closed
1 task done

About the params and FLOPs of yolov5s #5973

big-xiao opened this issue Dec 14, 2021 · 2 comments · Fixed by #5977
Labels
question Further information is requested

Comments

@big-xiao
Copy link

Search before asking

Question

Hello, are you wrong about the params and FLOPs of yolov5s6 in the table you listed?
Because I found that
SAGPRGJ~R0A`IBOZABV``VW

Additional

No response

@big-xiao big-xiao added the question Further information is requested label Dec 14, 2021
@github-actions
Copy link
Contributor

github-actions bot commented Dec 14, 2021

👋 Hello @big-xiao, thank you for your interest in YOLOv5 🚀! Please visit our ⭐️ Tutorials to get started, where you can find quickstart guides for simple tasks like Custom Data Training all the way to advanced concepts like Hyperparameter Evolution.

If this is a 🐛 Bug Report, please provide screenshots and minimum viable code to reproduce your issue, otherwise we can not help you.

If this is a custom training ❓ Question, please provide as much information as possible, including dataset images, training logs, screenshots, and a public link to online W&B logging if available.

For business inquiries or professional support requests please visit https://ultralytics.com or email Glenn Jocher at [email protected].

Requirements

Python>=3.6.0 with all requirements.txt installed including PyTorch>=1.7. To get started:

$ git clone https://github.com/ultralytics/yolov5
$ cd yolov5
$ pip install -r requirements.txt

Environments

YOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled):

Status

CI CPU testing

If this badge is green, all YOLOv5 GitHub Actions Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training (train.py), validation (val.py), inference (detect.py) and export (export.py) on MacOS, Windows, and Ubuntu every 24 hours and on every commit.

@glenn-jocher
Copy link
Member

@big-xiao yes you are correct! These appear switched due to human error.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
question Further information is requested
Projects
None yet
Development

Successfully merging a pull request may close this issue.

2 participants