diff --git a/export.py b/export.py index 0e8e4242f487..2466d2538ee8 100644 --- a/export.py +++ b/export.py @@ -287,7 +287,6 @@ def export_tflite(keras_model, im, file, int8, data, ncalib, prefix=colorstr('Te converter.optimizations = [tf.lite.Optimize.DEFAULT] if int8: from models.tf import representative_dataset_gen - check_requirements(('flatbuffers==1.12',)) # https://github.com/ultralytics/yolov5/issues/5707 dataset = LoadImages(check_dataset(data)['train'], img_size=imgsz, auto=False) # representative data converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib) converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8] @@ -435,6 +434,8 @@ def run(data=ROOT / 'data/coco128.yaml', # 'dataset.yaml path' # TensorFlow Exports if any(tf_exports): pb, tflite, edgetpu, tfjs = tf_exports[1:] + if (tflite or edgetpu) and int8: # TFLite --int8 bug https://github.com/ultralytics/yolov5/issues/5707 + check_requirements(('flatbuffers==1.12',)) # required before `import tensorflow` assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.' model = export_saved_model(model, im, file, dynamic, tf_nms=nms or agnostic_nms or tfjs, agnostic_nms=agnostic_nms or tfjs, topk_per_class=topk_per_class, topk_all=topk_all,