-
-
Notifications
You must be signed in to change notification settings - Fork 3.4k
GCP Quickstart
This quickstart guide 📚 helps new users run YOLOv3 🚀 on a Google Cloud Platform (GCP) Deep Learning Virtual Machine (VM) ⭐. New GCP users are eligible for a $300 free credit offer. Other quickstart options for YOLOv3 include our Colab Notebook and our Docker image at https://hub.docker.com/r/ultralytics/yolov3 .
Select a Deep Learning VM from the GCP marketplace, select an n1-standard-8 instance (with 8 vCPUs and 30 GB memory), add a GPU of your choice, check 'Install NVIDIA GPU driver automatically on first startup?', and select a 300 GB SSD Persistent Disk for sufficient I/O speed, then click 'Deploy'. All dependencies are included in the preinstalled Anaconda Python environment.
Install YOLOv3: Python>=3.6.0 with all requirements.txt installed including PyTorch>=1.7. To get started:
$ git clone https://github.com/ultralytics/yolov3
$ cd yolov3
$ pip install -r requirements.txt
Start training, testing, detecting and exporting YOLOv3 models on your VM!
$ python train.py # train a model
$ python val.py --weights yolov3.pt # validate a model for Precision, Recall and mAP
$ python detect.py --weights yolov3.pt --source path/to/images # run inference on images and videos
$ python export.py --weights yolov3.pt --include onnx coreml tflite # export models to other formats
Add 64GB of swap memory (to --cache
large datasets).
sudo fallocate -l 64G /swapfile
sudo chmod 600 /swapfile
sudo mkswap /swapfile
sudo swapon /swapfile
free -h # check memory
Mount local SSD
lsblk
sudo mkfs.ext4 -F /dev/nvme0n1
sudo mkdir -p /mnt/disks/nvme0n1
sudo mount /dev/nvme0n1 /mnt/disks/nvme0n1
sudo chmod a+w /mnt/disks/nvme0n1
cp -r coco /mnt/disks/nvme0n1
© 2024 Ultralytics Inc. All rights reserved.
https://ultralytics.com