From 39ef6c7a801eb666dbea5b36c8223517b84d9b81 Mon Sep 17 00:00:00 2001 From: Glenn Jocher Date: Sat, 24 Jul 2021 12:36:07 +0200 Subject: [PATCH] Update README.md (#4134) --- README.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/README.md b/README.md index 7dff1a0efd3..c27fbc6fa63 100755 --- a/README.md +++ b/README.md @@ -224,7 +224,7 @@ We are super excited about our first-ever Ultralytics YOLOv5 🚀 EXPORT Competi * APtest denotes COCO [test-dev2017](http://cocodataset.org/#upload) server results, all other AP results denote val2017 accuracy. * AP values are for single-model single-scale unless otherwise noted. **Reproduce mAP** by `python val.py --data coco.yaml --img 640 --conf 0.001 --iou 0.65` - * SpeedGPU averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and includes FP16 inference, postprocessing and NMS. **Reproduce speed** by `python val.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45` + * SpeedGPU averaged over 5000 COCO val2017 images using a GCP [n1-standard-16](https://cloud.google.com/compute/docs/machine-types#n1_standard_machine_types) V100 instance, and includes FP16 inference, postprocessing and NMS. **Reproduce speed** by `python val.py --data coco.yaml --img 640 --conf 0.25 --iou 0.45 --half` * All checkpoints are trained to 300 epochs with default settings and hyperparameters (no autoaugmentation). * Test Time Augmentation ([TTA](https://github.com/ultralytics/yolov5/issues/303)) includes reflection and scale augmentation. **Reproduce TTA** by `python val.py --data coco.yaml --img 1536 --iou 0.7 --augment`