diff --git a/documentation/proc-pages/physics-models/error.txt b/documentation/proc-pages/physics-models/error.txt index f749f06cf..ebc333f88 100644 --- a/documentation/proc-pages/physics-models/error.txt +++ b/documentation/proc-pages/physics-models/error.txt @@ -388,7 +388,7 @@ where \(B_0\) is the axial vacuum toroidal field, and \(\beta\) is defined with respect to the total equilibrium \(\mathbf{B}\)-field \footnote{T. C. Hender et al., `Physics Assessment for the European Reactor Study', AEA Fusion Report AEA FUS 172 (1992)}. The beta -coefficient \(g\) is set using input parameter \texttt{beta_norm_limit_upper}. To apply +coefficient \(g\) is set using input parameter \texttt{beta_norm_max}. To apply the beta limit, constraint equation no. 24 should be turned on with iteration variable no. 36 (\texttt{fbeta_max}). The limit can be applied to either the total plasma beta, in which case switch \texttt{iculbl} @@ -401,7 +401,7 @@ neutral beam components, in which case \texttt{iculbl} should be set to coefficient}{Aspect ratio scaling of beta g coefficient}}\label{aspect-ratio-scaling-of-beta-g-coefficient} Switch \texttt{gtscale} determines whether the beta \(g\) coefficient -\texttt{beta_norm_limit_upper} should scale with aspect ratio +\texttt{beta_norm_max} should scale with aspect ratio (\(\mathtt{gtscale \not= 0}\)), or be fixed at the input value (\texttt{gtscale\ =\ 0\}}). Note that \texttt{gtscale} is over-ridden if \texttt{iprofile} = 1. @@ -568,7 +568,7 @@ profile peaking factor \texttt{alphaj} is consistent with the input values for the safety factor on axis and at the plasma edge (\texttt{q0} and \texttt{q}, respectively), the plasma internal inductance \(l_i\) is consistent with this \texttt{alphaj}, and the beta \(g\) coefficient -\texttt{beta_norm_limit_upper} scales with \(l_i\). +\texttt{beta_norm_max} scales with \(l_i\). It is recommended that current scaling law \texttt{icurr\ =\ 4} is used if \texttt{iprofile\ =\ 1}. Switch \texttt{gtscale} is over-ridden if diff --git a/documentation/proc-pages/physics-models/plasma_beta/plasma_beta.md b/documentation/proc-pages/physics-models/plasma_beta/plasma_beta.md index 5f28e2450..c8e8541b2 100644 --- a/documentation/proc-pages/physics-models/plasma_beta/plasma_beta.md +++ b/documentation/proc-pages/physics-models/plasma_beta/plasma_beta.md @@ -99,7 +99,7 @@ $$\begin{aligned} \end{aligned}$$ where $B_0$ is the axial vacuum toroidal field. The beta -coefficient $g$ is set using input parameter `beta_norm_limit_upper`. To apply the beta limit, +coefficient $g$ is set using input parameter `beta_norm_max`. To apply the beta limit, constraint equation 24 should be turned on with iteration variable 36 (`fbeta_max`). @@ -114,18 +114,18 @@ By default, $\beta$ is defined with respect to the total equilibrium B-field [^2 ### Setting the Beta $g$ Coefficient -Switch `iprofile` determines how the beta $g$ coefficient `beta_norm_limit_upper` should +Switch `iprofile` determines how the beta $g$ coefficient `beta_norm_max` should be calculated. | `iprofile` | Description | | :-: | - | -| 0 | `alphaj`, `rli` and `beta_norm_limit_upper` are inputs. | -| 1 (default) | `alphaj`, `rli` and `beta_norm_limit_upper` are calulcated consistently. `beta_norm_limit_upper` calculated using $g=4l_i$ [^3]. This is only recommended for high aspect ratio tokamaks.| -| 2 | `alphaj` and `rli` are inputs. `beta_norm_limit_upper` calculated using $g=2.7(1+5\epsilon^{3.5})$ (which gives g = 3.0 for aspect ratio = 3) | -| 3 | `alphaj` and `rli` are inputs. `beta_norm_limit_upper` calculated using $g=3.12+3.5\epsilon^{1.7}$ [^4]| -| 4 | `alphaj` and `beta_norm_limit_upper` are inputs. `rli` calculated from elongation [^4]. This is only recommended for spherical tokamaks.| -| 5 | `alphaj` is an input. `rli` calculated from elongation and `beta_norm_limit_upper` calculated using $g=3.12+3.5\epsilon^{1.7}$ [^4]. This is only recommended for spherical tokamaks.| -| 6 | `alphaj` and `c_beta` are inputs. `rli` calculated from elongation and `beta_norm_limit_upper` calculated using $C_{\beta}=(g-3.7)F_p / 12.5-3.5F_p$, where $F_p$ is the pressure peaking and $C_{\beta}$ is the destabilisation papermeter (default 0.5)[^5]. See Section 2.4 of Tholerus et al. (2024) for a more detailed description. This is only recommended for spherical tokamaks .| +| 0 | `alphaj`, `rli` and `beta_norm_max` are inputs. | +| 1 (default) | `alphaj`, `rli` and `beta_norm_max` are calulcated consistently. `beta_norm_max` calculated using $g=4l_i$ [^3]. This is only recommended for high aspect ratio tokamaks.| +| 2 | `alphaj` and `rli` are inputs. `beta_norm_max` calculated using $g=2.7(1+5\epsilon^{3.5})$ (which gives g = 3.0 for aspect ratio = 3) | +| 3 | `alphaj` and `rli` are inputs. `beta_norm_max` calculated using $g=3.12+3.5\epsilon^{1.7}$ [^4]| +| 4 | `alphaj` and `beta_norm_max` are inputs. `rli` calculated from elongation [^4]. This is only recommended for spherical tokamaks.| +| 5 | `alphaj` is an input. `rli` calculated from elongation and `beta_norm_max` calculated using $g=3.12+3.5\epsilon^{1.7}$ [^4]. This is only recommended for spherical tokamaks.| +| 6 | `alphaj` and `c_beta` are inputs. `rli` calculated from elongation and `beta_norm_max` calculated using $C_{\beta}=(g-3.7)F_p / 12.5-3.5F_p$, where $F_p$ is the pressure peaking and $C_{\beta}$ is the destabilisation papermeter (default 0.5)[^5]. See Section 2.4 of Tholerus et al. (2024) for a more detailed description. This is only recommended for spherical tokamaks .| Further details on the calculation of `alphaj` and `rli` is given in [Plasma Current](./plasma_current.md). diff --git a/documentation/proc-pages/physics-models/plasma_current/plasma_current.md b/documentation/proc-pages/physics-models/plasma_current/plasma_current.md index 068ae9979..9e284b1d8 100644 --- a/documentation/proc-pages/physics-models/plasma_current/plasma_current.md +++ b/documentation/proc-pages/physics-models/plasma_current/plasma_current.md @@ -556,7 +556,7 @@ $$ A limited degree of self-consistency between the plasma current profile and other parameters can be enforced by setting switch `iprofile = 1`. This sets the current -profile peaking factor $\alpha_J$ (`alphaj`), the normalised internal inductance $l_i$ (`rli`) and beta limit $g$-factor (`beta_norm_limit_upper`) using the +profile peaking factor $\alpha_J$ (`alphaj`), the normalised internal inductance $l_i$ (`rli`) and beta limit $g$-factor (`beta_norm_max`) using the safety factor on axis `q0` and the cylindrical safety factor $q_*$ (`qstar`): $$\begin{aligned} diff --git a/examples/data/csv_output_large_tokamak_MFILE.DAT b/examples/data/csv_output_large_tokamak_MFILE.DAT index 60f62a6fc..d9a0b2bd1 100644 --- a/examples/data/csv_output_large_tokamak_MFILE.DAT +++ b/examples/data/csv_output_large_tokamak_MFILE.DAT @@ -353,7 +353,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 3.2509E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 4.1770E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.7593E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.7593E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.5527E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.9150E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 3.0013E+00 @@ -1559,7 +1559,7 @@ alphan = 1.00 alphat = 1.45 * (troyon-like) coefficient for beta scaling -beta_norm_limit_upper = 3.0 +beta_norm_max = 3.0 * Zohm elongation scaling adjustment factor (ishape=2; 3) fkzohm = 1.02 diff --git a/examples/data/large_tokamak_1_MFILE.DAT b/examples/data/large_tokamak_1_MFILE.DAT index 418c34894..2540f8689 100644 --- a/examples/data/large_tokamak_1_MFILE.DAT +++ b/examples/data/large_tokamak_1_MFILE.DAT @@ -354,7 +354,7 @@ Thermal_toroidal_physics_variables.beta_(=_beta-exp)____________________ ______________________________ 3.0215E-02 OP 2nd_stability_physics_variables.beta_:_beta_p_/_(R/a)___________________ (eps*beta_poloidal)___________________ 4.2857E-01 2nd_stability_physics_variables.beta_upper_limit________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.9099E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.9099E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.4977E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.8562E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.9330E+00 @@ -1553,7 +1553,7 @@ alphan = 1.00 alphat = 1.45 * (troyon-like) coefficient for beta scaling -beta_norm_limit_upper = 3.0 +beta_norm_max = 3.0 * Zohm elongation scaling adjustment factor (ishape=2; 3) fkzohm = 1.02 diff --git a/examples/data/large_tokamak_2_MFILE.DAT b/examples/data/large_tokamak_2_MFILE.DAT index df8af1056..146c649b6 100644 --- a/examples/data/large_tokamak_2_MFILE.DAT +++ b/examples/data/large_tokamak_2_MFILE.DAT @@ -354,7 +354,7 @@ Thermal_toroidal_physics_variables.beta_(=_beta-exp)____________________ ______________________________ 3.0215E-02 OP 2nd_stability_physics_variables.beta_:_beta_p_/_(R/a)___________________ (eps*beta_poloidal)___________________ 4.2857E-01 2nd_stability_physics_variables.beta_upper_limit________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.9099E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.9099E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.4977E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.8562E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.9330E+00 @@ -1553,7 +1553,7 @@ alphan = 1.00 alphat = 1.45 * (troyon-like) coefficient for beta scaling -beta_norm_limit_upper = 3.0 +beta_norm_max = 3.0 * Zohm elongation scaling adjustment factor (ishape=2; 3) fkzohm = 1.02 diff --git a/examples/data/large_tokamak_3_MFILE.DAT b/examples/data/large_tokamak_3_MFILE.DAT index 7e48f5a8e..1d9d04a31 100644 --- a/examples/data/large_tokamak_3_MFILE.DAT +++ b/examples/data/large_tokamak_3_MFILE.DAT @@ -354,7 +354,7 @@ Thermal_toroidal_physics_variables.beta_(=_beta-exp)____________________ ______________________________ 3.0215E-02 OP 2nd_stability_physics_variables.beta_:_beta_p_/_(R/a)___________________ (eps*beta_poloidal)___________________ 4.2857E-01 2nd_stability_physics_variables.beta_upper_limit________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.9099E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.9099E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.4977E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.8562E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.9330E+00 @@ -1553,7 +1553,7 @@ alphan = 1.00 alphat = 1.45 * (troyon-like) coefficient for beta scaling -beta_norm_limit_upper = 3.0 +beta_norm_max = 3.0 * Zohm elongation scaling adjustment factor (ishape=2; 3) fkzohm = 1.02 diff --git a/examples/data/large_tokamak_4_MFILE.DAT b/examples/data/large_tokamak_4_MFILE.DAT index 32373b73e..f3a1ee2db 100644 --- a/examples/data/large_tokamak_4_MFILE.DAT +++ b/examples/data/large_tokamak_4_MFILE.DAT @@ -354,7 +354,7 @@ Thermal_toroidal_physics_variables.beta_(=_beta-exp)____________________ ______________________________ 3.0215E-02 OP 2nd_stability_physics_variables.beta_:_beta_p_/_(R/a)___________________ (eps*beta_poloidal)___________________ 4.2857E-01 2nd_stability_physics_variables.beta_upper_limit________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.9099E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.9099E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.4977E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.8562E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.9330E+00 @@ -1553,7 +1553,7 @@ alphan = 1.00 alphat = 1.45 * (troyon-like) coefficient for beta scaling -beta_norm_limit_upper = 3.0 +beta_norm_max = 3.0 * Zohm elongation scaling adjustment factor (ishape=2; 3) fkzohm = 1.02 diff --git a/examples/data/large_tokamak_IN.DAT b/examples/data/large_tokamak_IN.DAT index b93c418e7..3e660eb2b 100644 --- a/examples/data/large_tokamak_IN.DAT +++ b/examples/data/large_tokamak_IN.DAT @@ -363,7 +363,7 @@ alphan = 1.00 alphat = 1.45 * (troyon-like) coefficient for beta scaling -beta_norm_limit_upper = 3.0 +beta_norm_max = 3.0 * Zohm elongation scaling adjustment factor (ishape=2; 3) fkzohm = 1.02 diff --git a/examples/data/scan_MFILE.DAT b/examples/data/scan_MFILE.DAT index 4e62363ba..51e9c184c 100644 --- a/examples/data/scan_MFILE.DAT +++ b/examples/data/scan_MFILE.DAT @@ -209,7 +209,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 2.7211E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 3.8969E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.8522E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.8522E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.2870E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.6474E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.7164E+00 @@ -1204,7 +1204,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 2.7211E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 3.8969E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.8522E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.8522E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.2870E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.6474E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.7164E+00 @@ -2199,7 +2199,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 2.7211E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 3.8969E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.8522E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.8522E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.2870E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.6474E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.7164E+00 @@ -3194,7 +3194,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 2.7211E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 3.8969E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.8522E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.8522E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.2870E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.6474E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.7164E+00 @@ -4189,7 +4189,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 2.7211E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 3.8969E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.8522E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.8522E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.2870E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.6474E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.7164E+00 @@ -5184,7 +5184,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 2.7211E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 3.8969E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.8522E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.8522E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.2870E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.6474E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.7164E+00 @@ -6179,7 +6179,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 2.7211E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 3.8969E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.8522E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.8522E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.2870E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.6474E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.7164E+00 @@ -7174,7 +7174,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 2.7211E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 3.8969E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.8522E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.8522E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.2870E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.6474E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.7164E+00 @@ -8169,7 +8169,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 2.7211E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 3.8969E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.8522E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.8522E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.2870E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.6474E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.7164E+00 @@ -9233,7 +9233,7 @@ alphan = 1.00 * Density profile index alphat = 1.45 * Temperature profile index aspect = 3.1 * Aspect ratio (iteration variable 1) dene = 7.983e+19 * Electron density (/m3) (iteration variable 6) -beta_norm_limit_upper = 3.0 * (troyon-like) coefficient for beta scaling; +beta_norm_max = 3.0 * (troyon-like) coefficient for beta scaling; fkzohm = 1.0245 * Zohm elongation scaling adjustment factor (ishape=2; 3) fvsbrnni = 0.4434 * Fraction of the plasma current produced by gamma = 0.3 * Ejima coefficient for resistive startup v-s formula diff --git a/examples/data/scan_example_file_IN.DAT b/examples/data/scan_example_file_IN.DAT index d4091602b..a55a320bc 100644 --- a/examples/data/scan_example_file_IN.DAT +++ b/examples/data/scan_example_file_IN.DAT @@ -363,7 +363,7 @@ alphan = 1.00 alphat = 1.45 * (troyon-like) coefficient for beta scaling -beta_norm_limit_upper = 3.0 +beta_norm_max = 3.0 * Zohm elongation scaling adjustment factor (ishape=2; 3) fkzohm = 1.02 diff --git a/process/io/plot_radial_build.py b/process/io/plot_radial_build.py index 027c24a48..09a708ddc 100644 --- a/process/io/plot_radial_build.py +++ b/process/io/plot_radial_build.py @@ -159,7 +159,7 @@ def main(args=None): "fqval", "te", "boundu(15)", - "beta_norm_limit_upper", + "beta_norm_max", "bootstrap_current_fraction_max", "boundu(10)", "fiooic", diff --git a/process/io/plot_scans.py b/process/io/plot_scans.py index b67d18338..72620f366 100644 --- a/process/io/plot_scans.py +++ b/process/io/plot_scans.py @@ -217,7 +217,7 @@ def main(args=None): nsweep_dict[8] = "fqval" nsweep_dict[9] = "te" nsweep_dict[10] = "boundu(15)" - nsweep_dict[11] = "beta_norm_limit_upper" + nsweep_dict[11] = "beta_norm_max" nsweep_dict[12] = "bootstrap_current_fraction_max" nsweep_dict[13] = "boundu(10)" nsweep_dict[14] = "fiooic" diff --git a/process/physics.py b/process/physics.py index c3e430ac4..6c6b7b313 100644 --- a/process/physics.py +++ b/process/physics.py @@ -139,15 +139,15 @@ def vscalc( @nb.jit(nopython=True, cache=True) def calculate_beta_limit( - bt: float, beta_norm_limit_upper: float, plasma_current: float, rminor: float + bt: float, beta_norm_max: float, plasma_current: float, rminor: float ) -> float: """ Calculate the beta scaling limit. :param bt: Toroidal B-field on plasma axis [T]. :type bt: float - :param beta_norm_limit_upper: Troyon-like g coefficient. - :type beta_norm_limit_upper: float + :param beta_norm_max: Troyon-like g coefficient. + :type beta_norm_max: float :param plasma_current: Plasma current [A]. :type plasma_current: float :param rminor: Plasma minor axis [m]. @@ -165,7 +165,7 @@ def calculate_beta_limit( - If i_beta_component = 2, then the limit is applied to the thermal + neutral beam beta components. - If i_beta_component = 3, then the limit is applied to the toroidal beta. - - The default value for the g coefficient is beta_norm_limit_upper = 3.5. + - The default value for the g coefficient is beta_norm_max = 3.5. References: - F. Troyon et.al, “Beta limit in tokamaks. Experimental and computational status,” @@ -177,7 +177,7 @@ def calculate_beta_limit( """ # Multiplied by 0.01 to convert from % to fraction - return 0.01 * beta_norm_limit_upper * (plasma_current / 1.0e6) / (rminor * bt) + return 0.01 * beta_norm_max * (plasma_current / 1.0e6) / (rminor * bt) # ----------------------------------------------------- @@ -2328,20 +2328,20 @@ def physics(self): if physics_variables.iprofile == 1: # Relation between physics_variables.beta limit and plasma internal inductance # Hartmann and Zohm - physics_variables.beta_norm_limit_upper = 4.0e0 * physics_variables.rli + physics_variables.beta_norm_max = 4.0e0 * physics_variables.rli if physics_variables.iprofile == 2: # Original scaling law - physics_variables.beta_norm_limit_upper = 2.7e0 * ( + physics_variables.beta_norm_max = 2.7e0 * ( 1.0e0 + 5.0e0 * physics_variables.eps**3.5e0 ) if physics_variables.iprofile == 3 or physics_variables.iprofile == 5: - # physics_variables.beta_norm_limit_upper found from physics_variables.aspect ratio scaling on p32 of Menard: + # physics_variables.beta_norm_max found from physics_variables.aspect ratio scaling on p32 of Menard: # Menard, et al. "Fusion Nuclear Science Facilities # and Pilot Plants Based on the Spherical Tokamak." # Nucl. Fusion, 2016, 44. - physics_variables.beta_norm_limit_upper = ( + physics_variables.beta_norm_max = ( 3.12e0 + 3.5e0 * physics_variables.eps**1.7e0 ) @@ -2351,14 +2351,14 @@ def physics(self): Fp = (physics_variables.ne0 * physics_variables.te0) / ( physics_variables.dene * physics_variables.te ) - physics_variables.beta_norm_limit_upper = 3.7e0 + ( + physics_variables.beta_norm_max = 3.7e0 + ( (physics_variables.c_beta / Fp) * (12.5e0 - 3.5e0 * Fp) ) # calculate_beta_limit() returns the beta_max for beta physics_variables.beta_max = calculate_beta_limit( physics_variables.bt, - physics_variables.beta_norm_limit_upper, + physics_variables.beta_norm_max, physics_variables.plasma_current, physics_variables.rminor, ) @@ -3009,12 +3009,12 @@ def calculate_plasma_current( 8 = Sauter scaling (allowing negative triangularity) 9 = FIESTA ST scaling iprofile (int): Switch for current profile consistency. - 0: Use input values for alphaj, rli, beta_norm_limit_upper. + 0: Use input values for alphaj, rli, beta_norm_max. 1: Make these consistent with input q, q_0 values. - 2: Use input values for alphaj, rli. Scale beta_norm_limit_upper with aspect ratio (original scaling). - 3: Use input values for alphaj, rli. Scale beta_norm_limit_upper with aspect ratio (Menard scaling). - 4: Use input values for alphaj, beta_norm_limit_upper. Set rli from elongation (Menard scaling). - 5: Use input value for alphaj. Set rli and beta_norm_limit_upper from Menard scaling. + 2: Use input values for alphaj, rli. Scale beta_norm_max with aspect ratio (original scaling). + 3: Use input values for alphaj, rli. Scale beta_norm_max with aspect ratio (Menard scaling). + 4: Use input values for alphaj, beta_norm_max. Set rli from elongation (Menard scaling). + 5: Use input value for alphaj. Set rli and beta_norm_max from Menard scaling. kappa (float): Plasma elongation. kappa95 (float): Plasma elongation at 95% surface. p0 (float): Central plasma pressure (Pa). @@ -3470,12 +3470,12 @@ def outplas(self): if physics_variables.iprofile == 1: po.ocmmnt( self.outfile, - "Consistency between q0,q,alphaj,rli,beta_norm_limit_upper is enforced", + "Consistency between q0,q,alphaj,rli,beta_norm_max is enforced", ) else: po.ocmmnt( self.outfile, - "Consistency between q0,q,alphaj,rli,beta_norm_limit_upper is not enforced", + "Consistency between q0,q,alphaj,rli,beta_norm_max is not enforced", ) po.oblnkl(self.outfile) @@ -3693,16 +3693,16 @@ def outplas(self): po.ovarrf( self.outfile, "Beta g coefficient", - "(beta_norm_limit_upper)", - physics_variables.beta_norm_limit_upper, + "(beta_norm_max)", + physics_variables.beta_norm_max, "OP ", ) else: po.ovarrf( self.outfile, "Beta g coefficient", - "(beta_norm_limit_upper)", - physics_variables.beta_norm_limit_upper, + "(beta_norm_max)", + physics_variables.beta_norm_max, ) po.ovarrf( self.outfile, diff --git a/source/fortran/input.f90 b/source/fortran/input.f90 index c335b3d3b..d04d3b300 100644 --- a/source/fortran/input.f90 +++ b/source/fortran/input.f90 @@ -306,7 +306,7 @@ subroutine parse_input_file(in_file,out_file,show_changes) use physics_variables, only: ipedestal, taumax, i_single_null, fvsbrnni, & rhopedt, cvol, f_deuterium, ffwal, i_beta_component, itartpf, ilhthresh, & fpdivlim, beta_poloidal_eps_max, isc, kappa95, aspect, cwrmax, nesep, c_beta, csawth, dene, & - ftar, plasma_res_factor, ssync, rnbeam, beta, neped, hfact, beta_norm_limit_upper, & + ftar, plasma_res_factor, ssync, rnbeam, beta, neped, hfact, beta_norm_max, & fgwsep, rhopedn, tratio, q0, ishape, fne0, ignite, f_tritium, & i_beta_fast_alpha, tauee_in, alphaj, alphat, i_plasma_current, q, ti, tesep, rli, triang, & itart, ralpne, iprofile, triang95, rad_fraction_sol, betbm0, protium, & @@ -566,8 +566,8 @@ subroutine parse_input_file(in_file,out_file,show_changes) case ('dene') call parse_real_variable('dene', dene, 