diff --git a/README.md b/README.md
index 6df5f25c29..7087b54f28 100644
--- a/README.md
+++ b/README.md
@@ -25,36 +25,26 @@ We hope that the resources here will help you get the most out of YOLOv3. Please
To request an Enterprise License please complete the form at [Ultralytics Licensing](https://ultralytics.com/license).
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
## YOLOv8 🚀 NEW
-We are thrilled to announce the launch of Ultralytics YOLOv8 🚀, our NEW cutting-edge, state-of-the-art (SOTA) model
-released at **[https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)**.
-YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of
-object detection, image segmentation and image classification tasks.
+We are thrilled to announce the launch of Ultralytics YOLOv8 🚀, our NEW cutting-edge, state-of-the-art (SOTA) model released at **[https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)**. YOLOv8 is designed to be fast, accurate, and easy to use, making it an excellent choice for a wide range of object detection, image segmentation and image classification tasks.
See the [YOLOv8 Docs](https://docs.ultralytics.com) for details and get started with:
@@ -91,8 +81,7 @@ pip install -r requirements.txt # install
Inference
-YOLOv3 [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest
-YOLOv3 [release](https://github.com/ultralytics/yolov5/releases).
+YOLOv3 [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading) inference. [Models](https://github.com/ultralytics/yolov5/tree/master/models) download automatically from the latest YOLOv3 [release](https://github.com/ultralytics/yolov5/releases).
```python
import torch
@@ -115,8 +104,7 @@ results.print() # or .show(), .save(), .crop(), .pandas(), etc.
Inference with detect.py
-`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from
-the latest YOLOv3 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
+`detect.py` runs inference on a variety of sources, downloading [models](https://github.com/ultralytics/yolov5/tree/master/models) automatically from the latest YOLOv3 [release](https://github.com/ultralytics/yolov5/releases) and saving results to `runs/detect`.
```bash
python detect.py --weights yolov5s.pt --source 0 # webcam
@@ -138,11 +126,7 @@ python detect.py --weights yolov5s.pt --source 0 #
The commands below reproduce YOLOv3 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh)
results. [Models](https://github.com/ultralytics/yolov5/tree/master/models)
-and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest
-YOLOv3 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are
-1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training) times faster). Use the
-largest `--batch-size` possible, or pass `--batch-size -1` for
-YOLOv3 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
+and [datasets](https://github.com/ultralytics/yolov5/tree/master/data) download automatically from the latest YOLOv3 [release](https://github.com/ultralytics/yolov5/releases). Training times for YOLOv5n/s/m/l/x are 1/2/4/6/8 days on a V100 GPU ([Multi-GPU](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training) times faster). Use the largest `--batch-size` possible, or pass `--batch-size -1` for YOLOv3 [AutoBatch](https://github.com/ultralytics/yolov5/pull/5092). Batch sizes shown for V100-16GB.
```bash
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml --batch-size 128
@@ -471,26 +455,19 @@ For YOLOv3 bug reports and feature requests please visit [GitHub Issues](https:/
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
[tta]: https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation
diff --git a/README.zh-CN.md b/README.zh-CN.md
index 668119fa70..f1e6b78291 100644
--- a/README.zh-CN.md
+++ b/README.zh-CN.md
@@ -25,33 +25,25 @@ YOLOv3 🚀 是世界上最受欢迎的视觉 AI,代表
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
## YOLOv8 🚀 新品
-我们很高兴宣布 Ultralytics YOLOv8 🚀 的发布,这是我们新推出的领先水平、最先进的(SOTA)模型,发布于 **[https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)**。
-YOLOv8 旨在快速、准确且易于使用,使其成为广泛的物体检测、图像分割和图像分类任务的极佳选择。
+我们很高兴宣布 Ultralytics YOLOv8 🚀 的发布,这是我们新推出的领先水平、最先进的(SOTA)模型,发布于 **[https://github.com/ultralytics/ultralytics](https://github.com/ultralytics/ultralytics)**。 YOLOv8 旨在快速、准确且易于使用,使其成为广泛的物体检测、图像分割和图像分类任务的极佳选择。
请查看 [YOLOv8 文档](https://docs.ultralytics.com)了解详细信息,并开始使用:
@@ -86,8 +78,7 @@ pip install -r requirements.txt # install
推理
-使用 YOLOv3 [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading) 推理。最新 [模型](https://github.com/ultralytics/yolov5/tree/master/models) 将自动的从
-YOLOv3 [release](https://github.com/ultralytics/yolov5/releases) 中下载。
+使用 YOLOv3 [PyTorch Hub](https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading) 推理。最新 [模型](https://github.com/ultralytics/yolov5/tree/master/models) 将自动的从 YOLOv3 [release](https://github.com/ultralytics/yolov5/releases) 中下载。
```python
import torch
@@ -110,8 +101,7 @@ results.print() # or .show(), .save(), .crop(), .pandas(), etc.
