-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
executable file
·48 lines (41 loc) · 1.45 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch
import torch.nn as nn
cfg = [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M',
512, 512, 512, 'M']
class VGG(nn.Module):
def __init__(self):
super(VGG, self).__init__()
self.classifier = nn.Linear(512, 10)
self.features = self._make_layers(cfg)
def forward(self, x):
out = self.features(x)
out = out.view(out.size(0), -1)
out = self.classifier(out)
return out
def _make_layers(self, cfg):
layers = []
in_channels = 3
for x in cfg:
if x == 'M':
layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
else:
layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
nn.BatchNorm2d(x),
nn.ReLU(inplace=True)]
in_channels = x
layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
return nn.Sequential(*layers)
# input --> hidden layer
class VGG2(torch.nn.Module):
def __init__(self, model1, target_layer):
super(VGG2, self).__init__()
features = list(model1.features)
self.features = nn.ModuleList(features).eval()
self.target_layer = int(target_layer)
def forward(self, x):
if self.target_layer == -1:
return x
for ii, model in enumerate(self.features):
x = model(x)
if ii == self.target_layer:
return x