1.0D18, 1.0D22, & 'Electron density (/m3)') - case ('beta_norm_limit_upper') - call parse_real_variable('beta_norm_limit_upper', beta_norm_limit_upper, 0.0D0, 20.0D0, & + case ('beta_norm_max') + call parse_real_variable('beta_norm_max', beta_norm_max, 0.0D0, 20.0D0, & 'beta coefficient') case ('beta_poloidal_eps_max') call parse_real_variable('beta_poloidal_eps_max', beta_poloidal_eps_max, 0.01D0, 10.0D0, & diff --git a/source/fortran/physics_variables.f90 b/source/fortran/physics_variables.f90 index 8af1d1ccf..ee1bf83d8 100644 --- a/source/fortran/physics_variables.f90 +++ b/source/fortran/physics_variables.f90 @@ -153,7 +153,7 @@ module physics_variables real(dp) :: beam_density_out !! hot beam ion density from calculation (/m3) - real(dp) :: beta_norm_limit_upper + real(dp) :: beta_norm_max !! Troyon-like coefficient for beta scaling real(dp) :: dnelimt @@ -398,13 +398,13 @@ module physics_variables integer :: iprofile !! switch for current profile consistency: !! - !! - =0 use input values for alphaj, rli, beta_norm_limit_upper + !! - =0 use input values for alphaj, rli, beta_norm_max !! - =1 make these consistent with input q, q_0 values (recommend `i_plasma_current=4` with this option) - !! - =2 use input values for alphaj, rli. Scale beta_norm_limit_upper with aspect ratio (original scaling) - !! - =3 use input values for alphaj, rli. Scale beta_norm_limit_upper with aspect ratio (Menard scaling) - !! - =4 use input values for alphaj, beta_norm_limit_upper. Set rli from elongation (Menard scaling) - !! - =5 use input value for alphaj. Set rli and beta_norm_limit_upper from Menard scaling - !! - =6 use input values for alphaj, c_beta. Set rli from Menard and beta_norm_limit_upper from Tholerus + !! - =2 use input values for alphaj, rli. Scale beta_norm_max with aspect ratio (original scaling) + !! - =3 use input values for alphaj, rli. Scale beta_norm_max with aspect ratio (Menard scaling) + !! - =4 use input values for alphaj, beta_norm_max. Set rli from elongation (Menard scaling) + !! - =5 use input value for alphaj. Set rli and beta_norm_max from Menard scaling + !! - =6 use input values for alphaj, c_beta. Set rli from Menard and beta_norm_max from Tholerus integer :: iradloss !! switch for radiation loss term usage in power balance (see User Guide): @@ -979,7 +979,7 @@ subroutine init_physics_variables dnalp = 0.0D0 dnbeam = 0.0D0 beam_density_out = 0.0D0 - beta_norm_limit_upper = 3.5D0 + beta_norm_max = 3.5D0 dnelimt = 0.0D0 dnitot = 0.0D0 dnla = 0.0D0 diff --git a/source/fortran/scan.f90 b/source/fortran/scan.f90 index 4a3f77b71..ced511e14 100644 --- a/source/fortran/scan.f90 +++ b/source/fortran/scan.f90 @@ -47,7 +47,7 @@ module scan_module !!
  • 8 fqval !!
  • 9 te !!
  • 10 boundu(15: fvs) - !!
  • 11 beta_norm_limit_upper + !!
  • 11 beta_norm_max !!
  • 12 bootstrap_current_fraction_max !!
  • 13 boundu(10: hfact) !!
  • 14 fiooic @@ -603,7 +603,7 @@ subroutine scan_select(nwp, swp, iscn, vlab, xlab) use fwbs_variables, only: inlet_temp_liq, outlet_temp_liq, blpressure_liq, & n_liq_recirc, bz_channel_conduct_liq, pnuc_fw_ratio_dcll, f_nuc_pow_bz_struct, pitch use impurity_radiation_module, only: fimp, coreradius, impurity_arr_frac - use physics_variables, only: kappa, beta_norm_limit_upper, te, aspect, ftar, bt, & + use physics_variables, only: kappa, beta_norm_max, te, aspect, ftar, bt, & rad_fraction_sol, triang, rmajor, beamfus0, hfact use numerics, only: epsvmc, boundu, boundl use tfcoil_variables, only: tmargmin_tf, sig_tf_case_max, n_pancake, oacdcp, & @@ -655,8 +655,8 @@ subroutine scan_select(nwp, swp, iscn, vlab, xlab) boundu(15) = swp(iscn) vlab = 'boundu(15)' ; xlab = 'Volt-second_upper_bound' case (11) - beta_norm_limit_upper = swp(iscn) - vlab = 'beta_norm_limit_upper' ; xlab = 'Beta_coefficient' + beta_norm_max = swp(iscn) + vlab = 'beta_norm_max' ; xlab = 'Beta_coefficient' case (12) bootstrap_current_fraction_max = swp(iscn) vlab = 'bootstrap_current_fraction_max' ; xlab = 'Bootstrap_fraction' diff --git a/source/fortran/stellarator.f90 b/source/fortran/stellarator.f90 index 752944d86..e5db58f72 100644 --- a/source/fortran/stellarator.f90 +++ b/source/fortran/stellarator.f90 @@ -54,7 +54,7 @@ subroutine stinit use build_variables, only: gapoh, iohcl, ohcth, tfootfi use current_drive_variables, only: irfcd use pfcoil_variables, only: ohhghf - use physics_variables, only: aspect, beta_norm_limit_upper, kappa, kappa95, q, rmajor, & + use physics_variables, only: aspect, beta_norm_max, kappa, kappa95, q, rmajor, & triang, hfac, tauscl use numerics, only: boundl, boundu use stellarator_variables, only: istell @@ -98,7 +98,7 @@ subroutine stinit ! Physics quantities - beta_norm_limit_upper = 0.0D0 + beta_norm_max = 0.0D0 kappa95 = 1.0D0 triang = 0.0D0 q = 1.03D0 diff --git a/tests/integration/data/large_tokamak_1_MFILE.DAT b/tests/integration/data/large_tokamak_1_MFILE.DAT index a3c9d3f9c..3e547d795 100644 --- a/tests/integration/data/large_tokamak_1_MFILE.DAT +++ b/tests/integration/data/large_tokamak_1_MFILE.DAT @@ -353,7 +353,7 @@ Thermal_toroidal_physics_variables.beta_(=_beta-exp)____________________ ______________________________ 3.0215E-02 OP 2nd_stability_physics_variables.beta_:_beta_p_/_(R/a)___________________ (eps*beta_poloidal)___________________ 4.2857E-01 2nd_stability_physics_variables.beta_upper_limit________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.9099E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.9099E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.4977E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.8562E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.9330E+00 @@ -1552,7 +1552,7 @@ alphan = 1.00 alphat = 1.45 * (troyon-like) coefficient for beta scaling -beta_norm_limit_upper = 3.0 +beta_norm_max = 3.0 * Zohm elongation scaling adjustment factor (ishape=2; 3) fkzohm = 1.02 diff --git a/tests/integration/data/large_tokamak_2_MFILE.DAT b/tests/integration/data/large_tokamak_2_MFILE.DAT index cfc948b57..793d4bc03 100644 --- a/tests/integration/data/large_tokamak_2_MFILE.DAT +++ b/tests/integration/data/large_tokamak_2_MFILE.DAT @@ -354,7 +354,7 @@ Thermal_toroidal_physics_variables.beta_(=_beta-exp)____________________ ______________________________ 3.0215E-02 OP 2nd_stability_physics_variables.beta_:_beta_p_/_(R/a)___________________ (eps*beta_poloidal)___________________ 4.2857E-01 2nd_stability_physics_variables.beta_upper_limit________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.9099E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.9099E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.4977E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.8562E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.9330E+00 @@ -1553,7 +1553,7 @@ alphan = 1.00 alphat = 1.45 * (troyon-like) coefficient for beta scaling -beta_norm_limit_upper = 3.0 +beta_norm_max = 3.0 * Zohm elongation scaling adjustment factor (ishape=2; 3) fkzohm = 1.02 diff --git a/tests/integration/data/large_tokamak_3_MFILE.DAT b/tests/integration/data/large_tokamak_3_MFILE.DAT index 2e0546603..78059b195 100644 --- a/tests/integration/data/large_tokamak_3_MFILE.DAT +++ b/tests/integration/data/large_tokamak_3_MFILE.DAT @@ -354,7 +354,7 @@ Thermal_toroidal_physics_variables.beta_(=_beta-exp)____________________ ______________________________ 3.0215E-02 OP 2nd_stability_physics_variables.beta_:_beta_p_/_(R/a)___________________ (eps*beta_poloidal)___________________ 4.2857E-01 2nd_stability_physics_variables.beta_upper_limit________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.9099E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.9099E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.4977E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.8562E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.9330E+00 @@ -1553,7 +1553,7 @@ alphan = 1.00 alphat = 1.45 * (troyon-like) coefficient for beta scaling -beta_norm_limit_upper = 3.0 +beta_norm_max = 3.0 * Zohm elongation scaling adjustment factor (ishape=2; 3) fkzohm = 1.02 diff --git a/tests/integration/data/large_tokamak_4_MFILE.DAT b/tests/integration/data/large_tokamak_4_MFILE.DAT index 5a0cf8ebf..a6d89e23d 100644 --- a/tests/integration/data/large_tokamak_4_MFILE.DAT +++ b/tests/integration/data/large_tokamak_4_MFILE.DAT @@ -354,7 +354,7 @@ Thermal_toroidal_physics_variables.beta_(=_beta-exp)____________________ ______________________________ 3.0215E-02 OP 2nd_stability_physics_variables.beta_:_beta_p_/_(R/a)___________________ (eps*beta_poloidal)___________________ 4.2857E-01 2nd_stability_physics_variables.beta_upper_limit________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.9099E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.9099E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.4977E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.8562E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.9330E+00 @@ -1553,7 +1553,7 @@ alphan = 1.00 alphat = 1.45 * (troyon-like) coefficient for beta scaling -beta_norm_limit_upper = 3.0 +beta_norm_max = 3.0 * Zohm elongation scaling adjustment factor (ishape=2; 3) fkzohm = 1.02 diff --git a/tests/integration/data/large_tokamak_IN.DAT b/tests/integration/data/large_tokamak_IN.DAT index b93c418e7..3e660eb2b 100644 --- a/tests/integration/data/large_tokamak_IN.DAT +++ b/tests/integration/data/large_tokamak_IN.DAT @@ -363,7 +363,7 @@ alphan = 1.00 alphat = 1.45 * (troyon-like) coefficient for beta scaling -beta_norm_limit_upper = 3.0 +beta_norm_max = 3.0 * Zohm elongation scaling adjustment factor (ishape=2; 3) fkzohm = 1.02 diff --git a/tests/integration/data/large_tokamak_MFILE.DAT b/tests/integration/data/large_tokamak_MFILE.DAT index 44416073b..2427e5669 100644 --- a/tests/integration/data/large_tokamak_MFILE.DAT +++ b/tests/integration/data/large_tokamak_MFILE.DAT @@ -350,7 +350,7 @@ Thermal_toroidal_physics_variables.beta_(=_beta-exp)____________________ ______________________________ 2.9623E-02 OP 2nd_stability_physics_variables.beta_:_beta_p_/_(R/a)___________________ (eps*beta_poloidal)___________________ 4.3453E-01 2nd_stability_physics_variables.beta_upper_limit________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.9607E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.9607E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.4911E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.8515E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.9257E+00 @@ -1554,7 +1554,7 @@ alphan = 1.00 alphat = 1.45 * (troyon-like) coefficient for beta scaling -beta_norm_limit_upper = 3.0 +beta_norm_max = 3.0 * Zohm elongation scaling adjustment factor (ishape=2; 3) fkzohm = 1.02 diff --git a/tests/integration/data/large_tokamak_once_through.IN.DAT b/tests/integration/data/large_tokamak_once_through.IN.DAT index c8c9d0c3b..6f3305354 100644 --- a/tests/integration/data/large_tokamak_once_through.IN.DAT +++ b/tests/integration/data/large_tokamak_once_through.IN.DAT @@ -318,7 +318,7 @@ aspect = 3.0 * aspect ratio (`iteration variable 1`) beta = 0.03230408815355488 * total plasma beta (`iteration variable 5`) (calculated if stellarator) bt = 5.318322174644904 * toroidal field on axis (T) (`iteration variable 2`) dene = 7.796223900029837e+19 * electron density (/m3) (`iteration variable 6`) -beta_norm_limit_upper = 3.0 * Troyon-like coefficient for beta scaling calculated +beta_norm_max = 3.0 * Troyon-like coefficient for beta scaling calculated fgwsep = 0.5 * fraction of Greenwald density to set as separatrix density; If `<0`; separatrix fkzohm = 1.02 * Zohm elongation scaling adjustment factor (`ishape=2; 3`) fvsbrnni = 0.4242184436680697 * fraction of the plasma current produced by non-inductive means (`iteration variable 44`) diff --git a/tests/integration/data/ref_IN.DAT b/tests/integration/data/ref_IN.DAT index f184f1482..bb5989f9d 100644 --- a/tests/integration/data/ref_IN.DAT +++ b/tests/integration/data/ref_IN.DAT @@ -254,7 +254,7 @@ alphan = 1.00 * Density profile index alphat = 1.45 * Temperature profile index aspect = 3.1 * Aspect ratio (iteration variable 1) dene = 7.983e+19 * Electron density (/m3) (iteration variable 6) -beta_norm_limit_upper = 3.0 * (troyon-like) coefficient for beta scaling; +beta_norm_max = 3.0 * (troyon-like) coefficient for beta scaling; fkzohm = 1.0245 * Zohm elongation scaling adjustment factor (ishape=2; 3) fvsbrnni = 0.4434 * Fraction of the plasma current produced by gamma = 0.3 * Ejima coefficient for resistive startup v-s formula diff --git a/tests/integration/data/scan_2D_MFILE.DAT b/tests/integration/data/scan_2D_MFILE.DAT index 24ca70d89..4b201599a 100644 --- a/tests/integration/data/scan_2D_MFILE.DAT +++ b/tests/integration/data/scan_2D_MFILE.DAT @@ -355,7 +355,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 3.0344E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 4.1924E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.8659E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.8659E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.4711E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.8318E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.9100E+00 @@ -1518,7 +1518,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 3.1671E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 4.1775E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.7940E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.7940E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.5167E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.8844E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.9680E+00 @@ -2681,7 +2681,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 3.3041E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 4.1634E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.7239E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.7239E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.5630E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.9371E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 3.0262E+00 @@ -3844,7 +3844,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 3.3166E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 4.2186E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.7374E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.7374E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.5848E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.9638E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 3.0528E+00 @@ -5007,7 +5007,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 3.1877E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 4.2226E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.7994E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.7994E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.5378E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.9108E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.9948E+00 @@ -6170,7 +6170,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 3.0573E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 4.2407E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.8699E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.8699E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.4932E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.8610E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.9398E+00 @@ -7333,7 +7333,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 3.0694E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 4.2955E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.8828E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.8828E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.5140E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.8865E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.9655E+00 @@ -8496,7 +8496,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 3.1938E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 4.2899E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.8194E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.8194E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.5601E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.9392E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 3.0229E+00 @@ -9659,7 +9659,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 3.3167E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 4.2969E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.7637E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.7637E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.6084E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.9945E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 3.0830E+00 @@ -10822,7 +10822,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 3.3388E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 4.3386E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.7677E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.7677E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.6293E+00 Normalised_total_beta___________________________________________________ ______________________________ 3.0199E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 3.1089E+00 @@ -11985,7 +11985,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 3.2192E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 4.3248E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.8191E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.8191E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.5802E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.9633E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 3.0478E+00 @@ -13148,7 +13148,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 3.0947E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 4.3298E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.8817E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.8817E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.5338E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.9106E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.9902E+00 @@ -14311,7 +14311,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 3.1135E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 4.3741E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.8874E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.8874E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.5541E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.9352E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 3.0153E+00 @@ -15474,7 +15474,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 3.2479E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 4.3552E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.8157E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.8157E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.6001E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.9872E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 3.0726E+00 @@ -16637,7 +16637,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 3.3913E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 4.3356E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.7427E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.7427E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.6478E+00 Normalised_total_beta___________________________________________________ ______________________________ 3.0410E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 3.1321E+00 @@ -17839,7 +17839,7 @@ alphan = 1.00 alphat = 1.45 * (troyon-like) coefficient for beta scaling -beta_norm_limit_upper = 3.0 +beta_norm_max = 3.0 * Zohm elongation scaling adjustment factor (ishape=2; 3) fkzohm = 1.02 diff --git a/tests/integration/data/scan_MFILE.DAT b/tests/integration/data/scan_MFILE.DAT index 107872190..47f2f9a79 100644 --- a/tests/integration/data/scan_MFILE.DAT +++ b/tests/integration/data/scan_MFILE.DAT @@ -209,7 +209,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 2.7211E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 3.8969E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.8522E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.8522E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.2870E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.6474E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.7164E+00 @@ -1204,7 +1204,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 2.7211E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 3.8969E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.8522E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.8522E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.2870E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.6474E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.7164E+00 @@ -2199,7 +2199,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 2.7211E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 3.8969E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.8522E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.8522E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.2870E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.6474E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.7164E+00 @@ -3194,7 +3194,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 2.7211E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 3.8969E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.8522E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.8522E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.2870E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.6474E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.7164E+00 @@ -4189,7 +4189,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 2.7211E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 3.8969E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.8522E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.8522E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.2870E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.6474E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.7164E+00 @@ -5184,7 +5184,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 2.7211E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 3.8969E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.8522E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.8522E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.2870E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.6474E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.7164E+00 @@ -6179,7 +6179,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 2.7211E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 3.8969E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.8522E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.8522E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.2870E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.6474E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.7164E+00 @@ -7174,7 +7174,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 2.7211E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 3.8969E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.8522E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.8522E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.2870E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.6474E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.7164E+00 @@ -8169,7 +8169,7 @@ Thermal_toroidal_beta_(=_beta-exp)______________________________________ ______________________________ 2.7211E-02 OP 2nd_stability_beta_:_beta_p_/_(R/a)_____________________________________ (eps*beta_poloidal)___________________ 3.8969E-01 2nd_stability_beta_upper_limit__________________________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.8522E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.8522E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.2870E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.6474E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.7164E+00 @@ -9233,7 +9233,7 @@ alphan = 1.00 * Density profile index alphat = 1.45 * Temperature profile index aspect = 3.1 * Aspect ratio (iteration variable 1) dene = 7.983e+19 * Electron density (/m3) (iteration variable 6) -beta_norm_limit_upper = 3.0 * (troyon-like) coefficient for beta scaling; +beta_norm_max = 3.0 * (troyon-like) coefficient for beta scaling; fkzohm = 1.0245 * Zohm elongation scaling adjustment factor (ishape=2; 