使用 detect.py 推理
-`detect.py` 在各种来源上运行推理, [模型](https://github.com/ultralytics/yolov5/tree/master/models) 自动从
-最新的YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) 中下载,并将结果保存到 `runs/detect` 。
+`detect.py` 在各种来源上运行推理, [模型](https://github.com/ultralytics/yolov5/tree/master/models) 自动从 最新的YOLOv5 [release](https://github.com/ultralytics/yolov5/releases) 中下载,并将结果保存到 `runs/detect` 。
```bash
python detect.py --weights yolov5s.pt --source 0 # webcam
@@ -131,12 +121,8 @@ python detect.py --weights yolov5s.pt --source 0 #
训练
-下面的命令重现 YOLOv3 在 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) 数据集上的结果。
-最新的 [模型](https://github.com/ultralytics/yolov5/tree/master/models) 和 [数据集](https://github.com/ultralytics/yolov5/tree/master/data)
-将自动的从 YOLOv3 [release](https://github.com/ultralytics/yolov5/releases) 中下载。
-YOLOv5n/s/m/l/x 在 V100 GPU 的训练时间为 1/2/4/6/8 天( [多GPU](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training) 训练速度更快)。
-尽可能使用更大的 `--batch-size` ,或通过 `--batch-size -1` 实现
-YOLOv3 [自动批处理](https://github.com/ultralytics/yolov5/pull/5092) 。下方显示的 batchsize 适用于 V100-16GB。
+下面的命令重现 YOLOv3 在 [COCO](https://github.com/ultralytics/yolov5/blob/master/data/scripts/get_coco.sh) 数据集上的结果。 最新的 [模型](https://github.com/ultralytics/yolov5/tree/master/models) 和 [数据集](https://github.com/ultralytics/yolov5/tree/master/data)
+将自动的从 YOLOv3 [release](https://github.com/ultralytics/yolov5/releases) 中下载。 YOLOv5n/s/m/l/x 在 V100 GPU 的训练时间为 1/2/4/6/8 天( [多GPU](https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training) 训练速度更快)。 尽可能使用更大的 `--batch-size` ,或通过 `--batch-size -1` 实现 YOLOv3 [自动批处理](https://github.com/ultralytics/yolov5/pull/5092) 。下方显示的 batchsize 适用于 V100-16GB。
```bash
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml --batch-size 128
@@ -251,7 +237,7 @@ YOLOv3 超级容易上手,简单易学。我们优先考虑现实世界的结
-## 实例分割模型 ⭐ 新
+## 实例分割模型 ⭐ 新
我们新的 YOLOv5 [release v7.0](https://github.com/ultralytics/yolov5/releases/v7.0) 实例分割模型是世界上最快和最准确的模型,击败所有当前 [SOTA 基准](https://paperswithcode.com/sota/real-time-instance-segmentation-on-mscoco)。我们使它非常易于训练、验证和部署。更多细节请查看 [发行说明](https://github.com/ultralytics/yolov5/releases/v7.0) 或访问我们的 [YOLOv5 分割 Colab 笔记本](https://github.com/ultralytics/yolov5/blob/master/segment/tutorial.ipynb) 以快速入门。
@@ -466,26 +452,19 @@ Ultralytics 提供两种许可证选项以适应各种使用场景:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
+
[tta]: https://docs.ultralytics.com/yolov5/tutorials/test_time_augmentation