-
-
Notifications
You must be signed in to change notification settings - Fork 16.3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Crazy output with detect.py on tensorrt engine #10242
Comments
👋 Hello @henningscale, thank you for your interest in YOLOv5 🚀! Please visit our ⭐️ Tutorials to get started, where you can find quickstart guides for simple tasks like Custom Data Training all the way to advanced concepts like Hyperparameter Evolution. If this is a 🐛 Bug Report, please provide screenshots and minimum viable code to reproduce your issue, otherwise we can not help you. If this is a custom training ❓ Question, please provide as much information as possible, including dataset images, training logs, screenshots, and a public link to online W&B logging if available. For business inquiries or professional support requests please visit https://ultralytics.com or email [email protected]. RequirementsPython>=3.7.0 with all requirements.txt installed including PyTorch>=1.7. To get started: git clone https://github.com/ultralytics/yolov5 # clone
cd yolov5
pip install -r requirements.txt # install EnvironmentsYOLOv5 may be run in any of the following up-to-date verified environments (with all dependencies including CUDA/CUDNN, Python and PyTorch preinstalled):
StatusIf this badge is green, all YOLOv5 GitHub Actions Continuous Integration (CI) tests are currently passing. CI tests verify correct operation of YOLOv5 training, validation, inference, export and benchmarks on MacOS, Windows, and Ubuntu every 24 hours and on every commit. |
@henningscale TensorRT export and prediction with detect.py works correctly. I just finished using TRT for our v7.0 release benchmarks. YOLOv5 inference is officially supported in 11 formats, and all formats are benchmarked for identical accuracy and to compare speed every 24 hours by the YOLOv5 CI. 💡 ProTip: Export to ONNX or OpenVINO for up to 3x CPU speedup. See CPU Benchmarks.
BenchmarksBenchmarks below run on a Colab Pro with the YOLOv5 tutorial notebook . To reproduce: python utils/benchmarks.py --weights yolov5s.pt --imgsz 640 --device 0 Colab Pro V100 GPU
Colab Pro CPU
Good luck 🍀 and let us know if you have any other questions! |
Hi @glenn-jocher Thanks for the reply! I can also confirm that it works fine with TensorRT 8.0.1.6, so there is some problem with newer version it seems. |
@henningscale works for me also with 8.4.3.1 in Colab: |
👋 Hello, this issue has been automatically marked as stale because it has not had recent activity. Please note it will be closed if no further activity occurs. Access additional YOLOv5 🚀 resources:
Access additional Ultralytics ⚡ resources:
Feel free to inform us of any other issues you discover or feature requests that come to mind in the future. Pull Requests (PRs) are also always welcomed! Thank you for your contributions to YOLOv5 🚀 and Vision AI ⭐! |
@henningscale **I have the same problem as you. Have you solved it yet? |
👋 hi, thanks for letting us know about this possible problem with YOLO 🚀. We've created a few short guidelines below to help users provide what we need in order to start investigating a possible problem. How to create a Minimal, Reproducible ExampleWhen asking a question, people will be better able to provide help if you provide code that they can easily understand and use to reproduce the problem. This is referred to by community members as creating a minimum reproducible example. Your code that reproduces the problem should be:
For Ultralytics to provide assistance your code should also be:
If you believe your problem meets all the above criteria, please close this issue and raise a new one using the 🐛 Bug Report template with a minimum reproducible example to help us better understand and diagnose your problem. Thank you! 😃 |
Search before asking
Question
Environment:
WSL2 Ubuntu 18.04
TensorRT 8.4.3.1
Latest YOLOV5, clean pull
Can anyone explain what is going on here?
To reproduce
import torch
torch.hub.load('ultralytics/yolov5', 'yolov5n')
python3 export.py --weights yolov5n.pt --include engine --device 0
python3 detect.py --weights yolov5n.engine --source "../../sample"
sample is just some random images
Additional
No response
The text was updated successfully, but these errors were encountered: