From f7d85620601f4c2513bcd2b7911c20fbc49e9097 Mon Sep 17 00:00:00 2001 From: Glenn Jocher Date: Mon, 19 Jul 2021 10:43:01 +0200 Subject: [PATCH] `val.py` refactor (#4053) * val.py refactor * cleanup * cleanup * cleanup * cleanup * save after eval * opt.imgsz bug fix * wandb refactor * dataloader to train_loader * capitalize global variables * runs/hub/exp to runs/detect/exp * refactor wandb logging * Refactor wandb operations (#4061) Co-authored-by: Ayush Chaurasia --- detect.py | 6 +- models/common.py | 33 +++--- models/yolo.py | 43 ++++---- train.py | 67 ++++++------ utils/datasets.py | 35 +++---- utils/torch_utils.py | 14 +-- utils/wandb_logging/wandb_utils.py | 65 ++++++++---- val.py | 160 ++++++++++++++--------------- 8 files changed, 220 insertions(+), 203 deletions(-) diff --git a/detect.py b/detect.py index be2c5969c6d..73f96239844 100644 --- a/detect.py +++ b/detect.py @@ -21,7 +21,7 @@ from utils.general import check_img_size, check_requirements, check_imshow, colorstr, non_max_suppression, \ apply_classifier, scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path, save_one_box from utils.plots import colors, plot_one_box -from utils.torch_utils import select_device, load_classifier, time_synchronized +from utils.torch_utils import select_device, load_classifier, time_sync @torch.no_grad() @@ -100,14 +100,14 @@ def run(weights='yolov5s.pt', # model.pt path(s) img = img.unsqueeze(0) # Inference - t1 = time_synchronized() + t1 = time_sync() pred = model(img, augment=augment, visualize=increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False)[0] # Apply NMS pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) - t2 = time_synchronized() + t2 = time_sync() # Apply Classifier if classify: diff --git a/models/common.py b/models/common.py index 41fc128c07b..4db90b54663 100644 --- a/models/common.py +++ b/models/common.py @@ -1,5 +1,6 @@ # YOLOv5 common modules +import logging from copy import copy from pathlib import Path, PosixPath @@ -15,7 +16,9 @@ from utils.datasets import exif_transpose, letterbox from utils.general import non_max_suppression, make_divisible, scale_coords, increment_path, xyxy2xywh, save_one_box from utils.plots import colors, plot_one_box -from utils.torch_utils import time_synchronized +from utils.torch_utils import time_sync + +LOGGER = logging.getLogger(__name__) def autopad(k, p=None): # kernel, padding @@ -226,7 +229,7 @@ def __init__(self, model): self.model = model.eval() def autoshape(self): - print('AutoShape already enabled, skipping... ') # model already converted to model.autoshape() + LOGGER.info('AutoShape already enabled, skipping... ') # model already converted to model.autoshape() return self @torch.no_grad() @@ -240,7 +243,7 @@ def forward(self, imgs, size=640, augment=False, profile=False): # torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values) # multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images - t = [time_synchronized()] + t = [time_sync()] p = next(self.model.parameters()) # for device and type if isinstance(imgs, torch.Tensor): # torch with amp.autocast(enabled=p.device.type != 'cpu'): @@ -270,19 +273,19 @@ def forward(self, imgs, size=640, augment=False, profile=False): x = np.stack(x, 0) if n > 1 else x[0][None] # stack x = np.ascontiguousarray(x.transpose((0, 3, 1, 2))) # BHWC to BCHW x = torch.from_numpy(x).to(p.device).type_as(p) / 255. # uint8 to fp16/32 - t.append(time_synchronized()) + t.append(time_sync()) with amp.autocast(enabled=p.device.type != 'cpu'): # Inference y = self.model(x, augment, profile)[0] # forward - t.append(time_synchronized()) + t.append(time_sync()) # Post-process y = non_max_suppression(y, self.conf, iou_thres=self.iou, classes=self.classes, max_det=self.max_det) # NMS for i in range(n): scale_coords(shape1, y[i][:, :4], shape0[i]) - t.append(time_synchronized()) + t.append(time_sync()) return Detections(imgs, y, files, t, self.names, x.shape) @@ -323,31 +326,33 @@ def display(self, pprint=False, show=False, save=False, crop=False, render=False im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np if pprint: - print(str.rstrip(', ')) + LOGGER.info(str.rstrip(', ')) if show: im.show(self.files[i]) # show if save: f = self.files[i] im.save(save_dir / f) # save - print(f"{'Saved' * (i == 0)} {f}", end=',' if i < self.n - 1 else f' to {save_dir}\n') + if i == self.n - 1: + LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to '{save_dir}'") if render: self.imgs[i] = np.asarray(im) def print(self): self.display(pprint=True) # print results - print(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % self.t) + LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {tuple(self.s)}' % + self.t) def show(self): self.display(show=True) # show results - def save(self, save_dir='runs/hub/exp'): - save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp', mkdir=True) # increment save_dir + def save(self, save_dir='runs/detect/exp'): + save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) # increment save_dir self.display(save=True, save_dir=save_dir) # save results - def crop(self, save_dir='runs/hub/exp'): - save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/hub/exp', mkdir=True) # increment save_dir + def crop(self, save_dir='runs/detect/exp'): + save_dir = increment_path(save_dir, exist_ok=save_dir != 'runs/detect/exp', mkdir=True) # increment save_dir self.display(crop=True, save_dir=save_dir) # crop results - print(f'Saved results to {save_dir}\n') + LOGGER.info(f'Saved results to {save_dir}\n') def render(self): self.display(render=True) # render results diff --git a/models/yolo.py b/models/yolo.py