3) fvsbrnni = 0.4434 * Fraction of the plasma current produced by gamma = 0.3 * Ejima coefficient for resistive startup v-s formula diff --git a/tests/integration/data/uncertainties_nonopt_ref_IN.DAT b/tests/integration/data/uncertainties_nonopt_ref_IN.DAT index f2e026cac..345cf1742 100644 --- a/tests/integration/data/uncertainties_nonopt_ref_IN.DAT +++ b/tests/integration/data/uncertainties_nonopt_ref_IN.DAT @@ -254,7 +254,7 @@ alphan = 1.00 * Density profile index alphat = 1.45 * Temperature profile index aspect = 3.1 * Aspect ratio (iteration variable 1) dene = 7.983e+19 * Electron density (/m3) (iteration variable 6) -beta_norm_limit_upper = 3.0 * (troyon-like) coefficient for beta scaling; +beta_norm_max = 3.0 * (troyon-like) coefficient for beta scaling; fkzohm = 1.0245 * Zohm elongation scaling adjustment factor (ishape=2; 3) fvsbrnni = 0.4434 * Fraction of the plasma current produced by gamma = 0.3 * Ejima coefficient for resistive startup v-s formula diff --git a/tests/integration/data/uncertainties_ref_IN.DAT b/tests/integration/data/uncertainties_ref_IN.DAT index 59d2505a2..d02ba376b 100644 --- a/tests/integration/data/uncertainties_ref_IN.DAT +++ b/tests/integration/data/uncertainties_ref_IN.DAT @@ -254,7 +254,7 @@ alphan = 1.00 * Density profile index alphat = 1.45 * Temperature profile index aspect = 3.1 * Aspect ratio (iteration variable 1) dene = 7.983e+19 * Electron density (/m3) (iteration variable 6) -beta_norm_limit_upper = 3.0 * (troyon-like) coefficient for beta scaling; +beta_norm_max = 3.0 * (troyon-like) coefficient for beta scaling; fkzohm = 1.0245 * Zohm elongation scaling adjustment factor (ishape=2; 3) fvsbrnni = 0.4434 * Fraction of the plasma current produced by gamma = 0.3 * Ejima coefficient for resistive startup v-s formula diff --git a/tests/integration/ref_dicts.json b/tests/integration/ref_dicts.json index baf705708..69cdaad3e 100644 --- a/tests/integration/ref_dicts.json +++ b/tests/integration/ref_dicts.json @@ -1670,7 +1670,7 @@ "dnalp": 0.0, "dnbeam": 0.0, "beam_density_out": 0.0, - "beta_norm_limit_upper": 3.5, + "beta_norm_max": 3.5, "dndrho_max": null, "dnelimt": 0.0, "dnitot": 0.0, @@ -9318,7 +9318,7 @@ "dnalp": "thermal alpha density (/m3)", "dnbeam": "hot beam ion density, variable (/m3)", "beam_density_out": "hot beam ion density from calculation (/m3)", - "beta_norm_limit_upper": "Troyon-like coefficient for beta scaling calculated\n as 4*rli if `iprofile=1` (see also gtscale option)", + "beta_norm_max": "Troyon-like coefficient for beta scaling calculated\n as 4*rli if `iprofile=1` (see also gtscale option)", "dndrho_max": "Maximum density gradient wrt to normalized r (rho) (/m3)", "dnelimt": "density limit (/m3)", "dnitot": "total ion density (/m3)", @@ -9729,7 +9729,7 @@ "green_func_emp_first": "", "ground_clrnc": "clearance beneath TF coil (m)", "gsmass": "reactor core gravity support mass (kg)", - "gtscale": "switch for a/R scaling of beta_norm_limit_upper (`iprofile=0` only):\n
      \n
    • =0 do not scale beta_norm_limit_upper with eps
    • \n
    • =1 scale beta_norm_limit_upper with eps, original scaling
    • \n
    • =2 scale beta_norm_limit_upper with eps, Menard scaling
    • \n
    ", + "gtscale": "switch for a/R scaling of beta_norm_max (`iprofile=0` only):\n
      \n
    • =0 do not scale beta_norm_max with eps
    • \n
    • =1 scale beta_norm_max with eps, original scaling
    • \n
    • =2 scale beta_norm_max with eps, Menard scaling
    • \n
    ", "h": "", "h_cp_top": "Vertical distance from the midplane to the top of the tapered section [m]", "h_ib": "", @@ -9895,7 +9895,7 @@ "iprecomp": "Switch for existence of central solenoid pre-compression structure:\n
      \n
    • =0 no pre-compression structure
    • \n
    • =1 calculated pre-compression structure
    • \n
    ", "iprimdiv": "", "iprimshld": "Switch for shield thermal power destiny:\n
      \n
    • =0 does not contribute to energy generation cycle
    • \n
    • =1 contributes to energy generation cycle
    • \n
    ", - "iprofile": "switch for current profile consistency:\n
      \n
    • =0 use input values for alphaj, rli, beta_norm_limit_upper (but see gtscale option)
    • \n
    • =1 make these consistent with input q, q_0 values (recommend `i_plasma_current=4` with this option)
    • \n
    ", + "iprofile": "switch for current profile consistency:\n
      \n
    • =0 use input values for alphaj, rli, beta_norm_max (but see gtscale option)
    • \n
    • =1 make these consistent with input q, q_0 values (recommend `i_plasma_current=4` with this option)
    • \n
    ", "i_pfirsch_schluter_current": "switch for Pfirsch-Schl\u00fcter current scaling (issue #413):\n
      \n
    • =0 Do not calculate
    • \n
    • =1 Use SCENE scaling
    • \n
    ", "iptnt": "", "iptr": "", @@ -10199,7 +10199,7 @@ "nre": "", "nsix": "", "nsixi": "", - "nsweep": "Switch denoting quantity to scan:
      \n
    • 1 aspect\n
    • 2 hldivlim\n
    • 3 pnetelin\n
    • 4 hfact\n
    • 5 oacdcp\n
    • 6 walalw\n
    • 7 beamfus0\n
    • 8 fqval\n
    • 9 te\n
    • 10 boundu(15: fvs)\n
    • 11 beta_norm_limit_upper\n
    • 12 bootstrap_current_fraction_max (use negative values only)\n
    • 13 boundu(10: hfact)\n
    • 14 fiooic\n
    • 15 fjprot\n
    • 16 rmajor\n
    • 17 bmxlim\n
    • 18 gammax\n
    • 19 boundl(16: ohcth)\n
    • 20 t_burn_min\n
    • 21 not used\n
    • 22 cfactr (N.B. requires iavail=0)\n
    • 23 boundu(72: fipir)\n
    • 24 powfmax\n
    • 25 kappa\n
    • 26 triang\n
    • 27 tbrmin (for blktmodel > 0 only)\n
    • 28 bt\n
    • 29 coreradius\n
    • 31 taulimit\n
    • 32 epsvmc\n
    • 33 ttarget\n
    • 34 qtargettotal\n
    • 35 lambda_q_omp\n
    • 36 lambda_target\n
    • 37 lcon_factor\n
    • 38 Neon upper limit\n
    • 39 Argon upper limit\n
    • 40 Xenon upper limit\n
    • 41 blnkoth\n
    • 42 Argon fraction fimp(9)\n
    • 43 normalised minor radius at which electron cyclotron current drive is maximum\n
    • 44 Allowable maximum shear stress (Tresca) in tf coil structural material\n
    • 45 Minimum allowable temperature margin ; tf coils\n
    • 46 boundu(150) fgwsep\n
    • 47 impurity_enrichment(9) Argon impurity enrichment\n
    • 48 TF coil - n_pancake (integer turn winding pack)\n
    • 49 TF coil - n_layer (integer turn winding pack)\n
    • 50 Xenon fraction fimp(13)\n
    • 51 Power fraction to lower DN Divertor ftar\n
    • 52 SoL radiation fraction\n
    • 54 GL_nbti upper critical field at 0 Kelvin\n
    • 55 `shldith` : Inboard neutron shield thickness\n
    • 56 crypmw_max: Maximum cryogenic power (ixx=164, ixc=87)\n
    • 57 `bt` lower boundary\n
    • 58 `scrapli` : Inboard plasma-first wall gap\n
    • 59 `scraplo` : Outboard plasma-first wall gap\n
    • 60 sig_tf_wp_max: Allowable stress in TF Coil conduit (Tresca)\n
    • 61 copperaoh_m2_max : CS coil current / copper area\n
    • 62 coheof : CS coil current density at EOF\n
    • 63 ohcth : CS thickness (m)\n
    • 64 ohhghf : CS height (m)
    ", + "nsweep": "Switch denoting quantity to scan:
      \n
    • 1 aspect\n
    • 2 hldivlim\n
    • 3 pnetelin\n
    • 4 hfact\n
    • 5 oacdcp\n
    • 6 walalw\n
    • 7 beamfus0\n
    • 8 fqval\n
    • 9 te\n
    • 10 boundu(15: fvs)\n
    • 11 beta_norm_max\n
    • 12 bootstrap_current_fraction_max (use negative values only)\n
    • 13 boundu(10: hfact)\n
    • 14 fiooic\n
    • 15 fjprot\n
    • 16 rmajor\n
    • 17 bmxlim\n
    • 18 gammax\n
    • 19 boundl(16: ohcth)\n
    • 20 t_burn_min\n
    • 21 not used\n
    • 22 cfactr (N.B. requires iavail=0)\n
    • 23 boundu(72: fipir)\n
    • 24 powfmax\n
    • 25 kappa\n
    • 26 triang\n
    • 27 tbrmin (for blktmodel > 0 only)\n
    • 28 bt\n
    • 29 coreradius\n
    • 31 taulimit\n
    • 32 epsvmc\n
    • 33 ttarget\n
    • 34 qtargettotal\n
    • 35 lambda_q_omp\n
    • 36 lambda_target\n
    • 37 lcon_factor\n
    • 38 Neon upper limit\n
    • 39 Argon upper limit\n
    • 40 Xenon upper limit\n
    • 41 blnkoth\n
    • 42 Argon fraction fimp(9)\n
    • 43 normalised minor radius at which electron cyclotron current drive is maximum\n