index 7b49dfcf48a..3a3af9b5fbd 100644 --- a/models/yolo.py +++ b/models/yolo.py @@ -5,7 +5,6 @@ """ import argparse -import logging import sys from copy import deepcopy from pathlib import Path @@ -18,7 +17,7 @@ from utils.autoanchor import check_anchor_order from utils.general import make_divisible, check_file, set_logging from utils.plots import feature_visualization -from utils.torch_utils import time_synchronized, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \ +from utils.torch_utils import time_sync, fuse_conv_and_bn, model_info, scale_img, initialize_weights, \ select_device, copy_attr try: @@ -26,7 +25,7 @@ except ImportError: thop = None -logger = logging.getLogger(__name__) +LOGGER = logging.getLogger(__name__) class Detect(nn.Module): @@ -90,15 +89,15 @@ def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, i # Define model ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels if nc and nc != self.yaml['nc']: - logger.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") + LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}") self.yaml['nc'] = nc # override yaml value if anchors: - logger.info(f'Overriding model.yaml anchors with anchors={anchors}') + LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}') self.yaml['anchors'] = round(anchors) # override yaml value self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist self.names = [str(i) for i in range(self.yaml['nc'])] # default names self.inplace = self.yaml.get('inplace', True) - # logger.info([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))]) + # LOGGER.info([x.shape for x in self.forward(torch.zeros(1, ch, 64, 64))]) # Build strides, anchors m = self.model[-1] # Detect() @@ -110,12 +109,12 @@ def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None): # model, i check_anchor_order(m) self.stride = m.stride self._initialize_biases() # only run once - # logger.info('Strides: %s' % m.stride.tolist()) + # LOGGER.info('Strides: %s' % m.stride.tolist()) # Init weights, biases initialize_weights(self) self.info() - logger.info('') + LOGGER.info('') def forward(self, x, augment=False, profile=False, visualize=False): if augment: @@ -143,13 +142,13 @@ def forward_once(self, x, profile=False, visualize=False): if profile: o = thop.profile(m, inputs=(x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs - t = time_synchronized() + t = time_sync() for _ in range(10): _ = m(x) - dt.append((time_synchronized() - t) * 100) + dt.append((time_sync() - t) * 100) if m == self.model[0]: - logger.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} {'module'}") - logger.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}') + LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} {'module'}") + LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}') x = m(x) # run y.append(x if m.i in self.save else None) # save output @@ -158,7 +157,7 @@ def forward_once(self, x, profile=False, visualize=False): feature_visualization(x, m.type, m.i, save_dir=visualize) if profile: - logger.info('%.1fms total' % sum(dt)) + LOGGER.info('%.1fms total' % sum(dt)) return x def _descale_pred(self, p, flips, scale, img_size): @@ -192,16 +191,16 @@ def _print_biases(self): m = self.model[-1] # Detect() module for mi in m.m: # from b = mi.bias.detach().view(m.na, -1).T # conv.bias(255) to (3,85) - logger.info( + LOGGER.info( ('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean())) # def _print_weights(self): # for m in self.model.modules(): # if type(m) is Bottleneck: - # logger.info('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights + # LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2)) # shortcut weights def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers - logger.info('Fusing layers... ') + LOGGER.info('Fusing layers... ') for m in self.model.modules(): if type(m) is Conv and hasattr(m, 'bn'): m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv @@ -213,19 +212,19 @@ def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers def nms(self, mode=True): # add or remove NMS module present = type(self.model[-1]) is NMS # last layer is NMS if mode and not present: - logger.info('Adding NMS... ') + LOGGER.info('Adding NMS... ') m = NMS() # module m.f = -1 # from m.i = self.model[-1].i + 1 # index self.model.add_module(name='%s' % m.i, module=m) # add self.eval() elif not mode and present: - logger.info('Removing NMS... ') + LOGGER.info('Removing NMS... ') self.model = self.model[:-1] # remove return self def autoshape(self): # add AutoShape module - logger.info('Adding AutoShape... ') + LOGGER.info('Adding AutoShape... ') m = AutoShape(self) # wrap model copy_attr(m, self, include=('yaml', 'nc', 'hyp', 'names', 'stride'), exclude=()) # copy attributes return m @@ -235,7 +234,7 @@ def info(self, verbose=False, img_size=640): # print model information def parse_model(d, ch): # model_dict, input_channels(3) - logger.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments')) + LOGGER.info('\n%3s%18s%3s%10s %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments')) anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'] na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors no = na * (nc + 5) # number of outputs = anchors * (classes + 5) @@ -279,7 +278,7 @@ def parse_model(d, ch): # model_dict, input_channels(3) t = str(m)[8:-2].replace('__main__.', '') # module type np = sum([x.numel() for x in m_.parameters()]) # number params m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params - logger.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print + LOGGER.info('%3s%18s%3s%10.0f %-40s%-30s' % (i, f, n, np, t, args)) # print save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist layers.append(m_) if i == 0: @@ -308,5 +307,5 @@ def parse_model(d, ch): # model_dict, input_channels(3) # Tensorboard (not working https://github.com/ultralytics/yolov5/issues/2898) # from torch.utils.tensorboard import SummaryWriter # tb_writer = SummaryWriter('.') - # logger.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/") + # LOGGER.info("Run 'tensorboard --logdir=models' to view tensorboard at http://localhost:6006/") # tb_writer.add_graph(torch.jit.trace(model, img, strict=False), []) # add model graph diff --git a/train.py b/train.py index 15c2c356f60..b1afaf8ada7 100644 --- a/train.py +++ b/train.py @@ -47,7 +47,7 @@ from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume from utils.metrics import fitness -logger = logging.getLogger(__name__) +LOGGER = logging.getLogger(__name__) LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html RANK = int(os.getenv('RANK', -1)) WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1)) @@ -73,7 +73,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary if isinstance(hyp, str): with open(hyp) as f: hyp = yaml.safe_load(f) # load hyps dict - logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) + LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items())) # Save run settings with open(save_dir / 'hyp.yaml', 'w') as f: @@ -94,7 +94,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary # TensorBoard if not evolve: prefix = colorstr('tensorboard: ') - logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/") + LOGGER.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/") loggers['tb'] = SummaryWriter(str(save_dir)) # W&B @@ -123,7 +123,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary state_dict = ckpt['model'].float().state_dict() # to FP32 state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect model.load_state_dict(state_dict, strict=False) # load - logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report + LOGGER.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report else: model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create with torch_distributed_zero_first(RANK): @@ -143,7 +143,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary nbs = 64 # nominal batch size accumulate = max(round(nbs / batch_size), 1) # accumulate loss before optimizing hyp['weight_decay'] *= batch_size * accumulate / nbs # scale weight_decay - logger.info(f"Scaled weight_decay = {hyp['weight_decay']}") + LOGGER.info(f"Scaled weight_decay = {hyp['weight_decay']}") pg0, pg1, pg2 = [], [], [] # optimizer parameter groups for k, v in model.named_modules(): @@ -161,7 +161,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay optimizer.add_param_group({'params': pg2}) # add pg2 (biases) - logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0))) + LOGGER.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0))) del pg0, pg1, pg2 # Scheduler https://arxiv.org/pdf/1812.01187.pdf @@ -198,7 +198,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary if resume: assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs) if epochs < start_epoch: - logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' % + LOGGER.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' % (weights, ckpt['epoch'], epochs)) epochs += ckpt['epoch'] # finetune additional epochs @@ -207,7 +207,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary # Image sizes gs = max(int(model.stride.max()), 32) # grid size (max stride) nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj']) - imgsz, imgsz_val = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples + imgsz = check_img_size(opt.imgsz, gs) # verify imgsz is gs-multiple # DP mode if cuda and RANK == -1 and torch.cuda.device_count() > 1: @@ -219,33 +219,31 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary if opt.sync_bn and cuda and RANK != -1: raise Exception('can not train with --sync-bn, known issue https://github.com/ultralytics/yolov5/issues/3998') model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device) - logger.info('Using SyncBatchNorm()') + LOGGER.info('Using SyncBatchNorm()') # Trainloader - dataloader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls, - hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=RANK, - workers=workers, - image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: ')) + train_loader, dataset = create_dataloader(train_path, imgsz, batch_size // WORLD_SIZE, gs, single_cls, + hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=RANK, + workers=workers, image_weights=opt.image_weights, quad=opt.quad, + prefix=colorstr('train: ')) mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class - nb = len(dataloader) # number of batches + nb = len(train_loader) # number of batches assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, data, nc - 1) # Process 0 if RANK in [-1, 0]: - valloader = create_dataloader(val_path, imgsz_val, batch_size // WORLD_SIZE * 2, gs, single_cls, - hyp=hyp, cache=opt.cache_images and not noval, rect=True, rank=-1, - workers=workers, - pad=0.5, prefix=colorstr('val: '))[0] + val_loader = create_dataloader(val_path, imgsz, batch_size // WORLD_SIZE * 2, gs, single_cls, + hyp=hyp, cache=opt.cache_images and not noval, rect=True, rank=-1, + workers=workers, pad=0.5, + prefix=colorstr('val: '))[0] if not resume: labels = np.concatenate(dataset.labels, 0) - c = torch.tensor(labels[:, 0]) # classes + # c = torch.tensor(labels[:, 0]) # classes # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency # model._initialize_biases(cf.to(device)) if plots: plot_labels(labels, names, save_dir, loggers) - if loggers['tb']: - loggers['tb'].add_histogram('classes', c, 0) # TensorBoard # Anchors if not opt.noautoanchor: @@ -277,8 +275,8 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary scheduler.last_epoch = start_epoch - 1 # do not move scaler = amp.GradScaler(enabled=cuda) compute_loss = ComputeLoss(model) # init loss class - logger.info(f'Image sizes {imgsz} train, {imgsz_val} val\n' - f'Using {dataloader.num_workers} dataloader workers\n' + LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n' + f'Using {train_loader.num_workers} dataloader workers\n' f'Logging results to {save_dir}\n' f'Starting training for {epochs} epochs...') for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------ @@ -304,9 +302,9 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary mloss = torch.zeros(4, device=device) # mean losses if RANK != -1: - dataloader.sampler.set_epoch(epoch) - pbar = enumerate(dataloader) - logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size')) + train_loader.sampler.set_epoch(epoch) + pbar = enumerate(train_loader) + LOGGER.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size')) if RANK in [-1, 0]: pbar = tqdm(pbar, total=nb) # progress bar optimizer.zero_grad() @@ -389,10 +387,10 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary wandb_logger.current_epoch = epoch + 1 results, maps, _ = val.run(data_dict, batch_size=batch_size // WORLD_SIZE * 2, - imgsz=imgsz_val, + imgsz=imgsz, model=ema.ema, single_cls=single_cls, - dataloader=valloader, + dataloader=val_loader, save_dir=save_dir, save_json=is_coco and final_epoch, verbose=nc < 50 and final_epoch, @@ -444,7 +442,7 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary # end epoch ---------------------------------------------------------------------------------------------------- # end training ----------------------------------------------------------------------------------------------------- if RANK in [-1, 0]: - logger.info(f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.\n') + LOGGER.info(f'{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.\n') if plots: plot_results(save_dir=save_dir) # save as results.png if loggers['wandb']: @@ -457,10 +455,10 @@ def train(hyp, # path/to/hyp.yaml or hyp dictionary for m in [last, best] if best.exists() else [last]: # speed, mAP tests results, _, _ = val.run(data_dict, batch_size=batch_size // WORLD_SIZE * 2, - imgsz=imgsz_val, + imgsz=imgsz, model=attempt_load(m, device).half(), single_cls=single_cls, - dataloader=valloader, + dataloader=val_loader, save_dir=save_dir, save_json=True, plots=False) @@ -487,7 +485,7 @@ def parse_opt(known=False): parser.add_argument('--hyp', type=str, default='data/hyps/hyp.scratch.yaml', help='hyperparameters path') parser.add_argument('--epochs', type=int, default=300) parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs') - parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, val] image sizes') + parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)') parser.add_argument('--rect', action='store_true', help='rectangular training') parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training') parser.add_argument('--nosave', action='store_true', help='only save final checkpoint') @@ -534,12 +532,11 @@ def main(opt): with open(Path(ckpt).parent.parent / 'opt.yaml') as f: opt = argparse.Namespace(**yaml.safe_load(f)) # replace opt.cfg, opt.weights, opt.resume = '', ckpt, True # reinstate - logger.info('Resuming training from %s' % ckpt) + LOGGER.info(f'Resuming training from {ckpt}') else: # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml') opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified' - opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, val) opt.name = 'evolve' if opt.evolve else opt.name opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve)) @@ -602,7 +599,7 @@ def main(opt): # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here if opt.bucket: - os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists + os.system(f'gsutil cp gs://{opt.bucket}/evolve.txt .') # download evolve.txt if exists for _ in range(opt.evolve): # generations to evolve if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate diff --git a/utils/datasets.py b/utils/datasets.py index 0763b56d31e..d3edafa99bd 100755 --- a/utils/datasets.py +++ b/utils/datasets.py @@ -22,17 +22,16 @@ from torch.utils.data import Dataset from tqdm import tqdm -from utils.augmentations import Albumentations, augment_hsv, copy_paste, letterbox, mixup, random_perspective, cutout +from utils.augmentations import Albumentations, augment_hsv, copy_paste, letterbox, mixup, random_perspective from utils.general import check_requirements, check_file, check_dataset, xywh2xyxy, xywhn2xyxy, xyxy2xywhn, \ xyn2xy, segments2boxes, clean_str from utils.torch_utils import torch_distributed_zero_first # Parameters -help_url = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data' -img_formats = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] # acceptable image suffixes -vid_formats = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes -num_threads = min(8, os.cpu_count()) # number of multiprocessing threads -logger = logging.getLogger(__name__) +HELP_URL = 'https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data' +IMG_FORMATS = ['bmp', 'jpg', 'jpeg', 'png', 'tif', 'tiff', 'dng', 'webp', 'mpo'] # acceptable image suffixes +VID_FORMATS = ['mov', 'avi', 'mp4', 'mpg', 'mpeg', 'm4v', 'wmv', 'mkv'] # acceptable video suffixes +NUM_THREADS = min(8, os.cpu_count()) # number of multiprocessing threads # Get orientation exif tag for orientation in ExifTags.TAGS.keys(): @@ -164,8 +163,8 @@ def __init__(self, path, img_size=640, stride=32): else: raise Exception(f'ERROR: {p} does not exist') - images = [x for x in files if x.split('.')[-1].lower() in img_formats] - videos = [x for x in files if x.split('.')[-1].lower() in vid_formats] + images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS] + videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS] ni, nv = len(images), len(videos) self.img_size = img_size @@ -179,7 +178,7 @@ def __init__(self, path, img_size=640, stride=32): else: self.cap = None assert self.nf > 0, f'No images or videos found in {p}. ' \ - f'Supported formats are:\nimages: {img_formats}\nvideos: {vid_formats}' + f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}' def __iter__(self): self.count = 0 @@ -389,11 +388,11 @@ def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, r # f += [p.parent / x.lstrip(os.sep) for x in t] # local to global path (pathlib) else: raise Exception(f'{prefix}{p} does not exist') - self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in img_formats]) + self.img_files = sorted([x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS]) # self.img_files = sorted([x for x in f if x.suffix[1:].lower() in img_formats]) # pathlib assert self.img_files, f'{prefix}No images found' except Exception as e: - raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {help_url}') + raise Exception(f'{prefix}Error loading data from {path}: {e}\nSee {HELP_URL}') # Check cache self.label_files = img2label_paths(self.img_files) # labels @@ -411,7 +410,7 @@ def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, r tqdm(None, desc=prefix + d, total=n, initial=n) # display cache results if cache['msgs']: logging.info('\n'.join(cache['msgs'])) # display warnings - assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {help_url}' + assert nf > 0 or not augment, f'{prefix}No labels in {cache_path}. Can not train without labels. See {HELP_URL}' # Read cache [cache.pop(k) for k in ('hash', 'version', 'msgs')] # remove items @@ -460,7 +459,7 @@ def __init__(self, path, img_size=640, batch_size=16, augment=False, hyp=None, r if cache_images: gb = 0 # Gigabytes of cached images self.img_hw0, self.img_hw = [None] * n, [None] * n - results = ThreadPool(num_threads).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) + results = ThreadPool(NUM_THREADS).imap(lambda x: load_image(*x), zip(repeat(self), range(n))) pbar = tqdm(enumerate(results), total=n) for i, x in pbar: self.imgs[i], self.img_hw0[i], self.img_hw[i] = x # img, hw_original, hw_resized = load_image(self, i) @@ -473,7 +472,7 @@ def cache_labels(self, path=Path('./labels.cache'), prefix=''): x = {} # dict nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..." - with Pool(num_threads) as pool: + with Pool(NUM_THREADS) as pool: pbar = tqdm(pool.imap_unordered(verify_image_label, zip(self.img_files, self.label_files, repeat(prefix))), desc=desc, total=len(self.img_files)) for im_file, l, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar: @@ -491,7 +490,7 @@ def cache_labels(self, path=Path('./labels.cache'), prefix=''): if msgs: logging.info('\n'.join(msgs)) if nf == 0: - logging.info(f'{prefix}WARNING: No labels found in {path}. See {help_url}') + logging.info(f'{prefix}WARNING: No labels found in {path}. See {HELP_URL}') x['hash'] = get_hash(self.label_files + self.img_files) x['results'] = nf, nm, ne, nc, len(self.img_files) x['msgs'] = msgs # warnings @@ -789,7 +788,7 @@ def extract_boxes(path='../datasets/coco128'): # from utils.datasets import *; files = list(path.rglob('*.*')) n = len(files) # number of files for im_file in tqdm(files, total=n): - if im_file.suffix[1:] in img_formats: + if im_file.suffix[1:] in IMG_FORMATS: # image im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB h, w = im.shape[:2] @@ -825,7 +824,7 @@ def autosplit(path='../datasets/coco128/images', weights=(0.9, 0.1, 0.0), annota annotated_only: Only use images with an annotated txt file """ path = Path(path) # images dir - files = sum([list(path.rglob(f"*.{img_ext}")) for img_ext in img_formats], []) # image files only + files = sum([list(path.rglob(f"*.{img_ext}")) for img_ext in IMG_FORMATS], []) # image files only n = len(files) # number of files random.seed(0) # for reproducibility indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split @@ -850,7 +849,7 @@ def verify_image_label(args): im.verify() # PIL verify shape = exif_size(im) # image size assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels' - assert im.format.lower() in img_formats, f'invalid image format {im.format}' + assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}' if im.format.lower() in ('jpg', 'jpeg'): with open(im_file, 'rb') as f: f.seek(-2, 2) diff --git a/utils/torch_utils.py b/utils/torch_utils.py index 36b6845a8c4..d86267b2635 100644 --- a/utils/torch_utils.py +++ b/utils/torch_utils.py @@ -22,7 +22,7 @@ import thop # for FLOPs computation except ImportError: thop = None -logger = logging.getLogger(__name__) +LOGGER = logging.getLogger(__name__) @contextmanager @@ -85,11 +85,11 @@ def select_device(device='', batch_size=None): else: s += 'CPU\n' - logger.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe + LOGGER.info(s.