    • 44 Allowable maximum shear stress (Tresca) in tf coil structural material\n
    • 45 Minimum allowable temperature margin ; tf coils\n
    • 46 boundu(150) fgwsep\n
    • 47 impurity_enrichment(9) Argon impurity enrichment\n
    • 48 TF coil - n_pancake (integer turn winding pack)\n
    • 49 TF coil - n_layer (integer turn winding pack)\n
    • 50 Xenon fraction fimp(13)\n
    • 51 Power fraction to lower DN Divertor ftar\n
    • 52 SoL radiation fraction\n
    • 54 GL_nbti upper critical field at 0 Kelvin\n
    • 55 `shldith` : Inboard neutron shield thickness\n
    • 56 crypmw_max: Maximum cryogenic power (ixx=164, ixc=87)\n
    • 57 `bt` lower boundary\n
    • 58 `scrapli` : Inboard plasma-first wall gap\n
    • 59 `scraplo` : Outboard plasma-first wall gap\n
    • 60 sig_tf_wp_max: Allowable stress in TF Coil conduit (Tresca)\n
    • 61 copperaoh_m2_max : CS coil current / copper area\n
    • 62 coheof : CS coil current density at EOF\n
    • 63 ohcth : CS thickness (m)\n
    • 64 ohhghf : CS height (m)
    ", "nsweep_2": "nsweep_2 /3/ : switch denoting quantity to scan for 2D scan:", "nt": "", "ntype": "switch for vacuum pump type:\n
      \n
    • =0 - for turbomolecular pump (magnetic bearing) with speed of 2.0 m3/s\n (1.95 for N2, 1.8 for He, 1.8 for DT)
    • \n
    • =1 - for compound cryopump with nominal speed of 10.0 m3/s\n (9.0 for N2, 5.0 for He and 25.0 for DT)
    • \n
    ", @@ -12253,7 +12253,7 @@ "lb": 0.01, "ub": 1.0 }, - "beta_norm_limit_upper": { + "beta_norm_max": { "lb": 0.0, "ub": 20.0 }, @@ -19098,7 +19098,7 @@ "dnalp", "dnbeam", "beam_density_out", - "beta_norm_limit_upper", + "beta_norm_max", "dnelimt", "dnitot", "dnla", @@ -19910,7 +19910,7 @@ "DICT_NSWEEP2VARNAME": { "1": "aspect", "10": "boundu(15)", - "11": "beta_norm_limit_upper", + "11": "beta_norm_max", "12": "bootstrap_current_fraction_max", "13": "boundu(10)", "14": "fiooic", @@ -20188,7 +20188,7 @@ "divdum": "int_variable", "divfix": "real_variable", "divplt": "real_variable", - "beta_norm_limit_upper": "real_variable", + "beta_norm_max": "real_variable", "dp_he": "real_variable", "dr_tf_wp": "real_variable", "drtop": "real_variable", diff --git a/tests/regression/input_files/large_tokamak.IN.DAT b/tests/regression/input_files/large_tokamak.IN.DAT index 28a2ae31a..eeb451b1f 100644 --- a/tests/regression/input_files/large_tokamak.IN.DAT +++ b/tests/regression/input_files/large_tokamak.IN.DAT @@ -363,7 +363,7 @@ alphan = 1.00 alphat = 1.45 * (troyon-like) coefficient for beta scaling -beta_norm_limit_upper = 3.0 +beta_norm_max = 3.0 * Zohm elongation scaling adjustment factor (ishape=2; 3) fkzohm = 1.02 diff --git a/tests/regression/input_files/large_tokamak_nof.IN.DAT b/tests/regression/input_files/large_tokamak_nof.IN.DAT index 009481ae1..86e00c24a 100644 --- a/tests/regression/input_files/large_tokamak_nof.IN.DAT +++ b/tests/regression/input_files/large_tokamak_nof.IN.DAT @@ -345,7 +345,7 @@ alphan = 1.00 alphat = 1.45 * (troyon-like) coefficient for beta scaling -beta_norm_limit_upper = 3.0 +beta_norm_max = 3.0 * Zohm elongation scaling adjustment factor (ishape=2; 3) fkzohm = 1.02 diff --git a/tests/regression/input_files/large_tokamak_once_through.IN.DAT b/tests/regression/input_files/large_tokamak_once_through.IN.DAT index a3d61213f..45bb7b57c 100644 --- a/tests/regression/input_files/large_tokamak_once_through.IN.DAT +++ b/tests/regression/input_files/large_tokamak_once_through.IN.DAT @@ -318,7 +318,7 @@ aspect = 3.0 * aspect ratio (`iteration variable 1`) beta = 0.03230408815355488 * total plasma beta (`iteration variable 5`) (calculated if stellarator) bt = 5.318322174644904 * toroidal field on axis (T) (`iteration variable 2`) dene = 7.796223900029837e+19 * electron density (/m3) (`iteration variable 6`) -beta_norm_limit_upper = 3.0 * Troyon-like coefficient for beta scaling calculated +beta_norm_max = 3.0 * Troyon-like coefficient for beta scaling calculated fgwsep = 0.5 * fraction of Greenwald density to set as separatrix density; If `<0`; separatrix fkzohm = 1.02 * Zohm elongation scaling adjustment factor (`ishape=2; 3`) fvsbrnni = 0.4242184436680697 * fraction of the plasma current produced by non-inductive means (`iteration variable 44`) diff --git a/tests/regression/input_files/st_regression.IN.DAT b/tests/regression/input_files/st_regression.IN.DAT index d4c19d339..797743be7 100644 --- a/tests/regression/input_files/st_regression.IN.DAT +++ b/tests/regression/input_files/st_regression.IN.DAT @@ -314,7 +314,7 @@ beta = 0.2 boundl(5) = 0.01 boundu(5) = 1.0 * DESCRIPTION: Total Plasma Beta, -* JUSTIFICATION: Beta is limited by beta_norm_limit_upper +* JUSTIFICATION: Beta is limited by beta_norm_max ixc = 36 fbeta_max = 0.75 @@ -334,7 +334,7 @@ i_beta_component = 3 * = 2 apply limit to thermal + neutral beam beta * = 3 apply limit to toroidal beta -beta_norm_limit_upper = 5.0 +beta_norm_max = 5.0 * DESCRIPTION: (Troyon-like) coefficient for beta scaling * JUSTIFICATION: * REFERENCE: Ono & Kaita (2015), Physics of Plasmas, 22, 040501 @@ -342,9 +342,9 @@ beta_norm_limit_upper = 5.0 *gtscale = * DESCRIPTION: Flag to scale beta coefficient with aspect, iprofile=0 only -* = 0 do not scale beta_norm_limit_upper with eps -* = 1 scale beta_norm_limit_upper with aspect, original scaling -* = 2 scale beta_norm_limit_upper with aspect, Menard scaling +* = 0 do not scale beta_norm_max with eps +* = 1 scale beta_norm_max with aspect, original scaling +* = 2 scale beta_norm_max with aspect, Menard scaling * JUSTIFICATION: Working at fixed normalized beta, default = 0 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ @@ -2975,8 +2975,8 @@ i_pfirsch_schluter_current = 1 *~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ iprofile = 0 -* DESCRIPTION: Switch for Current Profile Consistency (0: Use Input Values for alphaj rli beta_norm_limit_upper) -* =0 use input values for alphaj, rli, beta_norm_limit_upper (but see gtscale option) +* DESCRIPTION: Switch for Current Profile Consistency (0: Use Input Values for alphaj rli beta_norm_max) +* =0 use input values for alphaj, rli, beta_norm_max (but see gtscale option) * =1 make these consistent with input q, q_0 values (recommend `i_plasma_current=4` with this option) * JUSTIFICATION: These consistency equations don't hold for STs * REFERENCE: diff --git a/tests/unit/data/large_tokamak_IN.DAT b/tests/unit/data/large_tokamak_IN.DAT index e371c96cf..6d3531d41 100644 --- a/tests/unit/data/large_tokamak_IN.DAT +++ b/tests/unit/data/large_tokamak_IN.DAT @@ -363,7 +363,7 @@ alphan = 1.00 alphat = 1.45 * (troyon-like) coefficient for beta scaling -beta_norm_limit_upper = 3.0 +beta_norm_max = 3.0 * Zohm elongation scaling adjustment factor (ishape=2; 3) fkzohm = 1.02 diff --git a/tests/unit/data/large_tokamak_MFILE.DAT b/tests/unit/data/large_tokamak_MFILE.DAT index 2d2baa356..fddc28d71 100644 --- a/tests/unit/data/large_tokamak_MFILE.DAT +++ b/tests/unit/data/large_tokamak_MFILE.DAT @@ -350,7 +350,7 @@ Thermal_toroidal_physics_variables.beta_(=_beta-exp)____________________ ______________________________ 2.9623E-02 OP 2nd_stability_physics_variables.beta_:_beta_p_/_(R/a)___________________ (eps*beta_poloidal)___________________ 4.3453E-01 2nd_stability_physics_variables.beta_upper_limit________________________ (beta_poloidal_eps_max)____________________ 1.3800E+00 - Beta_g_coefficient______________________________________________________ (beta_norm_limit_upper)______________________ 4.9607E+00 + Beta_g_coefficient______________________________________________________ (beta_norm_max)______________________ 4.9607E+00 Normalised_thermal_beta_________________________________________________ ______________________________ 2.4911E+00 Normalised_total_beta___________________________________________________ ______________________________ 2.8515E+00 Normalised_toroidal_beta________________________________________________ (normalised_toroidal_beta)____ 2.9257E+00 @@ -1554,7 +1554,7 @@ alphan = 1.00 alphat = 1.45 * (troyon-like) coefficient for beta scaling -beta_norm_limit_upper = 3.0 +beta_norm_max = 3.0 * Zohm elongation scaling adjustment factor (ishape=2; 3) fkzohm = 1.02