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else s) # emoji-safe return torch.device('cuda:0' if cuda else 'cpu') -def time_synchronized(): +def time_sync(): # pytorch-accurate time if torch.cuda.is_available(): torch.cuda.synchronize() @@ -118,12 +118,12 @@ def profile(x, ops, n=100, device=None): flops = 0 for _ in range(n): - t[0] = time_synchronized() + t[0] = time_sync() y = m(x) - t[1] = time_synchronized() + t[1] = time_sync() try: _ = y.sum().backward() - t[2] = time_synchronized() + t[2] = time_sync() except: # no backward method t[2] = float('nan') dtf += (t[1] - t[0]) * 1000 / n # ms per op forward @@ -231,7 +231,7 @@ def model_info(model, verbose=False, img_size=640): except (ImportError, Exception): fs = '' - logger.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}") + LOGGER.info(f"Model Summary: {len(list(model.modules()))} layers, {n_p} parameters, {n_g} gradients{fs}") def load_classifier(name='resnet101', n=2): diff --git a/utils/wandb_logging/wandb_utils.py b/utils/wandb_logging/wandb_utils.py index 2adea9235f6..a7e84ca100e 100644 --- a/utils/wandb_logging/wandb_utils.py +++ b/utils/wandb_logging/wandb_utils.py @@ -98,7 +98,14 @@ class WandbLogger(): def __init__(self, opt, name, run_id, data_dict, job_type='Training'): # Pre-training routine -- self.job_type = job_type - self.wandb, self.wandb_run, self.data_dict = wandb, None if not wandb else wandb.run, data_dict + self.wandb, self.wandb_run = wandb, None if not wandb else wandb.run + self.val_artifact, self.train_artifact = None, None + self.train_artifact_path, self.val_artifact_path = None, None + self.result_artifact = None + self.val_table, self.result_table = None, None + self.data_dict = data_dict + self.bbox_media_panel_images = [] + self.val_table_path_map = None # It's more elegant to stick to 1 wandb.init call, but useful config data is overwritten in the WandbLogger's wandb.init call if isinstance(opt.resume, str): # checks resume from artifact if opt.resume.startswith(WANDB_ARTIFACT_PREFIX): @@ -156,25 +163,27 @@ def setup_training(self, opt, data_dict): self.weights), config.save_period, config.batch_size, config.bbox_interval, config.epochs, \ config.opt['hyp'] data_dict = dict(self.wandb_run.config.data_dict) # eliminates the need for config file to resume - if 'val_artifact' not in self.__dict__: # If --upload_dataset is set, use the existing artifact, don't download + if self.val_artifact is None: # If --upload_dataset is set, use the existing artifact, don't download self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(data_dict.get('train'), opt.artifact_alias) self.val_artifact_path, self.val_artifact = self.download_dataset_artifact(data_dict.get('val'), opt.artifact_alias) - self.result_artifact, self.result_table, self.val_table, self.weights = None, None, None, None - if self.train_artifact_path is not None: - train_path = Path(self.train_artifact_path) / 'data/images/' - data_dict['train'] = str(train_path) - if self.val_artifact_path is not None: - val_path = Path(self.val_artifact_path) / 'data/images/' - data_dict['val'] = str(val_path) - self.val_table = self.val_artifact.get("val") - self.map_val_table_path() - wandb.log({"validation dataset": self.val_table}) - + + if self.train_artifact_path is not None: + train_path = Path(self.train_artifact_path) / 'data/images/' + data_dict['train'] = str(train_path) + if self.val_artifact_path is not None: + val_path = Path(self.val_artifact_path) / 'data/images/' + data_dict['val'] = str(val_path) + + if self.val_artifact is not None: self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation") self.result_table = wandb.Table(["epoch", "id", "ground truth", "prediction", "avg_confidence"]) + self.val_table = self.val_artifact.get("val") + if self.val_table_path_map is None: + self.map_val_table_path() + wandb.log({"validation dataset": self.val_table}) if opt.bbox_interval == -1: self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1 return data_dict @@ -182,7 +191,7 @@ def setup_training(self, opt, data_dict): def download_dataset_artifact(self, path, alias): if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX): artifact_path = Path(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias) - dataset_artifact = wandb.use_artifact(artifact_path.as_posix().replace("\\","/")) + dataset_artifact = wandb.use_artifact(artifact_path.as_posix().replace("\\", "/")) assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'" datadir = dataset_artifact.download() return datadir, dataset_artifact @@ -246,10 +255,10 @@ def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config= return path def map_val_table_path(self): - self.val_table_map = {} + self.val_table_path_map = {} print("Mapping dataset") for i, data in enumerate(tqdm(self.val_table.data)): - self.val_table_map[data[3]] = data[0] + self.val_table_path_map[data[3]] = data[0] def create_dataset_table(self, dataset, class_to_id, name='dataset'): # TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging @@ -283,7 +292,6 @@ def create_dataset_table(self, dataset, class_to_id, name='dataset'): return artifact def log_training_progress(self, predn, path, names): - if self.val_table and self.result_table: class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()]) box_data = [] total_conf = 0 @@ -297,7 +305,7 @@ def log_training_progress(self, predn, path, names): "domain": "pixel"}) total_conf = total_conf + conf boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space - id = self.val_table_map[Path(path).name] + id = self.val_table_path_map[Path(path).name] self.result_table.add_data(self.current_epoch, id, self.val_table.data[id][1], @@ -305,6 +313,22 @@ def log_training_progress(self, predn, path, names): total_conf / max(1, len(box_data)) ) + def val_one_image(self, pred, predn, path, names, im): + if self.val_table and self.result_table: # Log Table if Val dataset is uploaded as artifact + self.log_training_progress(predn, path, names) + else: # Default to bbox media panelif Val artifact not found + log_imgs = min(self.log_imgs, 100) + if len(self.bbox_media_panel_images) < log_imgs and self.current_epoch > 0: + if self.current_epoch % self.bbox_interval == 0: + box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]}, + "class_id": int(cls), + "box_caption": "%s %.3f" % (names[cls], conf), + "scores": {"class_score": conf}, + "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()] + boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space + self.bbox_media_panel_images.append(wandb.Image(im, boxes=boxes, caption=path.name)) + + def log(self, log_dict): if self.wandb_run: for key, value in log_dict.items(): @@ -313,13 +337,16 @@ def log(self, log_dict): def end_epoch(self, best_result=False): if self.wandb_run: with all_logging_disabled(): + if self.bbox_media_panel_images: + self.log_dict["Bounding Box Debugger/Images"] = self.bbox_media_panel_images wandb.log(self.log_dict) self.log_dict = {} + self.bbox_media_panel_images = [] if self.result_artifact: self.result_artifact.add(self.result_table, 'result') wandb.log_artifact(self.result_artifact, aliases=['latest', 'last', 'epoch ' + str(self.current_epoch), ('best' if best_result else '')]) - + wandb.log({"evaluation": self.result_table}) self.result_table = wandb.Table(["epoch", "id", "ground truth", "prediction", "avg_confidence"]) self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation") diff --git a/val.py b/val.py index fa5cb8f113e..5a848672057 100644 --- a/val.py +++ b/val.py @@ -25,7 +25,52 @@ box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr from utils.metrics import ap_per_class, ConfusionMatrix from utils.plots import plot_images, output_to_target, plot_study_txt -from utils.torch_utils import select_device, time_synchronized +from utils.torch_utils import select_device, time_sync + + +def save_one_txt(predn, save_conf, shape, file): + # Save one txt result + gn = torch.tensor(shape)[[1, 0, 1, 0]] # normalization gain whwh + for *xyxy, conf, cls in predn.tolist(): + xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh + line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format + with open(file, 'a') as f: + f.write(('%g ' * len(line)).rstrip() % line + '\n') + + +def save_one_json(predn, jdict, path, class_map): + # Save one JSON result {"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236} + image_id = int(path.stem) if path.stem.isnumeric() else path.stem + box = xyxy2xywh(predn[:, :4]) # xywh + box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner + for p, b in zip(predn.tolist(), box.tolist()): + jdict.append({'image_id': image_id, + 'category_id': class_map[int(p[5])], + 'bbox': [round(x, 3) for x in b], + 'score': round(p[4], 5)}) + + +def process_batch(predictions, labels, iouv): + # Evaluate 1 batch of predictions + correct = torch.zeros(predictions.shape[0], len(iouv), dtype=torch.bool, device=iouv.device) + detected = [] # label indices + tcls, pcls = labels[:, 0], predictions[:, 5] + nl = labels.shape[0] # number of labels + for cls in torch.unique(tcls): + ti = (cls == tcls).nonzero().view(-1) # label indices + pi = (cls == pcls).nonzero().view(-1) # prediction indices + if pi.shape[0]: # find detections + ious, i = box_iou(predictions[pi, 0:4], labels[ti, 1:5]).max(1) # best ious, indices + detected_set = set() + for j in (ious > iouv[0]).nonzero(): + d = ti[i[j]] # detected label + if d.item() not in detected_set: + detected_set.add(d.item()) + detected.append(d) # append detections + correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn + if len(detected) == nl: # all labels already located in image + break + return correct @torch.no_grad() @@ -43,7 +88,7 @@ def run(data, save_txt=False, # save results to *.txt save_hybrid=False, # save label+prediction hybrid results to *.txt save_conf=False, # save confidences in --save-txt labels - save_json=False, # save a cocoapi-compatible JSON results file + save_json=False, # save a COCO-JSON results file project='runs/val', # save to project/name name='exp', # save to project/name exist_ok=False, # existing project/name ok, do not increment @@ -93,10 +138,6 @@ def run(data, iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for mAP@0.5:0.95 niou = iouv.numel() - # Logging - log_imgs = 0 - if wandb_logger and wandb_logger.wandb: - log_imgs = min(wandb_logger.log_imgs, 100) # Dataloader if not training: if device.type != 'cpu': @@ -108,24 +149,24 @@ def run(data, seen = 0 confusion_matrix = ConfusionMatrix(nc=nc) names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)} - coco91class = coco80_to_coco91_class() + class_map = coco80_to_coco91_class() if is_coco else list(range(1000)) s = ('%20s' + '%11s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95') p, r, f1, mp, mr, map50, map, t0, t1, t2 = 0., 0., 0., 0., 0., 0., 0., 0., 0., 0. loss = torch.zeros(3, device=device) - jdict, stats, ap, ap_class, wandb_images = [], [], [], [], [] + jdict, stats, ap, ap_class = [], [], [], [] for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)): - t_ = time_synchronized() + t_ = time_sync() img = img.to(device, non_blocking=True) img = img.half() if half else img.float() # uint8 to fp16/32 img /= 255.0 # 0 - 255 to 0.0 - 1.0 targets = targets.to(device) nb, _, height, width = img.shape # batch size, channels, height, width - t = time_synchronized() + t = time_sync() t0 += t - t_ # Run model out, train_out = model(img, augment=augment) # inference and training outputs - t1 += time_synchronized() - t + t1 += time_sync() - t # Compute loss if compute_loss: @@ -134,16 +175,16 @@ def run(data, # Run NMS targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling - t = time_synchronized() + t = time_sync() out = non_max_suppression(out, conf_thres, iou_thres, labels=lb, multi_label=True, agnostic=single_cls) - t2 += time_synchronized() - t + t2 += time_sync() - t # Statistics per image for si, pred in enumerate(out): labels = targets[targets[:, 0] == si, 1:] nl = len(labels) tcls = labels[:, 0].tolist() if nl else [] # target class - path = Path(paths[si]) + path, shape = Path(paths[si]), shapes[si][0] seen += 1 if len(pred) == 0: @@ -155,76 +196,27 @@ def run(data, if single_cls: pred[:, 5] = 0 predn = pred.clone() - scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred + scale_coords(img[si].shape[1:], predn[:, :4], shape, shapes[si][1]) # native-space pred - # Append to text file - if save_txt: - gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh - for *xyxy, conf, cls in predn.tolist(): - xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh - line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format - with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f: - f.write(('%g ' * len(line)).rstrip() % line + '\n') - - # W&B logging - Media Panel plots - if len(wandb_images) < log_imgs and wandb_logger.current_epoch > 0: # Check for test operation - if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0: - box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]}, - "class_id": int(cls), - "box_caption": "%s %.3f" % (names[cls], conf), - "scores": {"class_score": conf}, - "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()] - boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space - wandb_images.append(wandb_logger.wandb.Image(img[si], boxes=boxes, caption=path.name)) - wandb_logger.log_training_progress(predn, path, names) if wandb_logger and wandb_logger.wandb_run else None - - # Append to pycocotools JSON dictionary - if save_json: - # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ... - image_id = int(path.stem) if path.stem.isnumeric() else path.stem - box = xyxy2xywh(predn[:, :4]) # xywh - box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner - for p, b in zip(pred.tolist(), box.tolist()): - jdict.append({'image_id': image_id, - 'category_id': coco91class[int(p[5])] if is_coco else int(p[5]), - 'bbox': [round(x, 3) for x in b], - 'score': round(p[4], 5)}) - - # Assign all predictions as incorrect - correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device) + # Evaluate if nl: - detected = [] # target indices - tcls_tensor = labels[:, 0] - - # target boxes - tbox = xywh2xyxy(labels[:, 1:5]) - scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels + tbox = xywh2xyxy(labels[:, 1:5]) # target boxes + scale_coords(img[si].shape[1:], tbox, shape, shapes[si][1]) # native-space labels + labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels + correct = process_batch(predn, labelsn, iouv) if plots: - confusion_matrix.process_batch(predn, torch.cat((labels[:, 0:1], tbox), 1)) - - # Per target class - for cls in torch.unique(tcls_tensor): - ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # target indices - pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # prediction indices - - # Search for detections - if pi.shape[0]: - # Prediction to target ious - ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices - - # Append detections - detected_set = set() - for j in (ious > iouv[0]).nonzero(as_tuple=False): - d = ti[i[j]] # detected target - if d.item() not in detected_set: - detected_set.add(d.item()) - detected.append(d) - correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn - if len(detected) == nl: # all targets already located in image - break - - # Append statistics (correct, conf, pcls, tcls) - stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) + confusion_matrix.process_batch(predn, labelsn) + else: + correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool) + stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls)) # (correct, conf, pcls, tcls) + + # Save/log + if save_txt: + save_one_txt(predn, save_conf, shape, file=save_dir / 'labels' / (path.stem + '.txt')) + if save_json: + save_one_json(predn, jdict, path, class_map) # append to COCO-JSON dictionary + if wandb_logger: + wandb_logger.val_one_image(pred, predn, path, names, img[si]) # Plot images if plots and batch_i < 3: @@ -264,15 +256,13 @@ def run(data, if wandb_logger and wandb_logger.wandb: val_batches = [wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('val*.jpg'))] wandb_logger.log({"Validation": val_batches}) - if wandb_images: - wandb_logger.log({"Bounding Box Debugger/Images": wandb_images}) # Save JSON if save_json and len(jdict): w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights anno_json = str(Path(data.get('path', '../coco')) / 'annotations/instances_val2017.json') # annotations json pred_json = str(save_dir / f"{w}_predictions.json") # predictions json - print('\nEvaluating pycocotools mAP... saving %s...' % pred_json) + print(f'\nEvaluating pycocotools mAP... saving {pred_json}...') with open(pred_json, 'w') as f: json.dump(jdict, f) @@ -320,7 +310,7 @@ def parse_opt(): parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt') parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') - parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file') + parser.add_argument('--save-json', action='store_true', help='save a COCO-JSON results file') parser.add_argument('--project', default='runs/val', help='save to project/name') parser.add_argument('--name', default='exp', help='save to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')